用户名: 密码: 验证码:
镍钛齿科车针新型复合镀层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有齿科不锈钢车针临床使用过程中常常发生基体材料断裂、磨削无力以及因镀层对金刚石颗粒把持力不够而导致金刚石颗粒易脱落等问题,本论文设计了一类新型的以生物医用镍钛合金为基体,以包埋金刚石的新型复合镀层为切削层的电镀金刚石车针。针对新型复合镀层,选择钨元素和磷元素作为纯镍镀层的强化元素,以纳米金刚石作为增强粒子,围绕Ni/纳米金刚石、Ni-W/纳米金刚石及Ni-P/纳米金刚石复合镀层的制备和性能开展了系列研究,并在优选的工艺基础上,以包埋金刚石的Ni/Ni-P/(Ni-P/纳米金刚石)复合镀层为切削层,制备了镍钛齿科车针并对其性能进行了研究。
     采用不同的混酸溶液对镍钛基体进行电镀前的预处理。研究表明,HF-H2SO4和HCl-H2SO4混合溶液均可在镍钛基体表面形成弥散分布的细小针状TiHH2相。TiHH2相可以防止电镀前镍钛基体的氧化,并能在电镀过程中促进基体和镀层金属之间形成金属键,有利于镍钛基体与镀层之间形成良好的结合;但由于镍钛基体在HF-H2SO4混合溶液中反应剧烈,并会产生裂纹,所以选择HCl-H2SO4混合溶液作为镍钛基体电镀前的预处理工艺。
     Ni/纳米金刚石复合镀层的优化制备工艺为:电流密度1.5A/dm2, pH4.0,搅拌速度450rpm,温度30℃。纳米金刚石的加入将纯镍镀层的择优取向由(220)转变为(111)。镀液中纳米金刚石添加量为4g/l时,Ni/纳米金刚石复合镀层的硬度和耐磨性最好。
     Ni-W/纳米金刚石复合镀层的结构为钨在镍中的固溶体,纳米金刚石在镍钨合金镀层中的加入并未改变镍钨合金镀层的晶体结构和取向。电流密度从8A/dm2增加到20A/dm2时,Ni-W合金镀层中W含量从32.6 wt.%增加到34.4wt.%;电流密度为12A/dm2时制备的Ni-W镀层结晶最细致、且与基体结合强度最好。镀液中纳米金刚石添加量达到8g/l时,Ni-W/纳米金刚石复合镀层的硬度和耐磨性最好。
     Ni-P/纳米金刚石复合镀层中纳米金刚石的加入对Ni-P合金镀层有晶粒细化作用,使Ni-P合金镀层从非晶变成纳米晶。以电流密度为2A/dmm2,pH值为2.2,温度为80℃的优化工艺制备的Ni-P合金镀层为非晶镀层,磷含量可达10wt.%以上。镀液中纳米金刚石添加量达到8g/l时,Ni-P/纳米金刚石复合镀层的硬度和耐磨性最好。
     齿科车针制备过程中,微米金刚石颗粒的上砂量随上砂电流密度的增加而增加,金刚石的包埋率随增厚镀时间的延长而增加。综合考虑金刚石颗粒的切削作用和基质金属对金刚石颗粒的把持力,选择上砂电流密度1.5A/dmm2,增厚时间4-5h为宜。
     对三种纳米金刚石复合镀层的对比研究表明,Ni-P/纳米金刚石复合镀层的硬度和耐磨性最高,Ni/纳米金刚石复合镀层的硬度和耐磨性最低,Ni-W/纳米金刚石复合镀层的硬度和耐磨性居中。在干摩擦磨损过程,纳米金刚石复合镀层发生以磨粒磨损和粘着磨损为主的混合磨损。
     对采用上述优化工艺、以包埋金刚石的Ni/Ni-P/(Ni-P/纳米金刚石)复合镀层为切削层的镍钛齿科车针的性能分析结果表明,金刚石在复合镀层中分布均匀、包埋适当,Ni-P/纳米金刚石复合镀层对金刚石颗粒的浸润性较好,结合界面处没有观察到缝隙。镍钛齿科车针的性能较目前普遍采用的不锈钢车针有大幅度的提高,其切削效率约为不锈钢车针的1.3倍,使用寿命约为不锈钢车针的1.5倍。
According to the problems existing in the clinical treatment of stainless steel dental bur, such as the fracture of substrate, cutting inefficiency and the removement of diamond grit due to the weak bonding between dimaond grits and metallic coatings, we design a new kind of diamond dental bur, in which the biomedical Ni-Ti alloy is used as substrate and novel composite coating as cutting layer. For the novel composite coating, tungsten and phosphor were used as strengthening elements and nanodiamonds as reinforced particles, and the preparation and characteriazation of Ni/nanodiamond, Ni-W/nanodiamond and Ni-P/nanodiamond composite coatings were investigated, and based on the optimum process, the fabrication and performance of Ni-Ti dental bur using diamond embedded in Ni/Ni-P/(Ni-P/nanodiamond) composite coating as cutting layer were investigated.
