用户名: 密码: 验证码:
不同营养条件下沉水植物多样性对模拟水生生态系统功能影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前湖泊、水库水体的富营养化是全世界普遍存在的环境问题。沉水植物在水生生态系统中发挥着重要作用,是防治富营养化以及淡水、湿地生态恢复的重要环节,富营养化水体中沉水植物的重建与恢复已成为环境领域和水生生态学研究的重点内容。沉水植物(submerged macrophytes)是指植株全部或大部分沉没于水下营固着生活的大型水生植物,是水生态系统的重要组成部分和主要的初级生产者。沉水植物具有很强的生态功能,是防治富营养化,以及淡水、湿地生态恢复的重要环节。本研究通过比较不同营养条件(LN、MN、HN)下沉水植物多样性(S0、S1、S2、S3)对水生生态系统功能的影响,得出以下结论:1)营养浓度、物种多样性均对沉水植物生产力有显著性影响,LN处理的总生物量显著低于MN和HN处理(p<0.05,单因素方差分析),S3处理下的总产量最高(p<0.05,单因素方差分析);2)营养浓度、物种多样性对于植株生长的交互作用十分显著(p<0.01,双因素方差分析),并存在内在联系;3)总体上抽样效应(sampling effect)超过生态位互补(niche complementarity),在本实验中占据了主导作用;4)黑藻(Hydrilla verticillata)与苦草(Vallisneria natans)、黑藻与金鱼藻(Ceratophyllum demersum)之间竞争效应都占主导(物种间相对作用强度RⅡ均大于0),金鱼藻和苦草之间则有较强的互补效应(金鱼藻的相对产量RY均大于1);5)HN处理下物种的种间竞争最为激烈,显著强于MN和LN水平(p<0.05,单因素方差分析)。这些结论可以用来解释沉水植物群落在治理富营养化水体时如何发挥作用,并用于提出沉水植物重建和恢复的相关建议和对策。
Submerged macrophytes are large aquatic plants with the whole body or most of it sinking in the underwater. They act as the main primary producer in aquatic ecosystem, which is an important constituent part. Submerged macrophytes have strong ecological functions and play important roles in freshwater and wetland ecosystem recovery; they are also used in preventing and controlling eutrophication. In this study, we compared the effects of the functioning of the artificial aquatic mesocosm due to submerged macrophytes species richness (S0、S1、S2、S3) under different nutritional conditions (LN、MN、HN), and drew the following conclusions:1) nutrient concentrations and species richness of submerged macrophytes both produce significant impacts on plant growing, LN (the lowest nutrient concentration) treats produce the lowest biomass (p<0.05, One-way ANOVA) and S3 (3 species) treats display the highest productivity (p<0.05, One-way ANOVA); 2) interactions between nutrient concentrations and species richness are significant (p<0.01, Variance Analysis-General linear model); 3) generally, sampling effects are stronger than niche complementarity, playing a leading role in this experiment; 4) competition is the main force between Hydrilla verticillata and other two species (Relative Interaction Intensity, RII>0), whereas complementarity is found between Ceratophyllum demersum and Vallisneria natans (Relative Yield, RY>1);5) the strongest interspecific competitions are displayed under HN (the highest nutrient concentration) treat (p<0.05, One-way ANOVA). These conclusions can be used to explain how submerged macrophytes come into play during controlling eutrophication. We also come up with some suggestions and strategies when restoration of submerged macrophytes is implemented and used to control eutrophication.
引文
Aravind P., Majeti Narasimha Vara Prasad. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry,2005,43:107-116.
    Beklioglu M., Moss B. Existence of a macrophyte-dominated clear water state over a very wide range of nutrient concentrations in a small shallow lake. Hydrobiologia,1996,337:93-106.
    Barko J. W., Smart R. M. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs,1981, 51:219-235.
    Cardinale B. J., Srivastava D. S., Duffy J. E., et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature,2006,443:989-992.
    Cardinale B. J., Wright J. P., Cadotte M. W. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of USA,2007,104:18123-18128.
