用户名: 密码: 验证码:
深基坑双排桩支护结构体系若干问题分析和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双排桩支护结构是近年来兴起的一种新型深基坑支护结构,其侧向刚度大,能有效控制支护结构的变形,而且受力条件和整体稳定性好、施工方便,逐渐成为深基坑支护结构的优选方案之一。国内外学者对双排桩支护结构进行了大量的研究,研究成果对实际工程中的许多方面具有很好的指导意义,但由于双排桩支护结构受力复杂,在一些方面实践先行,理论滞后,从而限制了该种支护结构的发展。目前阶段而言‘,在考虑桩顶冠梁平面外实际刚度计算方面、空间效应冠梁的影响长度方面、不同潜在滑动面安全系数的极限平衡数值积分求解方面、滑动面的分布规律以及基坑加固等方面研究有所欠缺,本文在归纳整理了现有双排桩支护结构体系的国内外研究成果基础上,基于均质粘性土层的地质条件,通过理论推导、分析和数值模拟等方法,对深基坑双排桩支护结构体系研究中存在的上述薄弱环节进行了有益的补充和完善,本文主要开展的研究工作和成果如下:
     1.提出了考虑冠梁平面外实际刚度计算双排桩支护结构的内力和变形的理论计算方法,并对比分析冠梁平面外假设无限刚与实际有限刚对桩身内力和位移的影响。该方法基于winkle假定,引入冠梁平面外实际刚度的影响因素,对双排桩支护结构进行理论分析,在此基础上建立各段桩体的挠曲微分方程,然后根据各段桩体端点在几何变形和内力上的连续性关系以及相应的边界条件,采用数学近似方法幂级数求解各段挠曲微分方程,并求导各段挠曲方程的解得出双排桩各点的内力及变形,通过分析冠梁平面外假设无限刚与实际有限刚的计算结果可以得出:1)冠梁的刚度增大可减少前、后排桩的位移,但会增大前、后排桩桩身弯矩;2)冠梁刚度的变化对后排桩桩身弯矩的影响比前排桩稍大;3)冠梁的刚度变化对桩身弯矩的影响幅度和对位移的影响幅度比较接近。该方法与现行假设冠梁无限刚的理论计算方法相比更符合工程实际情况,为考虑冠梁实际刚度求解双排桩的变形和内力提供了一种可行的理论计算方法;
     2.对双排桩支护结构进行了三维数值模拟,研究了双排桩支护结构在空间效应下的受力和变形特性,在此基础上,研究了冠梁与支护桩的刚接和铰接连接方式、基坑的长边长度、短边长度、开挖深度、冠梁刚度、土层粘聚力和摩擦角、支护结构排距和桩距等主要设计参数与空间效应冠梁影响长度的关系,通过分析不同参数变化下的冠梁影响长度的规律得出:基坑短边长度、开挖深度和支护结构排距的变化对冠梁影响长度都有较大影响;基坑长边长度、粘聚力、摩擦角、冠梁刚度以及支护结构桩距的变化对冠梁的影响长度影响很小。
     3.提出了双排桩支护基坑在不同潜在滑动面的简化整体稳定安全系数积分计算方法,该方法以Bishop法原理为基础,建立适用于深基坑双排桩支护结构稳定分析的简单平面直角坐标系,推导出潜在滑动面经过基坑底部与前排桩交点圆弧等位置的简化整体稳定分析的安全系数积分表达式,并考虑可能出现的主动区、桩间土和被动区加固的情况,完善了安全系数在不同积分区间的积分表达式,然后编制了相应的计算程序计算基坑稳定安全系数,通过计算结果的分析可以得出,滑动面经过基坑底部与前排桩交点圆弧的安全系数为F1,滑动面经过前排桩桩底圆弧的安全系数为F2,滑动面经过后排桩桩底圆弧的安全系数为F3,而F1略大于F2,F2略大于F3,与有限元计算结果进行对比分析,验证了所提出方法的可行性,完善了极限平衡法数值积分求解安全系数在深基坑双排桩支护结构中的应用。
     4.对双排桩支护结构的基坑稳定性进行了数值分析,系统研究了基坑稳定安全系数随土层的粘聚力、摩擦角以及支护结构的桩长和排距等设计参数而变化的规律得出:基坑的稳定安全系数随着粘聚力、摩擦角、支护结构桩长和排距的增加而增加,稳定安全系数受粘聚力和摩擦角的影响最大,受支护结构桩长的影响较大,受支护结构排距的影响较小。并且,总结了滑动面的分布特点和规律。
     5.对双排桩支护的基坑进行加固分析,系统研究了主动区、桩间土和被动区加固对桩身内力和变形特性的影响后得出:1)对于主动区加固,当加固深度超出基坑深度,加固效果不明显;2)对于被动区加固,加固深度或宽度约为基坑深度的一半时最有效。
     6.在以上工作基础上提出进一步开展相关研究工作的建议。
In recent years, double-row pile structure has emerged as a new type of supporting structure for deep foundation pits. Because such structure has high lateral stiffness, which can effectively control its deformation, and exhibit good load conditions and overall stability with ease of construction, it has gradually become one of the optimal solutions for supporting structures of deep foundation pits. Scholars worldwide have conducted considerable research on double-row pile structure, and the results have provided significant guidance to actual engineering applications in many aspects; however, because the mechanic behavior of double-row pile structure is complex, practice has advanced ahead of theory with respect to some aspects, and thus the development of such supporting structures has been restricted. At present, research is lacking in various areas, including the calculation of the actual out-of-plane stiffness of the pile top beam, the affected length by top beam under spatial effects, the numerical integral solving for safety factors of different potential slip surfaces using the limit equilibrium method, the distribution rules of slip zones, and reinforcement of the foundation pit. After summarizing the existing research results worldwide of double-row pile structure, we offer a beneficial supplement to and improvement upon the above weaknesses existing in research on double-row pile structure for deep foundation pits by means of theoretical derivation, analysis, and numerical simulation, in the context of the geological conditions of homogeneous cohesive soil layers.