     Different mixed acid solutions were used for the pretreatment of Ni-Ti substrate piror to electroplating. The results showed that the pre-treatment in the mixed solutions of HF-H2SO4 and HCl-H2SO4 resulted in the formation of fine needle-like TiH2 phase on the surface of Ni-Ti alloy, which could prevent the oxidation of Ni-Ti subastrate before electroplating and form the metallic bond between Ni-Ti substratrate and electroplated coatings, leading to the good adhesion between Ni-Ti substratrate and electroplated coatings. Howere, due to the severe reacion and cracks formed during pre-treatment in HF-H2SO4 mixed solution, pre-treatment in HCl-H2SO4 mixed solution was selectred as pre-treatment process for Ni-Ti substrate.
     The optimum process for the preparation of Ni/nanodiamond composite coatings was the current density of 1.5A/dm2, the pH value of 4.0, the stirring speed of 450rpm and the temperature of 30℃The addition of nanodiamond changed the preferred orientiation of nickel from (220) to (111). The maximum hardness and wear resistance was obtained for Ni/nanodiamond composite coatings prepared from the electroplating bath containing 4 g/1 nanodiamond.
     The addition of nanodiamond did not change the structure of Ni-W/nanodiamond composite coatings, which kept the structure of solid solution of tungsten in nickel. As the prepared current density increased from 8A/dm2 to 20A/dm2, the tungsten content in Ni-W coatings increased from 32.63 wt.% to 34.35 wt.%. The Ni-W coatings with fine and compact crystal structure and possessed good adhesion with Ni-Ti substrate were prepared at 12A/dm2 Ni-W/nanodiamond composite coatings electroplated from the palting bath containing 8 g/1 nanodiamond possessed the best hardness and wear resistance.
     The addition of nanodiamond lead to the grain refinement of Ni-P coatings, which changed the structure of Ni-P coatings from amorphous to nanocrystalline. Ni-P coatings prepared at the optimum parameters with the current density of 2A/dm2, the pH value of 2.2 and the temperature of 80℃had the amorphous structure and phosphor content up to 10 wt.%. The best hardness and wear resistance of Ni-P/nanodiamond composite coatings was prepared from the electroplating bath containing 8 g/1 nanodiamond.
     During the preparation of dental bur, the amount and embedding rate of micro diamond paricles increased with increasing the grain-planting current density and post-plating time. Taking account of both the cutting effect of diamond particles and the holding force of metal matrix for diamond parcitles, the grain-planting current density of 1.5A/dm2 and post-plating time of 4-5h were used.
     Among the above three nanodiamond composite coatings, Ni-P/nanodiamond composite coatings have the best hardness and wear resistance, and Ni-W/nanodiamond composite coatings took the second place, and Ni/nanodiamond composite coatings have the lowest. Abrasive wear and adhesive wear were the main wear mechanism for nanodiamond composite coatings during the dry sliding process.
     The results of characterization for Ni-Ti dental bur using diamond embedded in Ni/Ni-P/(Ni-P/nanodiamond) composite coating as cutting layer prepared under the above optimum process indicated that diamond particles with proper ebedding rate distributed uniformly in the composite coatings, and the good adhesion between Ni-P/nanodiamond composite coating and diamond particles. The cutting efficiency and service life of Ni-Ti dental bur was about 1.3 and 1.5 times to that of stainless steel dental bur, indicating the property improvement of NiTi dental bur.
引文
[1]马轩祥.口腔修复学[M].第五版.北京:人民卫生出版社.2006:192页
    [2]万隆,陈石林,刘小磐.超硬材料与工具[M].北京:化学工业出版社.2006:36,331-345页
    [3]Sabourin C R, Flinn B D, Pitts D L, Gatten T L, Johnson J D. A novel method for creating endodontic access preparations through all-ceramic restorations:air abrasion and its effect relative to diamond and carbide bur use[J]. Journal of Endodontics.2005, 31 (8):616-619P
    [4]Sato K, Yokoyama T, Suzuki K. Production of electrodeposited diamond wheels and grinding performance for hard metals and ceramics[J]. Journal of Materials Processing Technology.1996,62 (4):303-308P