    Cristina A., Ramon O., Francisco I.P., Measuring plant interactions:a new comparative index. Ecology,2004,85:2682-2686.
    Chambers P. A., Kalff J. Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. The Journal of Ecology,1987,75:611-619.
    Chambers P. A. Light and nutrients in the control of aquatic plant community structure. II. In situ observations. The Journal of Ecology,1987,75:621-628.
    Chambers R. M., Meyerson L. A., Saltonstall K., Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany,1999,64:261-273.
    Covich A.P., Austen M.C., Barlocher F., et al. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience,2004,54:767-775.
    Darwin C. The origin of species by means of natural selection. London:John Murray.1859.
    Ehrlich P. R., A. H. Ehrlich. Extinction:The causes and consequences of the disappearance of species. New York:Random House.1981.
    Elton C. S. The ecology of invasion by animals and plants. London:Chapman& Hall.1958.
    Engelhardt K. A. M., Species traits, inter-specific interactions, and the effects of biodiversity on wetland ecosystem processes. Ph.D. dissertation. Utah State University, Logan, Utah, USA, 2000.
    Engelhardt K. A. M., and M. E. Ritchie. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature,2001,411:687-689.
    Engelhardt K. A. M, and M. E. Ritchie. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology,2002,83:2911-2924.
    Fischer J. M., Klug J. L., Reed A. T., et al, Spatial pattern of localized disturbance along asoutheastern salt marsh tidal creek. Estuaries,2000,23:565-571.
    Gamfeldt L. Biodiversity and ecosystem functions-the importance of marine biodiversity for ecosystem functioning. PhD thesis, Department of Marine Ecology. Goteborg University. 2006.
    Gamfeldt L., Hillebrand H., Biodiversity effects on aquatic ecosystem functioning-Maturation of a new paradigm. International Review of Hydrobiology,2008,93:550-564.
    Giller P.S., Hillebrand H., Berninger U.G., et al. Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos,2004,104: 423-436.
    Goodman D. The theory of diversity-stability relationships in ecology. The Quarterly Review of Biology,1975,50:237-266.
    Grace J. B., Michael Anderson, Smith M.D., et al, Does species diversity limit productivity in natural grassland communities? Ecology Letters,2007,10:680-689.
    Grime J. P. Biodiversity and ecosystem function:the debate deepens. Science,1997,277: 1260-1261.
    Grime J. P. Plant Strategies, Vegetation Processes and Ecosystem Properties. Wiley, New York. 2001.
    Hairston N. G. Jr. Ecological experiments. Cambridge:Cambridge University Press,1989.
    Harper J. L.. Population biology of plants. Academic, London, UK,1977.
    Havens K. E., Sharfstein B., Brady M. A. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany,2004,78:67-82.
    Hector A.. The effect of diversity on productivity:detecting the role of species complementarity. Oikos,1998,82:597-599.
    Hector A., R. Hooper. Darwin and the first ecological experiment. Science,2002,295:639-640.
    Hooper D. U.. The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology,1998,79:704-719.
    Hooper D. U., Vitousek P. M. The effect of plant composition and diversity on ecosystem processes. Science,1997,277:1302-1305.
    Hooper D. U., Chapin F. S., Ewel J. J., et al. Effects of biodiversity on ecosystem functioning:a concensus of current knowledge. Ecological Monographs,2005,75:3-35.
    Huston M. A., McBride, Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes. In:M. Loreau, S. Naeem, P. Inchausti, Biodiversity and ecosystem functioning, synthesis and perspectives. Oxford University Press,2002,47-60.
    Huston M. A., De Angelis D. L. Competition and coexistence:the effects of resource transport and supply rates. American Naturalist,1994,144:954-957.
    Huston M. A. Hidden treatments in ecological experiments:re-evaluating the ecosystem function of biodiversity. Oecologia,1997,110:449-460.
    Huston M. A., Aarssen L. W., Austin M. P., et al. No consistent effect of plant diversity on productivity. Science,2000,289:1255a.
    Irfanullah H. M., Moss B. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake. Aquatic Botany,2004,80:177-191.