     The main works and achievements of this research are as follows:
     1. A theoretical algorithm was proposed to calculate the stresses and deformation of a double-row pile structure with the actual out-of-plane stiffness of the top beam being taken into account, and the influences of assumed unlimited out-of-plane stiffness and actual limited out-of-plane stiffness of the top beam on the stresses and displacement of the pile body were compared. This method is based on the Winkle assumption, and influential factors of the actual out-of-plane stiffness of the top beam were introduced to conduct a theoretical analysis of double-row pile structure. Thereby, the deflection differential equation of every section of the pile body was established and then solved by using power series by mathematical approximation according to the continuity of geometrical deformation and internal force at the ends of the pile section and corresponding boundary conditions. Afterward, the solution of the deflection differential equation of every section was derived to obtain the deformation and internal force at every point of the double-row piles. Through analysis of the calculation results in the context of assumed unlimited out-of-plane stiffness and actual limited out-of-plane stiffness of the top beam, the following can be obtained:1. The increase in stiffness of the top beam can reduce displacements of the front-and rear-row piles but will increase the bending moments of the pile bodies of the front-and rear-row piles.2. The influence of the variation in top beam stiffness on the bending moments of the pile bodies of the rear-row piles is a little greater than that on the front-row piles.3. The influence of the variation in top beam stiffness on the bending moments of the pile bodies is close to that on the pile top displacement. Compared with the current theoretical calculation method under the assumption that the top beam has unlimited stiffness, this method better conforms to practical engineering situations, providing a feasible theoretical calculation method for solving for deformation and stresses of double-row piles with the actual stiffness of the top beam being taken into account;
     2. Three-dimensional numerical simulations were conducted to study the stresses and deformation characteristics of double-row pile structure under spatial effects. On this basis, we studied the relationships between the affected length by top beam under spatial effects and major design parameters, such as the rigid or hinge joint mode between the top beam and the supporting pile, the long side length, the short side length and excavation depth of the foundation pit, the top beam stiffness, the cohesive force and friction angle of the soil layer, and the row spacing and pile spacing of the supporting structure. Through analysis of the rules governing variations in the affected length by top beam with different parameters, the following results were obtained:Variations in the short side length and excavation depth of the foundation pit and in the row spacing of the supporting structure have a significant influence on the affected length by top beam under spatial effects; in contrast, variations in the long side length, in the cohesive force and friction angle, in the top beam stiffness, and in the pile spacing of the supporting structure have a very small influence on the affected length by top beam under spatial effects.
