用户名: 密码: 验证码:
天然气等离子体裂解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了在直流和交流辉光放电条件下等离子体裂解甲烷的规律和自由基——氢(H·)、甲基(CH_3·)、亚甲基(CH_2·)、次甲基(CH·)的形成规律。
     实验采用红外光谱分析技术检测甲烷的裂解过程,甲烷气体在3.3μm附近有一条较强的吸收带v_3,选择v_3作为探测对象对甲烷气体的裂解程度进行在线测量。研制了用于激光吸收光谱测量的光源——3391nm He-Ne红外激光器;设计了测量甲烷裂解规律的激光吸收光谱系统;为探测器设计了检波电路,抑制噪声,提高测量稳定性。
     分别采用直流和交流辉光放电等离子体来进行甲烷裂解变化规律的实验研究。在实验条件下,研究发现:在50Pa到300Pa之间,激光透过率与甲烷气体的压强成对数关系,拟合实验数据得到激光透过率曲线:η=226.6exp(-0.0179P);在天然气气压低于100Pa的情况下,裂解过程最快能在0.5s内完成;实验获得的直流和交流放电甲烷最大裂解率分别为96%和98%。甲烷裂解随放电电流和气压变化的基本规律是:在相同气压情况下,放电电流越大,甲烷完全裂解所需要的时间越短;在相同电流情况下,放电气压越高,甲烷完全裂解所需要的时间就越长。
     实验分别测量了直流和交流放电过程中H·(656.3nm)、CH_3·(724.6nm)、CH_2·(341.9)及CH·(431.42nm)自由基发射光谱强度的变化,并对其发射光谱强度随时间的变化规律进行了描绘和分析。由于不同自由基达到极值和动态平衡的时间不尽相同,因此可以通过选择合适的放电条件来控制反应的方向,从而实现目的产物的选择性和产率的最大。
The laws of methane decomposition and formation of free radicals such as hydrogen (H), methyl (CH_3), methane (CH_2) and methyne (CH) were studied under the DC and AC glow discharge plasma condition.
     The process of methane decomposition was detected by infrared spectral analysis technology in the experiment. Because methane has sensitive absorbable v_3 spectral band near 3.3μm,the v_3 spectral band is selected as the working spectral lines to detect the extent of methanedecomposition. The 3391nm He-Ne Infrared laser was developed as the light source of laser absorbable spectra. The filter circuit was designed for suppressing detection noise and enhancing measure stability.
     The experiment of methane decomposition was conducted under DC and AC glow discharge plasma condition respectively. The experiment results show: between 50Pa and 300Pa, the laser'stransmission rate and pressure of natural gas accords with the logarithm relation. The laser's transmission rate curve whereη= 226.6 exp(-0.0179P) was obtained through fit experimentdata. The shortest time that decomposing process of natural gas was accomplished is 0.5 second below 100Pa condition. The highest decomposition rate of methane could be reached 96% and 98% respectively in DC and AC glow discharge. The basic rule of methane decomposes along with the change of discharge current and discharge pressure is: on the same discharge pressure condition, time of completely decomposing methane decrease when discharge current increase; on the same discharge current condition, time of completely decomposing methane increase when discharge pressure increase.
     The H·(656.3nm), CH_3·(724.6nm), CH_2·(341.9) and CH·(431.42nm) free radicals' change of PL intensity were detected in DC and AC discharge process respectively, and their change rule were described and analyzed. Because the time of different free radical achieved the intensity extreme value and the dynamical equilibrium is different, therefore through the appropriate discharge condition is choice to control response direction so as to realize the goal product selectivity and production rate are biggest.
引文
1.王保伟,许根慧,刘昌俊.等离子体技术在天然气化工中的应用[J].化工学报,2001,52(8):659-665.
    2. C.J. Campbell. Worldwide look at veserves and production [J]. Oil Gas J., 1997, 95(25):42-43.
    3.田霖.天然气化工利用现状及发展动向[J].化工科技,2006,14(3):64-67.
    4.史晓飞.我国天然气开发与利用的问题探讨[J].内蒙古石油化工,2006,(8):19-20.
    5. Oumgher A, Legrand J. C., Aiamy A. M.. A kinetic study of methane conversion by a clinitrogen microwave plasma[J]. Plasma Chem. Plasma Process, 1994, 14, 229-233.
    6. Fedoseev V. I., Aristov Y. I., Yu Y., et al., Methane Pyrolysis under Pulsed Microwave Radiation in the Presence of Solid Catalysts[J]. Kinetics and Catalysis, 1996, 37(6): 869-872.
    7. Keller G. E., Bhasin M. M.. Synthesis of Ethylene via Oxidative Coupling of Methane[J]. Journal of Catal, 1982, 73(1):9-19.
    8.何方方,李娟,印永祥,戴晓雁,冷等离子体裂解甲烷制C_2烃动力学分析及模拟[J].天然气化工,2003,28(6),52-57.