    Jonas Ericson, Fredrik Ljunghager, Lars Gamfeldt, Are there direct and cascading effects of changes in grazer and predator species richness in a model system with heterogeneously distributed resources?, Marine Biodiversity,2009,39,71-81.
    Kaiser J. Rift over biodiversity divides ecologists. Science,2000,289:1282-1283.
    Kominoski J. S., Hoellein T. J., Leroy C. J., et al., Beyond species richness:Expanding biodiversity-ecosystem functioning theory in detritus-based streams, River Research and Applications,2010,26:67-75.
    Lawton J. H. What do species do in ecosystems? Oikos,1994,71:367-374.
    Lawton J. H. The theory and practice of the science of biodiversity:a personal assessment. In: Kato M (ed.).The Biology of Biodiversity. Springer, Berlin,2000,107-131.
    Loreau M., S. Naeem, P. Inchausti. Biodiversity and ecosystem functioning:synthesis and perspectives. Oxford:Oxford University Press.2002.
    Loreau M., A. Hector. Partitioning selection and complementarity in biodiversity experiments. Nature,2001,412:72-76.
    Loreau M., S. Naeem, P. Inchausti, et al. Biodiversity and ecosystem functioning:current knowledge and future challenges. Science,2001,294:804-808.
    MacArthur R. H. Fluctuations of animal populations and a measure of community stability. Ecology,1955,36:533-536.
    May R. M. Stability and complexity in model ecosystems. Princeton:Princeton University Press. 1973.
    McCann K., Hastings A., Huxel G. R. Weak trophic interactions and the balance of nature. Nature, 1998,395:794-798.
    Meerhoff M., Mazseo N., Moss B., et al. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology,2003,37:377-391.
    Melzer A. Aquatic macrophytes as tools for lake management. Hydrobiologia,1999,395/396: 181-190.
    Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia,1990, 200/201:427-436.
    Mouquet N., Moore J. L., Loreau M. Plant species richness and community productivity:why mechanism that promotes coexistence matters. Ecology Letters,2002,5:56-65.
    Naeem S., Tompson L. J., Lawler S. P., et al. Declining biodiversity can alter the performance of ecosystems. Nature,1994,368:734-737.
    Naeem S., S Li. Biodiversity enhances ecosystem reliability. Nature,1997,390:507-509.
    Naeem S. Species redundancy and ecosystem reliability.Conservation Biology,1998,12:39-45.
    Naeem S., S Li. Consumer species richness and autotrophic biomass. Ecology,1998,79: 2603-2615.
    Naeem S., Hahn D. R., Schuurman G. Producer-decomposer co-dependency influences biodiversity effects. Nature,2000,403:762-764.
    Naeem S. Autotrophic-heterotrophic interactions and their impacts on biodiversity and ecosystem functioning. In:Kinzig A., Pacala S. and Tilman D. (eds.), The Functional Consequences of Biodiversity:Empirical Progress and Theoretical Extensions. Princeton University. Press, Princeton,2002,96-119.
    Ozimek T., Donk E., Gulati R. D. Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake. Hydrobiologia,1993,251:13-18.
    Pacala S., Tilman D. The transition from sampling to complementarity. In:Kinzig A., Pacala S. and Tilman D. (eds.).The Functional Consequences of Biodiversity:Empirical Progress and Theoretical Extensions. Princeton University Press, Princeton,2002,151-166.
    Pimm S. L. Food Web. Chapman and Hall, London.1982.
    Raffaelli D., Cardinale B. J., Downing A. L., et al. Reinventing the wheel in ecology research? Response. Science,2005,307:1875-1876.
    Satoshi Nakai, Yutaka Inoue, Masaaki Hosomi, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology,1999,39:47-53.
    Sala O. E., Laurenroth W. K., McNaughton S. J., et al. Biodiversity and ecosystem function in grasslands. In:Mooney H. A., Cushman J. H., Medina E., et al., Functional Role of Biodiversity:A Global Perspective. New York:Wiley,1996,129-145.
    Scheiner S. M., Gurevitch J. Design and analysis of ecological experiments.2nd ed. New York: Oxford University Press,2001.