     3. An integral method for calculating the safety factor for simplified integral stability was proposed for a foundation pit supported by double-row piles at different potential slip surfaces. In this method, based on the Bishop method, a simple plane rectangular coordinate system suitable for stability analysis of double-row pile structure in a deep foundation pit was established, and we derived the integral expressions of the safety factor for a simplified integral stability analysis of the potential slip surface when passing the arc at the intersection point between the foundation pit bottom and the front-row piles, etc. With possible reinforcement of the active zone, interpile soil, and passive zone being considered, we improved the integral expressions of the safety factor in different integral intervals and developed a corresponding computing program to calculate the stability safety factor of the foundation pit. Analysis of the calculation results shows that, if the safety factor of a slip surface passing an arc at the intersection point between the foundation pit bottom and the front-row piles is expressed as F1, that of the slip surface passing an arc at the bottom of the front-row piles is expressed as F2, and that of the slip surface passing an arc at the bottom of the rear-row piles is expressed as F3, then F1is slightly greater than F2, and F2is slightly greater than F3. Comparative analysis of these results with finite-element calculations verifies the feasibility of the proposed method, and the method improves the application of numerical integral solving for safety factors using the limit equilibrium method in double-row pile structure of deep foundation pits.
     4. After an analysis of the stability of foundation pits with double-row pile structure and a systematic study on the relationships between foundation pit stability and major design parameters such as the cohesive force and friction angle of the soil layer and the pile length and row spacing of the supporting structure, we concluded that the stability factor of the foundation pit increases with increases in the cohesive force and friction angle of the soil layer and in the pile length and row spacing of the supporting structure, with the influence of cohesive force and friction angle being the largest, followed by that of the pile length of the supporting structure, and finally by that of the row spacing of the supporting structure. Furthermore, the distribution characteristics and rules of the slip zones were also summarized.
     5. After analysis of reinforcement of a foundation pit supported by double-row piles through systematic study on the influences of the reinforcement of the active zone, interpile soil, and passive zone on the internal force and deformation characteristics of the pile body, we concluded that:1) For reinforcement of the active zone, when the reinforcement depth is larger than the foundation pit depth, the reinforcement effect is not evident;2) For reinforcement of the passive zone, the reinforcement is most effective when the reinforcement depth or width is about half of the foundation pit depth.