    9.陈建波,夏春谷.甲烷单加氧酶的催化反应机理研究[J].化学进展,2001,13(5):376.
    10. Pietro Canepa, Gianrico Castello, Stelio Munari. Low Pressure RF Plasma Reactions in Light Hydrocarbons: Methane[J]. Radiant Phys. Chem., 1979, 15.
    11.徐根慧,姜恩永,盛京,等编著.等离子体技术与应用[M].北京:化学工业出版社,2006.
    12.贺建勋,胡森,韩媛媛等.甲烷在直流放电等离于体中的分解和碳二烃的形成[J].石油化工,2004,33(1),1-4.
    13. Liu Chang-jun, Mallinson Richard, Lobban Lance. Nonoxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma [J]. Journal of Catalysis, 1998, 179, 326-334.
    14. Shigeru Kadoa, Kohei Urasakib, Yasushi Sekineb, Kaoru Fujimoto. Direct conversion of methane to acetylene or syngas at room temperature using non-equilibrium pulsed discharge[J]. Fuel, 2003, 82, 1377-1385.
    15.张钦,杨鸿生,沈长圣,等.低压微波等离子体催化甲烷偶联生成C_2 烃的研究[J].电子器件,2005,28(3),559-561.
    16.汪小兰著.有机化学(第二版)[M].北京:高等教育出版社,1997.
    17.王蔑,等著.化工词典(第二版)[M].北京:化学工业出版社,1989.
    18.赵利.中国天然气发展透视[N].中国海洋石油报,2003-04-02.
    19.张耀光,刘岩,李春平,等.中国海洋油气资源开发与国家石油安全战略对策[J].地理研究,2003(3):298-302.
    20.崔锦华,刘昌俊,许根慧.冷等离子体催化甲烷偶联研究进展[J].天然气化工,2001,26(1):33-38.
    21.李定,陈银华,马锦秀,等编著.等离子体物理学[M].北京:高等教育出版社,2006.
    22. Dalai A K, Bakhshi N N, Esmail M N. Conversion of syngas to hydrocarbons in a tube-well reactor using Co-Fe plasma-sprayed catalyst[J]. Fuel Proc Tech, 1997, 51:219-238.
    23.中国自然科学基金委员会编自然科学学科发展战略调研报告,等离子体物理学[M],北 京:科学出版社,1994.
    24.赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    25. Dai B, Zhang X L, Gong W M, et al. Study on the Methane Coupling under pulse Corona plasma by Using CO_2 as Oxidant[J]. Plasma Sci. Technol., 2000, 2 (6):577-580.
    26. Cui Jinhua(崔锦华). Studies on Methane Coupling under Nonequilibrium plasmas at Atmospheric pressure[D](学位论文). Tianjin: Tianjin university, 2002.
    27.徐兴祥,杨永进,孙家言,等.微波复合直流等离子体转化天然气制乙炔的研究[J],2005,63(7),625-630.
    28.王保伟,许根慧.介质阻挡放电等离子体催化天然气偶联制C_2烃[J].中国科学(B),2002,32(2):140-147.
    29.陶旭梅,代伟,陈琦,等.等离子体射流裂解天然气制乙炔的实验[J].天然气工业,2006,26(4):131-134.
    30. Himko K, Aoyama K, Morise K. A study of reaction mechanisms of methane in a radio—frequency glow discharge plasma using radical and ion scavengers[J]. Can J Chem, 1985, 63(11): 2899-2905.
    31. Fujii T, Syoujik - I. Mass spectormetric detection of neutral radicals in a CH4 microwave discharge by use of Li ion attachment techniques[J]. J Appl Phys, 1993, 74(5): 3309-3012.
    32.王达望,马腾才,崔锦华.低温等离子体催化甲烷转化的工艺研究进展[J],化工学报,2003,54(9):1193-1200.
    33. Tanabe Shuji, Okitsu Kenji, Matsumoto Hiroshige profiles of Methane Dimerization with a Glow Discharge plasma system. The Research Meeting of the University of Nagaski Engineering Department(Nagasaki Daigaku Kogakubu Kenkyu Hokoku), 1999, 29(53):329-332.
    34. Zhu Aimin(朱爱民), Gong Weimin(宫为民), Zhang Xuling(张秀玲), et al. Investigation on Pulsed Corona Induced plasma for Coupling of Methane[J]. Chemical Engineering of Natural Gas, 1997, 22(2): 1-5.
    35. Zhu Aimin, Gong Weimin, Zhang Xiuling, et al. Coupling of Methane under pulse Corona plasma In the Absence of Oxygen[J]. Science in China B, 2000, 43(2): 208-214.
    36. Zhu Aimin(朱爱民), Zhang Xiuling(张秀玲), Gong Weimin(宫为民), et al. Coupling of Methane under Pulse Corona Plasma Effect of Gas Additives[J]. Chinese Journal of Applied Chemistry, 1999, 16(4):70-73.