    [5]王可为,郑玉峰,黄兵民.牙科用金刚石车针预备方法研究进展[J].材料导报.2007,21(7):82-85,89页
    [6]Christopher R Sabourin. A novel method for creating endodontic access preparations through all-ceramic restorations air abrasion and its effect relative to diamond and carbide bur use[J]. Journal of Endodontics.2005,31 (8):616-619P
    [7]Venkateswarlu K, Ajoy Kumar Ray. Tribological wear behavior of diamond reinforced composite coating[J]. Materials Science and Engineering A.2006,418:357-363P
    [8]Polini W, Turchetta S. Force and specific energy in stone cutting by diamond mill[J]. International Journal of Machine Tools & Manufacture.2004,44:1189-1196P
    [9]Yundong Li, Hui Jiang, Lijuan Pang, Bao'an Wang, Xiaohui Liang. Novel application of nanocrystalline nickel electrodeposit:Making good diamond tools easily, efficiently and economically[J]. Surface and Coatings Technology.2007,201:5925-5930P
    [10]Leticia W, de Resende. Multi-layer structure for chemical vapor deposition diamond on electroplated diamond tools[J]. Diamond and Related Materials.2001,10:332-336P
    [11]Toshiki Tsubota, Shunsuke Tanii. Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent[J]. Diamond and Related Materials.2005, 14:608-612P
    [12]Liu Y K, Tso P L. Comparative study of nucleation processes for the growth of nanocrystalline diamond[J]. Diamond & Related Materials.2006,15:234-238P
    [13]Htet Sein, Waqar Ahmed, Mark Jackson, Robert Woodwards, Riccardo Polini. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications[J]. Thin Solid Films. 2004,447-448:455-461P
    [14]Vladimir Jesus Trava-Airoldi, Evaldo Jose Corat, Edson Del Bosco, Nelia Ferreira Leite. Hot filament scaling-up for CVD diamond bur manufacturing[J]. Surface and Coatings Technology.1995,76-77 (2):797-802P
    [15]Ahmed W, Sein H, Ali N, Gracio, Joodwards R W. Diamond films grown on cemented WC-Co dental burs using an improved CVD method[J]. Diamond and Related Materials.2003,12:1300-1306P
    [16]Borges C F M, Mange P, Pfender E, Heberlein J. Dental diamond burs made with a new technology[J]. The Journal of Prosthetic Dentistry.1999,82 (1):73-79P
    [17]Waqar Ahmed, Htet Sein, Mark Jackson, Riccardo Polini. Chemical vapour deposition of diamond films onto tungsten carbide dental burs[J]. Tribology International.2004, 37:957-964P
    [18]Lin C R, Kuo C T. Improvement of mechanical properties of electroplated diamond tools by microwave plasma CVD diamond process[J]. Surface and Coatings Technology.1998,110:19-23P
    [19]Leticia W de Resende, Evaldo J Corat, Vladimir J Trava-Airoldi, Nelia F Leite. Multi-layer structure for chemical vapor deposition diamond on electroplated diamond tools[J]. Diamond and Related Materials.2001,10:332-336P
    [20]Petrov I, Detkov P, Drovosekov A, Ivano v M V, Tyler T, Shenderova O, Voznecova N P, Toporov Y P, Schulz D. Nickel galvanic coatings co-deposited with fractions of detonation nanodiamond[J]. Diamond and related materials.2006,15:2035-2038P
    [21]Hiroshi Matsubara, Yoshihiro Abe, Yoshiyuki Chiba, Hiroshi Nishiyama, Nobuo Saito, Kazunori Hondouchi, Yasunobu Inoue. Co-deposition mechanism of nanodiamond with electrolessly plated nickel films[J]. Electrochimica Acta.2007,52:3047-3052P
    [22]Liping Wang, Yan Gao, Qunji Xue, Huiwen Liu and Tao Xu. Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings[J]. Materials Science and engineering A.2005,390:313-318P
    [23]Liping Wang, Yan Gao, Huiwen Liu, Qunji Xue, Tao Xu. Effects of bivalent Co ion on the co-deposition of nickel and nano-diamond particles[J]. Surface and Coatings Technology.2005,191:1-6P
    [24]Hui Xu, Zhi Yang, Meng-Ke Li, yan-Li Shi, Yi Huang, Hu-Lin Li. Synthesis and properties of elctroless Ni-P-Nanometer Diamond composite coatings[J]. Surface and Coatings Technology.2005,191:161-165P
    [25]Lee W H, Tang S C, Chung K C. Effects of direct current and pulse-plating on the co-deposition of nickel and nanometer diamond powder[J]. Surface and Coatings Technology.1999,120-121:607-611P