     6. On the basis of the above work, suggestions are given for conducting further relevant research.
引文
[1]龚晓南.基坑工程实例3[M].第一版.北京:中国建筑工业出版社,2010:6-8
    [2]余志成,施文华.深基坑支护设计与施工[M].第一版.北京:中国建筑工业出社,1997:4-5
    [3]孙勇.深基坑双排支护桩的受力性能与应用研究[J].建筑科学,2008,24(11):60-65
    [4]王子寒.双排桩支护结构性状空间效应的非线性有限元分析[D].天津:天津大学,2010
    [5]基坑监测培训讲义[M/OL]. http://www.docin.com,2012-9-5
    [6]张富军.双排桩支护结构研究[D].成都:西南交通大学,2004
    [7]姚涛.建筑基坑支护技术规程2012条说明[G/OL]. http://wenku.baidu.c,2012-12-4
    [8]罗勇.门架式水力插板桩的有限元分析和优化设计[D].青岛:中国海洋大学,2010
    [9]林栋.用双排灌注桩作深基坑围护结构的尝试[J].建筑施工,1994.37(2):8-9
    [10]黄强.深基坑支护工程设计技术[M].北京:中国建材工业出版社,1995:77-79
    [11]程知言,裘慰伦,张可能等.双排桩支护结构设计计算方法探讨[J].地探地质勘,2001,37(2):88-93
    [12]熊伟芬.深基坑双排桩支护结构计算模式与数值模拟研究[D].武汉:武汉理工大学大学,2010
    [13]刘钊.双排支护桩结构的分析及实验研究[J].岩土工程学报,1992,14(5):76-80
    [14]熊巨华,李建华.基坑围护工程中土体水平抗力系数m值的分析与确定[J].建筑结构,1998,14(6):66-72
    [15]郑刚,李欣,刘畅等.考虑桩土相互作用的双排桩分析[J].建筑结构学报,2004,25(1):99-106
    [16]史海莹.双排桩支护结构性状研究[D].杭州:浙江大学,2010
    [17]顾问天,赵有明,刘国楠.反力弹簧法解双排桩结构内力[J].中国铁道科学,2007,28(6):12-18
    [18]付建军.二元地质环境下狭长型基坑围护体系与防渗体系研究[D]:武汉:武汉大学,2010
    [19]何颐华等.双排护坡桩试验与计算的研究[J].建筑结构学报,1996,17(2):58-66
    [20]梁秋敏.桩土效应下双排桩三维数值模拟及性状研究[D].广州:暨南大学,2007
    [21]戴智敏,阳凯凯.深基坑双排桩支护结构体系受力分析与计算[J].信阳师范学院学报(自然科学版),2002.15(3):348-352
    [22]王乾坤.抗滑桩的桩间土拱效应和临界间距的讨论[J].武汉理工大学学报,2005,27(2):64-67
    [23]叶晓明,孟凡涛,徐年春.土层水平卸荷拱的形成条件[J].岩石力学与工程学报,2002,21(5):745-748
    [24]曹俊坚,平扬,朱长歧等.考虑圈梁空间作用的深基坑双排桩支护计算方法研究[J].岩石力学与工程学报,1999,18(8):709-712
    [25]顾问天.深基坑双排桩支护结构的研究[D].北京:铁道部科技研究院,2003
    [26]杨明,姚令侃,王广军.桩间土拱效应离心模拟实验及数值模拟研究[J].岩土力学,2008,29(3):817-822
    [27]徐良德,项瑛,尹道成等.排架桩与双排单校对比模型试验[M].北京:中国铁道出版社,1984:56-64
    [28]大倔晃一.二重矢板式构造物力学の的特性に关する研究[R].日本:日本港湾技术研究所,1984
    [29]菊池喜昭.固化处理土中诘二重矢板式护岸构造特性[R].日本:日本港湾技术研究所,2001
    [30]蓝日彦.深基坑排桩支护土压力及变形的试验研究[D].广西:广西大学.铁道部科技研究院,2002
    [31]曲力群.不同刚度圈梁对排桩支护结构力学性状的影响[D].重庆:西南交通大学,2002
    [32]蔡袁强,赵永倩,吴世明等.软土地基深基坑中双排桩式围护结构有限元分析[J].浙江大学学报(自然科学版),1997,27(2):64-67
    [33]张耀东.深埋重力-门架式围护结构性状研究[D].杭州:浙江大学,2001
    [34]应宏伟,初振环,李冰河等.双排桩支护结构的计算方法研究及工程应用[J].岩土力学,2007,27(2):15-16
    [35]梁秋敏.桩土效应下双排桩三维数模拟及性状研究[D].广州:暨南大学,2007
    [36]杨雪强,刘祖德.深基坑支护的杆系有限元分析[J].湖北工学院学报,2000,15(2):25-28
    [37]梅传书等.高层建筑基坑开挖的数值分析研究及工程应用分析[J].建筑结构学报,200],22(3):81-87
    [38]邓小鹏等.深基坑开挖中双排桩支护结构的数值分析与工程应用[J].西安工程学院学报,2002,24(4):42-48
    [39]吕刚等.深基坑支护桩内力计算的有限差分法[J].隧道建设,2004,24(3):17-19
    [40]周翠英,刘柞秋,尚伟等.门架式双排抗滑桩设计计算新模式[J].岩土力学,2005,15(2):25-28
    [41]司马军.双排桩支护结构研究及优化设计[D].武汉:武汉大学,2006
    [42]崔宏环,张立群,赵国景.深基坑开挖中双排桩支护的的三维有限元模拟[J].岩土力学,2006,4(2):9-11
    [43]陆培毅,杨靖,韩丽君.双排桩尺寸效应的有限元分析[J].天津大学学报,2006,5(3):52-54
    [44]申永江.双排抗滑桩桩顶连接方式的优化设计[J].岩石力学与工程学报,2010,29(5):34-38
    [45]刘开富.若干土工问题工程性状的大变形有限元分析[D].杭州:浙江大学,2006
    [46]吕擎峰.土坡稳定分析方法研究[D].南京:河海大学,2004
    [47]王金山.南水北调济平干渠工程高边坡稳定分析与加固工程设计[D].济南:山东大学,2006
    [48]潘家铮,建筑物抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [49]孙君实.条分法的提法及其数值计算的最优化方法[J].水力发电学报,1983,10(3):16-18
    [50]张天宝.土坡稳定分析圆弧法的数值解研究[J].成都工学院学报,1978,9(2):12-15