    Schmidtke A., Gaedke U., Weithoff G, A mechanistic basis for underyielding in phytoplankton communities. Ecology,2010,91:212-221.
    Sculthorpe C. D. The biology of vascular plants. St. Martin's, New York, USA,1967.
    Solan M., Cardinale B. J., Downing A. L. Extinction and ecosystem function in the marine benthos. Science,2004,306:1177-1180.
    Spehn E.M., Hector A., Joshi J., et al, Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs,2005,75:37-63.
    Symstad A. J., Chapin F. S. Ill, Wall D. H. Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. BioScience,2003,53:89-98.
    Tilman D., Downing J. A. Biodiversity and stability in grassland. Nature,1994,367:363-367.
    Tilman D. Biodiversity:population versus ecosystem stability. Ecology,1996a,77:350-363.
    Tilman D., Wedin D., Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature,1996b,379:718-720.
    Tilman D., Knops J., Wedin D., et al. The influence of functional diversity and composition on ecosystem processes. Science,1997a,277:1300-1302.
    Tilman D., Lehman C. L., Bristow C. E. Plant diversity and ecosystem productivity:theoretical considerations. Proceedings of the National Academy of Sciences, USA,1997b,94: 1857-1861.
    Tilman D., Lehman C. L., Bristow C. E. Diversity-stability relationships:statistical inevitability or ecological consequence. American Naturalist,1998,151:277-282.
    Tilman D. The ecological consequences of changes in biodiversity:a search for general principles. Ecology,1999,80:1455-1474.
    Tilman D., Reich P. B., Knops J., et al. Diversity and productivity in a long-term grassland experiment. Science,2001,294:843-845.
    Van Vierssen W. Some notes on the germination of seeds of Najas marina L. Aquatic Botany, 1982,12:201-203.
    Varley, G. C. Ecology as an experimental sciences. Journal of Animal Ecology,1957,26:251-261.
    Wagner C, Adrian R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake:a matter of temporal scale, Freshwater Biology,2011,56, 1949-1961.
    Walker B. H. Biodiversity and ecological redundancy. Conservation Biology,1992,6:18-23.
    Wardle D. A. A more reliable design for biodiversity study? Nature,1998,394:30.
    Wardle D. A. Is sampling effect a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos,1999,87:403-407.
    Wardle D. A., Huston M. A., Grime J. P., et al. Biodiversity and ecosystem function:an issue in ecology. Bulletin of the Ecological Society of America,2000,81:235-239.
    Guangzhi Sun, Yaqian Zhao, Stephen Allen. Enhanced removal of organic matter and ammonia cal-nitrogen in a column experiment of tidal flow constructed wetland system. Journal of Biotechnology,2005,115 115:189-197.
    Dong Cheol Seo, Ju Sik Cho, Hong Jae Lee, et al. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research,2005,39:2445-2457.
    边归国,赵卫东,达来.沉水植物化感作用抑制藻类生长的研究进展.福建林业科技,2011,38:168-172.
    常杰,葛滢.生态学.杭州:浙江大学出版社,2001.
    高健,罗青,李刚,等.溶氧、温度、氮和磷对菹草冬芽萌发及生长的影响.武汉大学学报(理工版),2005,51:511-515.
    贺锋,吴振斌.水生植物在污水处理和水质改善中的应用.植物学通报,2003,20:641-647.
    贺金生,方精云,马克平,等.生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致?植物生态学报,2003,27:835-843.
    胡莲,万成炎,许炎生,等.云龙湖水库沉水植被重建对浮游甲壳动物的影响.水利渔业,2007,27:45-47.
    蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,2004,24:1718-1723.
    金相灿,楚建周,王圣瑞.水体氮浓度、形态对黑藻和狐尾藻光合特征的影响.应用与环境生物学报,2007,13:200-204.
    雷泽湘,陈光荣,谭镇,等.富营养水体中3种沉水植物的生长竞争及其净化效果.湖北大学学报(自然科学版),2009,31:192-196.