    [26]Reddy V V N, Ramamoorthy B, Kesavan Nair P. A study on the wear resistance of electroless Ni-P-Diamond composite coatings[J]. Wear.2000,239:111-116P
    [27]Jung-Yeob Lee, Dae-Soon Lim. Tribological behavior of PTFE film with nanodiamond[J]. Surface and Coatings Technology.2004,188-189:534-538P
    [28]Mandich N V, Dennis J K. Codeposition of Nanodiamonds with Chromium[J]. Metal Finishing.2001,99 (6):117-119P
    [29]Loubnin E N, Pimenov S M, Blatter A, Schwager F, Detkov P. Electroplating of gold-nanodiamond composite coatings[J]. New Diamond Frontier Carbon Technology. 1999,9 (4):273-282P
    [30]Burkat G K, Fujimura T, Dolmatov V Y, Orlova E A, Veretennikova M V. Preparation of composite electrochemical nickel-diamond and iron-diamond coatings in the presence of detonation synthesis nanodiamonds [J]. Diamond and Related Materials. 2005,14:1761-1764P
    [31]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社.2007:9-20,45-74,240-269页
    [32]郭鹤桐,张三元.复合镀层[M].天津:天津大学出版社.1991:2-5页
    [33]李卫东,周晓荣,左正忠,周运鸿.电沉积复合镀层的研究现状[J].电镀与涂饰.2000,19(5):44-49页
    [34]汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社.1998:10-13页
    [35]王士逯.复合电镀层应用的新动向[J].电镀与精饰.2002,24(5):37-39页
    [36]陈劲松,黄因慧,刘志东,田宗军.电沉积复合镀层研究的新动态[J].电镀与精饰.2006,28(2):21-25,39页
    [37]Yoram de Hazan, Dennis Werner, Markus Z'graggen, Michael Groteklaes, Thomas Graule. Homogeneous Ni-P/AlO3 nanocomposite coatings from stable dispersions in electroless nickel baths [J]. Journal of Colloid and Interface Science.2008,32: 103-109P
    [38]Zhi Yang, Hui Xu, Meng-Ke Li, Yan-Li Shi, Yi Huang, Hu-Lin Li. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating[J]. Thin Solid Films.2004,466:86-91P
    [39]Zhou G H, Ding H Y, Zhou F, Zhang Y. Structure and mechanical properties of Ni-P-nano Al2O3 Composite Coatings Synthesized by electroless plating[J]. Journal of iron and steel research, international.2008,15(1):65-69P
    [40]Ma K Y, Guo Z C, Wen M F, Yang X W, Han F. Study on structure and properties of Ni-W-SiC composite coating[J]. Acta Metallurgica Sinica.1997,10 (5):419-424P
    [41]Cardinal M F, Castro P A, Baxi J, Liang H, Williams F J. Characterization and frictional behavior of nanostructured Ni-W-MoS2 composite coatings [J]. Surface and Coatings Technology.2009,204 (1-2):85-90P
    [42]Zhongcheng Guo, Xiaoyun Zhu. Studies on properties and structure of electrodeposited RE-Ni-W-B-SiC composite coating[J]. Materials Science and Engineering A.2003, 363 (1-2):325-329P
    [43]Guo Z C, Zhu X Y, Xu R D. Study on properties of pulse electrodeposited RE-Ni-W-P-SiC composite coatings [J]. Acta Metallurgica Sinica.2007,20 (2): 111-116P
    [44]Song Y H, Wei G, Xiong R C. Properties and structure of RE-Ni-W-P-SiC composite coating prepared by impulse electrodeposition[J]. Transactions of Nonferrous Metals Society of China.2007,17:363-367P
    [45]Liu Y Y, Yu J, Huang H, Xu B H, Liu X L, Gao Y, Dong X L. Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings[J]. Surface and Coatings Technology.2007,201:7246-7251P
    [46]Shi L, Sun C F, Zhou F, Liu W M. Electrodeposited nickel-cobalt composite coating containing nano-sized Si3N4[J]. Materials Science and Engineering A.2005,397 (1-2): 190-194P
    [47]Wang S C, Wei W C J. Kinetics of electroplating process of nano-sized ceramic particle/Ni composite[J]. Materials Chemistry and Physics.2003,78 (3):574-580P
    [48]Zhao G G, Zhou Y B, Zhang H J. Sliding wear behaviors of electrodeposited Ni composite coatings containing micrometer and nanometer Cr particles[J]. Transactions of Nonferrous Metals Society of China.2009,19 (2):319-323P
    [49]Nickchi T, Ghorbani M. Pulsed electrodeposition and characterization of bronze-graphite composite coatings[J]. Surface and Coatings Technology.2009,203 (20-21):3037-3043P
    [50]Li W H, Zhou X Y, Xu Z, Yan M J. Microstructure of Ni-polytetrafluoroethylene composite coating prepared by brush electroplating[J]. Surface and Coatings Technology.2006,201 (3-4):1276-1281P
    [51]Hung C C, Lin C C, Han C. Shih Tribological studies of electroless nickel/diamond composite coatings on steels[J]. Diamond and Related Materials.2008,17:853-859P