    37.贺建勋,胡森,韩媛媛等.甲烷在直流放电等离子体中的分解产物[J].天然气化工,2004.29(4):20-22.
    38.贺建勋,韩媛媛,周引穗,等.等离子体光谱法在天然气转化中的应用研究[J].西北大学学报(自然科学版),2004,34(1):63-65.
    39.[美]Orlando Auciello,Daniel L.Flamm 编著,郑少白,胡建芳,郭淑静,等译著.等离子体诊断(第一卷):放电参量和化学[M].北京:电子工业出版社,1994.
    40.(日)小沼光晴著.张光华编译.等离子体与成膜基础LM].北京:国防工业出版,1994.
    41.王晓梅,张玉钧,刘文清,等.可调谐二极管吸收光谱痕量气体浓度算法的研究[J].光学技术,2006,32(5):717-720.
    42. Moore C. B. Gas-laser frequency selection by molecular absorption[J]. Appl. Opt., 1965, 4:252-253.
    43. Cassidy D. T. Trace gas detection using 1.3 μm InGaAsP diode laser transmitter modules [J]. Appl. Opt., 1988, 27:610-614.
    44. Takaya I., Hideo T., Kiyoshi K.. Portable remote methane sensor using a tunable diode laser [J]. Measurement Science and Technology, 2000, 11 (6):594-602.
    45. Zéninari V., Parvitte B., Courtois D., et al. Methane detection on the sub2ppm level with a near-infrared diode laser photoacoustic sensor [J]. Infrared Physics and Technology, 2003, 44 (4):253-261.
    46. Grant W. B. He-Ne and CW CO_2 laser long-path systems for gas detection[J]. Appl. Opt., 1986, 25:709-719.
    47. Karapuzikov A. I., Ptashnik I. V., Sherstov I. V., et al. Modeling of helicopter-borne tunable TEA CO_2 DIAL system employment for detection of methane and ammonia leakages[J]. Infrared Physics and Technology, 2000, 41 (2):87-96.
    48.孙晓峰,康智慧,姜云,等.利用LED探测甲烷气体浓度的实验研究[J].光子学报,2005,34(8):1184-1187.
    49.王书涛,车仁生.光谱吸收式光纤甲烷气体传感器及其信号处理方法[J].光电工程,2006,33(1):112-115.
    50.阚瑞峰,刘文清,张玉钧,等.可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量[J].物理学报,2005,54(4):1927-1930.
    51.陈宗柱,高树香编著.气体导电(下册)[M].南京:南京工学院出版社,1988.
    52. Herzbeng G. Molecular Spectra and Molecular Structure Ⅱ Infrared and Raman Spectra of Polyatomic Molecules[M]. D.Van Noatrand, 1951.
    53.波契柯娃,施雷捷尔.气体混合物光谱分析[M].北京:科学出版社,1958.
    54.王宗明,何欣翔,孙殿卿.实用红外光谱学[M].北京:石油化学L业出版社,1978.
    55.G.赫兹堡著.简单自由基的光谱和结构——分子光谱学导论[M].北京:科学出版社,1989.
    56.李适民 等.光器件原理与设计[M].北京:国防工业出版社,1998.
    57.《气体激光》编写组.气体激光器(上、下册)[M].上海:上海人民出版社,1979.
    58.刘敬海,徐荣甫.激光器件与技术[M].北京:北京理工大学出版社,1995.
    59.赫光生.激光器设计基础.上海:上海科学技术出版社,1976.
    60.陆治国.氦氖激光器的输出功率与谐振腔结构的关系[J].西北大学学报(自然科学版),1979,9(1):72-75.
    61. Rigrod W W. Gain saturation and output power of optical maser [J]. Journal of Applied Physics, 1963, 34(9): 2602-2609.
    62.高爱华,陆治国.光束的空间相干性与空间质量评价[J].光子学报,1998,27(12): 1125-1128.
    63.陈杰瑢著.低温等离子体化学及应用[M].北京:科学出版社,2001.
    64.过增元,赵文华著.电弧和热等离子体[M].科学出版社,1986.
    65.J.R.Roth著.吴坚强译.工业等离子体基础,第1卷,基本原理[M].北京:科学出版社,1998.
    66.郎惠云,高胜利,谢志海著.光谱分析仪器及实验技术[M].西安:西北大学出版社,1994.
    67.B.格罗斯,等著.等离子体技术[M].北京:科学出版社,1980.
    68.金友民,樊友三著.低温等离子体物理基础[M].北京:清华大学出版社,1983.
    69.陈洁,宋启泽著.有机波谱分析[M].北京:北京理工大学出版社,1996.
    70.宁永成著.有机化合物结构鉴定与有机波谱学[M].北京:清华大学出版社,1993.
    71.赵瑶兴,孙祥玉著.光谱解析与有机结构鉴定[M].合肥:中国科学技术大学出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700