    李冬林,王磊,丁晶晶,等.水生植物的生态功能和资源应用.湿地科学,2011,9:290-296.
    李锋民,胡洪营.植物化感作用控制天然水体中有害藻类的机理与应用.给水排水,2004,30:1-4.
    李文朝,连光华.几种沉水植物营养繁殖体萌发的光需求研究.湖泊科学,1996,8:25-29.
    罗春玲,沈振国.植物对重金属的吸收和分布.植物学通报,2003,20:59-66.
    年跃刚,宋英伟,李英杰,等.富营养化浅水湖泊稳态转换理论与生态恢复探讨.环境科学研究,2006,19:67-70.
    秦伯强,高光,胡维平,等.浅水湖泊生态系统恢复的理论与实践思考.湖泊科学,2005,17:9-16
    任南,严国安,马剑敏,等.环境因子对东湖几种沉水植物生理的影响研究.武汉大学学报(自然科学版),1996,46:214-218.
    孙儒泳,李博,诸葛阳,等.普通生态学.北京:高等教育出版社,1993.196-268.
    苏睿丽,李伟.沉水植物光合作用的特点与研究进展.植物学通报,2005,22:128-138.
    苏文华,张光飞,张云孙,等.5种沉水植物的光合特征.水生生物学报,2004,28:391-395.
    王斌,李伟.不同N、P浓度条件下竹叶眼子菜的生理反应.生态学报,2002,22:1616-1621.
    王华,逢勇,刘申宝,等.沉水植物生长影响因子研究进展.生态学报,2008,28:3958-3968.
    王剑虹,麻密.植物修复的生物学机制.植物学通报,2000,17:504-519.
    王文林,王国祥,李强,等.水体浊度对菹草幼苗生长发育的影响.生态学报,2006,26:3586-3593.
    王文林,王国祥,李强,等.悬浮泥沙对亚洲苦草幼苗生长发育的影响.水生生物学报,2007,31:460-465.
    谢贻发,胡耀辉,刘正文,等.沉积物再悬浮对沉水植物生长的影响研究.环境科学学报,2007,27:18-23.
    徐勤松,施国新,王学,等.镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究.水生生物学报,2006,30:107-112.
    许经伟,李伟,刘贵华,等.两种沉水植物黑藻和伊乐藻的种间竞争.植物生态学报,2007,31:83-92.
    徐昕,陶思源,郝林.用转基因植物修复重金属污染的土壤.植物学通报,2004,21:595-607.
    颜昌宙,曾阿妍,金相灿,等.不同浓度氨氮对轮叶黑藻的生理影响.生态学报,2007,27:1050-1055.
    颜昌宙,曾阿妍.沉水植物对重金属Cu2+的生物吸附及其生理反应.农业环境科学学报,2009,28(2):366-370.
    叶春,邹国燕,付子轼,等.总氮浓度对3种沉水植物生长的影响.环境科学学报,2007,27:739-745.
    由文辉,宋勇昌.淀山湖3种沉水植物的种子萌发生态.应用生态学报,1992,6:196-200.
    袁建立,王刚.生物多样性与生态系统功能:内涵与外延.兰州大学学报(自然科学版),2003,39:85-89.
    余建英,何旭宏.数据统计分析与spss应用.北京:人民邮电出版社,2003.142-157.
    张全国,张大勇.生物多样性与生态系统功能:进展与争论.生物多样性,2002a,10:49-60.
    张全国,张大勇.生产力、可靠度与物种多样性:微宇宙实验研究.生物多样性,2002b,10:135-142.
    张全国,张大勇.生物多样性与生态系统功能:最新的进展与动向.生物多样性,2003,11:351-363.
    张洪刚,洪剑明.人工湿地中植物的作用.湿地科学,2006,44:146-155.
    张运林,秦伯强,陈伟民,等.太湖水体中悬浮物研究.长江流域资源与环境,2004,13:266-271.
    中国植物物种信息数据库http://db.kib.ac.cn/eflora/Default.aspx
    种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,2003,4:36-40.
    周红章.物种和物种多样性.生物多样性,2000,8:215-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700