    [52]Nabeen K Shrestha, Takashi Takebe, Tetsuo Saji. Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings[J]. Diamond and Related Materials.2006,15: 1570-1575P
    [53]赵渠森,复合材料[M].北京:国防工业出版社.1979:1-18页
    [54]李卫东,周晓荣,左正忠,周运鸿.电沉积复合镀层的研究现状[J].电镀与涂饰.2000,19(5):44-49页
    [55]李爱莲,郭忠诚,张广立.电沉积镍基合金及其复合镀层的研究现状[J].电镀与环保.2003,23(1):1-7页
    [56]陈劲松,黄因慧,刘志东,田宗军.电沉积复合镀层研究的新动态[J].电镀与精饰.2006,28(2):21-26,39页
    [57]温红.铝合金表面电镀Ni/微米Al2O3/纳米Al2O3复合镀层的研究[D].山东科技大学硕士学位论文,2003:10-11页
    [58]Leon C A, Drew R A L. Small Puch Testing for Assessing the Tensile Strength of Gradient Al/Ni-SiC Composites[J]. Materials Letters.2002,56 (5):812-816P
    [59]Sun K Kim, Hang J Y. Formation of Bilayer Ni-SiC Composite Coatings by Electrodeposition[J]. Surface and Coatings Technology.1998,108 (3):564-569P
    [60]Wang H Z, Yao S W, Soujun M. Electrochemical Preparation and Characterization of Ni-SiC Gradient Deposit[J]. Journal of Materials Processing Technology.2004,145 (3): 299-302P
    [61]杜克勤,覃奇贤,郭鹤桐.复合电沉积机理研究进展[J].电镀与精饰.1995,17(6):21-25页
    [62]李卫东,胡进,左正忠,周运鸿.有关复合电沉积机理研究[J].武汉大学学报.2000,46(6):695-700页
    [63]冯秋元,李廷举,金俊泽.复合电镀机理研究及最新进展[J].稀有金属材料与工程.2007,36(3):559-564页
    [64]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths[J]. Journal of the Electrochemical Society.1972,119 (8):1009-1012P
    [65]Celis J P, Roos J R. Kinetics of the deposition of alumina particles from copper sulfate plating bath[J]. Journal of the Electrochemical Society.1977,124 (10):1508-1511P
    [66]Suzuki Y, Asai O. Adsorption-codeposition process of Al2O3 particles onto Ag-Al2O3 dispersion films[J]. Journal of the Electrochemical Society.1987,134 (8):1905-1910P
    [67]Lee C C, Wan C C.A study of the composite electrodeposition of copper with alumina powder[J]. Journal of the Electrochemical Society.1988,135 (8):1930-1933P
    [68]覃奇贤,朱龙章,刘淑兰,郭鹤桐.镍-碳化钨微粒复合电沉积机理的研究[J].物理化学学报.1994,10(10):892-896页
    [69]郭鹤桐,王兆勇.在柠檬酸镀金溶液中复合镀层的形成机理[J].天津大学学报.1985,1:13-19页
    [70]黎德育,李宁,杜明华,武刚,刘向.氨基磺酸盐复合镀Ni-Al2O3[J].材料科学与工艺.2004,12(2):199-201页
    [71]Celis J P, Roos J R, Buelens C. A mathematical model for the lelctrolytic codeposition of particles with a metallic matrix[J]. Journal of the Electrochemical Society.1987,134 (6):1402-1408P
    [72]Fransaer J, Celis J P, Roos J R. A mathematical model for the electrolytic codeposition of particles with a metallic matrix[J]. Journal of the Electrochemical Society.1992,139 (2):413-425P
    [73]Valdes J L. Electrodeposition of colloidal particles[J]. Journal of the Electrochemical Society.1987,134 (4):223-225P
    [74]Hwang B J, Hwang C S. Methanism of codeposition of silicon carbide with electrolytic cobalt[J]. Journal of the Electrochemical Society.1993,140 (4):979-984P
    [75]Yeh S H, Wan C C. Codeposition of SiC powders with nickel in a Watts bath[J]. Journal of Applied Electrochemistry.1994,24 (10):993-1000P
    [76]Wang D L, Li J, Dai Ch S, Hu X G. An adsorption strength model for the electrochemical codeposition of α-Al2O3 particles and a Fe-P alloy[J]. Journal of Applied Electrochemistry.1999,29 (4):437-444P
    [77]武刚,李宁,王殿龙,周德瑞α-Al2O3与Co-Ni合金电化学共沉积动力学模型[J].物理化学学报.2003,19(11):996-1000页
    [78]张艳丽,罗胜铁,刘大成.金属镍-碳化硅纳米复合电镀工艺研究[J].兵器材料科学与工程.2007,40(4):58-61页
    [79]韩廷水Ni-Si3N4复合镀层制备工艺与磨损性能研究[D].天津大学硕士论文.2004:23-27页
    [80]孙建春.Ni/纳米Al2O3复合电镀层工艺的研究[D].重庆大学硕士论文.2004:23-36页
    [81]刘建平,高中平,彭元芳,赵国鹏,曾振欧Ni/α-Al2O3纳米复合电镀工艺的研究[J].电镀与涂饰.2007,26(4):32-34页
    [82]李志林,刘建军,关海鹰.Ni-纳米TiO2复合电镀层的制备与性能研究[J].材料保护.2006,39(7):20-22,25页
    [83]翟继红,冯有利.电镀法制造金刚石磨盘的试验研究[J].河南地质.1998,16(2): 145-149页
    [84]闫萍萍,于芳芳,张丙喜.单层电镀金刚石磨轮的研究[J].金刚石与磨料磨具工程.2003,137(5):21-23页
    [85]于峰,安斌,谈晓丽,靳玉生.电镀薄壁金刚石钻头镀前工艺的研究[J].探矿工程.1997(增):142-143页
    [86]杨俊德.金刚石钻头和金刚石锯片磨损机理、设计及性能测试研究[D].中南大学博士论文.2004:2-6页
    [87]史晓亮.金刚石—硬质合金复合齿及其钻头的研究[D].中国地质大学博士论文.2003:1-6页
    [88]吴海洋.固结金刚石线锯的复合电镀工艺研究[D].大连理工大学硕士论文.2006:1-11页
    [89]吕正茂,李成明,吕反修.金刚石复合镀层的研究现状[J].表面技术.2003,32(6):1-3,10页
    [90]Yundong Li, Hui Jiang, Lijuan Pang, Bao'an Wang, Xiaohui Liang. Novel application of nanocrystalline nickel electrodeposit:Making good diamond tools easily, efficiently and economically[J]. Surface and Coatings Technology.2007,201:5925-5930P
    [91]李根生,李云东,江辉.新工艺制备电镀金刚石磨头[J].金刚石与磨料磨具工程.2001,1(121):22-24页
    [92]李大佛.低温电镀镍钴胎体的研究[J].勘探技术.1978,6:25-30页
    [93]Ananth M V. Corrosion studies on electrodeposited nickel-manganese coatings[J]. Trans IMF.1997,75 (6):224-227P
    [94]于金库,邢广忠,冯皓,廖波.电沉积厚层Ni-Fe合金的研究[J].表面技术.1998,27(6):9-12页
    [95]李大佛.低温电镀镍-锰胎体人造金刚石孕镶钻头[J].探矿工程.1980,4:11-15页
    [96]王森林,曹学功.镍-金刚石复合电镀的研究[J].华侨大学学报.1998,19(4):354-357页
    [97]于金库,赵玉成,高聿为.复合电刷镀Ni-金刚石的工艺研究[J].金刚石与磨料磨具工程.2001,3(2):7-9页
    [98]Zahavi. Electrodeposited nickel composites containing diamond particles[J]. Plating and Surface Finishing.1983,2:57-61P
    [99]Yundong Li, Anqing Zhao, Baoan Wang, Jianwei Li, Fenghua Wu. Matrix microstructure deteriorations resulting from diamond incorporation in electroplated metal-diamond composites[J]. Surface and Coatings Technology.2007,201: 5925-5930P
    [100]李超群.电镀镍锰胎体金刚石钻头的应用[J].探矿工程.1998,2:36-38页
    [101]江辉,李根生,何予鹏,苗玉红.镍钴锰三元合金镀层应用于电镀金刚石钻头的初步研究[J].探矿工程.2002,6:38-40页
    [102]李云东,江辉,李根生,何予鹏.电镀金刚石工具中新型镀层的研究[J].材料保护.2002,35(12):31-32页
    [103]具有高硬度高耐磨性的电镀金刚石工具及制造方法.CN101195208.中国.发明专利.2008
    [104]李云东,全林斯,卢汇洋,王栋.金刚石工具用电沉积纳米镍层的制备及性能[J].材料保护.2008,41(3):15-18页
    [105]具有高硬度高强度胎体材料的电镀金刚石工具及制造方法.CN101195923.中国.发明专利.2008
    [106]李云东,王淮东,李立波,卢汇洋.电沉积纳米镍-钴合金制备金刚石工具[J].电镀与环保.2008,28(6):15-17页
    [107]左敦稳,薛善良,王珉.镍铁合金电沉积金刚石工具的研制[J].机械科学与技术.2000,19(6):945-947页
    [108]余火昆,施智祥.银基金刚石复合镀层的性能研究[J].功能材料.2001,32(2):169-171页
    [109]张振国,刘英,穆云超.微米金刚石在化学复合镀中的合成与性能[J].金刚石与磨料磨具工程.2004,144(6):16-18页
    [110]黄志伟,卢汇洋,李立波,李云东.金刚石工具中金刚石与胎体结合力的提高方法[J].金刚石与磨料磨具工程.2007,159(3):15-17页
    [111]何肇基,黎祚坚,吴惠枝.金刚石表面改性的使用效果[J].表面技术.1995,24(6):19-23页
    [112]陈思夫,于爱兵.用表面活化技术提高金刚石与镀层的结合性能[J].机械科学与技术,2005,24(5):609-611页
    [113]金刚石的表面活性化制造电镀金刚石工具的方法.CN 1544706A.中国.发明专利.2004
    [114]徐滨士,欧忠文,马世宁,乔玉林,张伟.纳米表面工程[J].中国机械工程.2000,11(6):707-712页
    [115]Xu K, Xue Q J. Deaggregation of ultradispersed diamond from explosive detonation by a graphitization-oxidation method and by hydroiodic acid treatment[J]. Diamond and Related Materials.2007,16 (2):277-282P
    [116]Mironov E, Petrov E, Koretz A. Chemical aspect of ultradispersed diamond formation[J]. Diamond and Related Materials.2003,12 (9):1472-1476P
    [117]Okotrub A V, Bulusheva L G, Larionova I S, Kuznetsov V L, Molodtsov S L Surface electronic structure of detonation nanodiamonds after oxidative treatment[J]. Diamond and Related Materials.2007,16(12):2090-2092P
    [118]李波.纳米金刚石/金属(Ni,Co)复合物的制备及性能研究[D].南京理工大学论文.2008:1-3页
    [119]佟晓辉,张志军,郑仲瑜,江景坤,及开元,张华堂.纳米金刚石在耐磨镀层中的应用研究[J].国外金属热处理.2003,24(1):10-12页
    [120]Pichot V, Comet M, Fousson E, Baras C, Senger A, Le Normand F, Spitze r D. An efficient purification method for detonation nanodiamonds [J]. Diamond & Related Materials.2008,17:13-22P
    [121]许向阳.纳米金刚石的解团聚与稳定分散研究[D].中南大学博士学位论文.2007:29-37,57-130页
    [122]Petrov I, Detkov P, Drovosekov A, Ivanov M V, Tyler T, Shenderova O, Voznecova N P, Toporov Y P, Schulz D.Nickel galvanic coatings co-deposited with fractions of detonation nanodiamond[J]. Diamond & Related Materials.2006,15:2035-2038P
    [123]Burkat G K, Fujimura T, Dolmatov V Y, Orlova E A, Veretennikova M V. Preparation of composite electrochemical nickel-diamond and iron-diamond coatings in the presence of detonation synthesis nanodiamonds [J]. Diamond & Related Materials. 2005,14:1761-1764P
    [124]Hiroshi Matsubara, Yoshihiro Abe, Yoshiyuki Chiba, Hiroshi Nishiyama, Nobuo Saito, Kazunori Hodouchi, Yasunobu Inou. Co-deposition mechanism of nanodiamond with electrolessly plated nickel films[J]. Electrochimica Acta.2007,52:3047-3052P
    [125]Wang L P, Gao Y, Xue Q J, Liu H W, Xu T. Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings[J]. Materials Science and Engineering A.2005,390:313-318P
    [126]Wang L P, Gao Y, Liu H W, Xue Q J, Xu T. Effects of bivalent Co ion on the co-deposition of nickel and nano-diamond particles[J]. Surface and Coatings Technology.2005,191:1-6P
    [127]Lee W H, Tang S C, Chung K C. Effects of direct current and pulse-plating on the co-deposition of nickel and nanometer diamond powder[J]. Surface and Coatings Technology.1999,120-121:607-611P
    [128]Mandich N V, Dennis J K. Codeposition of nanodiamonds with chromium[J]. Metal Finishing.2001,99 (6):117-119P
    [129]Takaya M, Matsunaga M, Otaka T. Trivalent chronium composite coatings containing silicon carbide or diamond particles[J]. Plating and Surface Finishing.1987,74 (9): 70-72P
    [130]Mandich N V, Dennis J K. Codeposition of Nanodiamonds with Chromium[J]. Metal Finishing.2001,99 (6):117-119P
    [131]Loubnin E N, Pimenov S M, Blatter A, Schwager F, Detkov P. Electroplating of gold-nanodiamond composite coatings[J], New Diamond and Frontier Carbon Technology.1999,9 (4):273-282P
    [132]Xu H, Yang Z, Li M K, Shi Y L, Huang Y, Li H L. Synthesis and properties of electroless Ni-P-Nanometer Diamond composite coatings[J]. Surface and Coatings Technology.2005,191:161-165P
    [133]Lee J Y, Lim D S. Tribological behavior of PTFE film with nanodiamond[J]. Surface and Coatings Technology.2004,188-189:534-538P
    [134]Siegel S C, von Fraunhofer JA. Dental burs-what bur for which application? A survey of dental schools[J]. Journal of Prosthodontics.2005,8 (4):258-263P
    [135]Polini W, Turchetta S. Force and specific energy in stone cutting by diamond mill[J]. International Journal of Machine Tools and Manufacture.2004,44:1189-1196P
    [136]Venkateswarlu K, Ajoy Kumar Ray, Manoj Kumar Gunjan, Mondal D P, Pathak L C. Tribological wear behavior of diamond reinforced composite coating[J]. Materials Science and Engineering A.2006,418:357-363P
    [137]Siegel S C, Anthony J. Dental cutting:the historical development of diamond burs[J]. The Journal of the American Dental Association.1998,129:740-745P
    [138]王可为,郑玉峰,黄兵民.牙科用金刚石车针制备方法研究进展[J].材料导报.2007,21(7):82-89页
    [139]Li Y D, Jiang H, Pang L J, Wang B A, Liang X H. Novel application of nanocrystalline nickel electrodeposit:Making good diamond tools easily, efficiently and economically[J]. Surface and Coatings Technology.2007,201:5925-5930P
    [140]烧结型牙科金刚石车针制作工艺.CN1432449A.中国.发明专利.2003
    [141]Dai Q L, Luo C B. Effects of rare earth and sintering temperature on the transverse rupture strength of Fe-based diamond composites [J]. Journal of Materials Processiong Technology.2002,129:427-430P
    [142]Miyazawa H, Takeuchi S, Miyake S, Murakawa M. Sintered diamond cutting inserts with chip breaker prepared by laser technique[J]. Surface and Coatings Technology. 1996,86-87:797-802P
    [143]Alain Dollet. Multiscale modeling of CVD film growth-a review of recent works [J]. Surface and Coatings Technology.2004,177-178:245-251P
    [144]Liu Y K, Tso P L, Lin I N, Tzeng Y, Chen Y C. Comparative study of nucleation processes for the growth of nanocrystalline diamond[J]. Diamond and Related Mater. 2006,15 (2-3):234-238P
    [145]Siegel S C, Anthony J. Assessing the cutting efficiency of dental diamond burs[J]. The Journal of the American Dental Association.1996,127:763-767P
    [146]Siegel S C, Anthony J. The effect of handpiece spray patterns on cutting efficiency[J]. The Journal of the American Dental Association.2002,133:184-188P
    [147]Siegel S C, Anthony J. Cutting efficiency of three diamond bur grit sizes[J]. The Journal of the American Dental Association.2000,131:1706-1710P
    [148]Siegel S C, Anthony J. Using chemo-mechanically assisted diamond bur cutting for improved efficiency[J]. The Journal of the American Dental Association.2003,134: 53-58P
    [149]Wang QY, Zheng YF. The electrochemical behavior and surface analysis of Ti5oN47.2C02.8 alloy for orthodontic use[J]. Dental Materials 2008,24:1207-11P
    [150]Anthony J, Siegel S C. Enhanced dental cutting through chemomechanical effects[J]. The Journal of the American Dental Association.2000,131:1465-1469P
    [151]Siegel S C, Von Fraunhofer J A. Dental burs:what bur for which application? A survey of dental schools[J]. Journal of Prosthodontics.1999,8:258-263P
    [152]Siegel S C, von Fraunhofer J A. Dental cutting with diamond burs:heavy-handed or light touch? [J]. Journal of Prosthodontics.1999,8:3-9P
    [153]Elizabeth S P, James D T, Robert A D. Comparison of cutting rates among single-patient-use and multiple-patient-use diamond burs[J]. Journal of Prosthodontics. 2004,9 (2):66-70P
    [154]Joseph A, Troy A, Kyle R. The effect of multiple uses of disposable diamond burs on restoration leakage[J]. The Journal of the American Dental Association.2005,136: 53-57P
    [155]Geis-Gerstorfer J, Weber H. Effect of potassium thiocyanate on corrosion behavior of non-precious metal dental alloys[J]. Dtsch Zahnarztl.1985,40 (2):87-91P
    [156]郑玉峰,赵连城.生物医用镍钛合金[M].北京:科学出版社.2004:99-130页
    [157]Shabalovskaya S A, Anderegg J, Laab F, Thiel P A, Rondelli G. Surface conditions of nitinol wires, tubing and as-casted alloys:The effect of chemical etching, aging in boiling water, and heat treatment[J]. Journal of Biomedical Material and Research, Part B:Applied Biomaterials.2003,65B:193-203P
    [158]杨贤金,何菲,朱胜利,崔振铎.NiTi形状记忆合金表面氧化膜的成分和结构[J].兵器材料科学与工程.2002,25(2):7-10页
    [159]梅天庆,杨恒,曹文涛,王兰英.超弹性镍钛合金电镀前处理研究[J].功能材料.1997,28(6):583-587页
    [160]Plating method for a nickel-titanium alloy member. The United states. Patent.5464524. 1995
    [161]张景双,李萌初,杨哲龙,安茂忠,王佐斌.钛材表面生成“活性膜”的研究[J].电镀与环保.1993,13(5):3-4页
    [162]张莉,朱正和,杨本福,龙兴贵,罗顺忠.氢同位素化合物TiH2,TiD2和TiT2的电子振动近似理论方法[J].物理学报.2006,55(10):5418-23页
    [163]Chen C Q, Li S X, Lu K. The deformation behaviors of gamma hydrides in titaniumunder cyclic straining[J]. Acta Materialia,2003,51:931-942P
    [164]Luppo M I, Politi A, Vigna G. Hydrides in a-Ti:Characterization and effect of applied external stresses [J]. Acta Materialia,2005,5:4987-4996P
    [165]Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Physical Review B,1999,59:3393-3407P
    [166]Juskenas R, Valsiunas I, Pakstas V, Selskis A, Jasulaitiene V, Karpaviciene V, Kapocius V. XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J]. Appl Surf Sci,2006,253(3):1435-42P
    [167]Zhou Y, Zhang H, Qian B. Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating[J]. Appli Surf Sci,2007,253:8335-8339P
    [168]Jeong D H, Gonzalez F, Palumbo G, Aust K T, Erb U. The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings [J]. Scrip Mater, 2001,44(3):493-499P
    [169]李振良,杨防祖,姚士冰,周绍民.镍钨合金电结晶机理[J].厦门大学学报(自然科学版),1999,38(2):230-234页
    [170]Metzler O Y, Zhu L, Gileadi E. The anomalous codeposition of tungsten in the presence of nickel [J]. Electrochim Acta,2003,48 (18):2551-2562P
    [171]Zhu L, Younes O, Ashkenasy N, Shacham-Diamand Y, Gileadi E. STM/AFM studies of the evolution of morphology of electroplated Ni-W alloys [J]. Appl Surf Sci,2002, 200(1-4):1-14P
    [172]Schlomacher P, Yamasaki T. Structural analysis of electroplated amorphous-nanocrystalline Ni-W[J]. Microchim Acta,2000,132:309-313P
    [173]Schuh C A, Nieh T G, Iwasaki H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni [J]. Acta Mater,2003,51 (2):431-443P
    [174]Sriraman K R, Raman S G S, Seshadri S K. Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni-W alloys [J]. Mater Sci Eng. A,2006,418(1-2):303-311P
    [175]Mizushima I, Tang P T, Hansen H N, Somers M A J. Development of a new electroplating process for Ni-W alloy deposits [J]. Electrochim Acta,2005,51: 888-896P
    [176]Cesiulis H, Baltutiene A, Eonten M, Donten M L, Stojek Z. Increase in rate of electrodeposition and in Ni(Ⅱ) concentration in the bath as a way to control grain size of amorphous/nanocrystalline Ni-W alloys [J]. J Solid State Electrochem,2002,6: 237-244P
    [177]雷天觉,赵源.铁-镍-磷合金电镀的研究[J].材料保护,1990,23(7):4-8页
    [178]Sridharan K, Shappard K. Electrochemical characterization of Fe-Ni-P alloy electrodeposition[J]. Journal of Applied Electrochemistry,1997,27:1198-1206P
    [179]Liu Z H, Zhao J F, Mclaughlin J. A study of merustruetmal and electrochemical properties of ultra-thun DLC coatings on AJTC substrates deposited using the ion beam technique[J]. Dianmnd and related materials.1999,8(1):56-63P
    [180]渡边徹.非晶态电镀方法及应用[M].北京:北京航空航天大学出版社,1992:56-99页
    [181]刘应科.镍磷非晶态镀层的制备及其性能研究[D].湖南:湖南大学,2005:23-28页
    [182]王凤娥.电沉积镍基合金的研究进展[J].稀有金属,1998,22(5):375-379页
    [183]王玉,郭金彪,袁学韬,孙冬柏,李辉勤.热处理对非晶Ni-P电镀层结构与性能的影响[J].材料保护,2008,41(10):54-56页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700