    [51]朱大勇.边坡临界滑动场及其数值模拟[J].岩土工程学报,1997,19(1):63-68
    [52]Es PinozaRD.General frame work for stability analysis of Slope[J].Geoteehnique, 1992,42(4):603-615
    [53]郑颖人,赵尚毅,时卫民,林丽.边坡稳定分析的一些进展[J].地下空间,2001,21(5):450-454
    [54]朱禄娟,谷兆棋,郑榕明,彭守拙.二维边坡稳定方法的统一计算公式[J].水力发电学报,2002,15(3):21-29
    [55]杨明成,郑颖人.基于极限平衡理论析局部最小安全系数法[J].岩土工程学报,2002,24(3):600-604
    [56]陈祖煌.边坡稳定分析一极限平衡法的改进和应用[D].北京:清华大学,1991
    [57]戴自航,沈蒲生.土坡稳定分析简化Bishop法的数值解[J].岩土力学,2002,23(6):760-764
    [58]武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析[D].大连:大连理工大学,2003
    [59]Clough G W,Hnasen L A.Clay anisotropy and braced wall behavior Journal of Geotechnical Engineering,ASCE,1981,107(7):893-913
    [60]Giam S K and Donald 1 B.Determination of critical slip surfaces for slops via stress-strain calculations.5th A.N.Z.Conf.Geomechanics Sydney 1988,21 (4):461-464
    [61]吕擎峰.土坡稳定分析方法研究[D].大连:大连理工大学,2003
    [62]Naylor DJ. Finite element and slope stability. In Numerical Methods in Geomechnics Reidel Publishing Company,1982,40(3):658-662
    [63]Kim J Y,Lee S R.An improved search strategy for the critical slip surface using finite element stress fields.Computers and Geotechnics.1997,21(4):295-313
    [64]Zienkiewicz O C,Taylor.The finite element method Volume 2:Solid mechanics(Fifth edition).Elsevier Pte Ltd,2000
    [65]Zou J Z,Williams D J and Xiong W L.Search for critical slip surfaces based on finite element method.Canadian Geotechnical Journal,1995,32(5):233-246
    [66]Matsui T,San.K C.Finite element slope stability analysis by shear strength reduction technique. Soils and foundations,1992,32(1):59-70
    [67]Ugai K,Leshchinsky D.Three dimensional limit equilibrium and finite element analysis.Soils and foundations,1995,35(4):1-7
    [68]连镇营,韩国城,吕凯歌.土钉支护弹塑性数值分析及稳定性探讨[J].岩土力学,2002,23(1):85-89
    [69]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388
    [70]赵尚毅,时卫民,郑颖人.边坡稳定性分析的有限元法[J].地下空间,2001,21(5):450-454
    [71]郑颖人.有限元强度折减系数法的精度研究[MOL]. http://www.geojourna.2007-11-25
    [72]郑宏,李春光,李悼芬等.求解安全系数的有限元法[J].岩土工程报,2002,24(5):323-328
    [73]孙伟,龚晓南.弹塑性有限元法在土坡稳定分析中的应用[J].太原理工大学学报,2003,34(2):199-202
    [74]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算上坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-26
    [75]栗茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8
    [76]刘柞秋,周翠英,董立国等.边坡稳定及加固分析的有限元强度折减法[J].岩土力学,2005,26(8):558-561
    [77]吴丽君.有限元强度折减法有关问题研究及工程应用[D].长沙:中南大学,2009
    [78]许建聪,尚岳全,陈侃福,杨建锋.顺层滑坡弹塑性接触有限元稳定性分析[J].岩石力学与工程学报,2005,24(13):2231-2236
    [79]李立杨.高低双排桩挡土性状的非线性有限元分析[D].天津:天津大学,2008
    [80]李航飞.延安黄土边坡双排桩支护结构力学性能研究[D].西安:长安大学,2010
    [8]]黄凭.带竖向锚索双排桩支护结构的研究与分析[D].广州:华南理工大学,2010
    [82]沈保汉.深基坑工程技术讲座[J].建筑技术开发,1999,4(3)7-8
    [83]曾广群.深基坑双排桩支护结构的设计与研究[D].西安:西安建筑科技大学,2005
    [84]万智.深基坑双排桩支护结构体系受力分析与计算[D].长沙:湖南大学,2001
    [85]王伟.深基坑双排桩支护技术研究与应用[D].青岛:青岛理工大学,2008
    [86]吴刚.深基坑双排桩支护结构的理论分析及数值计算[D].北京:北京交通大学,2001
    [87]黄凭,莫海鸿,陈俊尘.双排桩支护结构挠曲理论分析[J].岩土力学与工程学报,2009,28(2):3870-3875
    [88]王涛.盾构隧道施工的环境效应影响研究[D].杭州:浙江大学,2007
    [89]何启平.双排桩支护结构的有限元分析及工程应用[D].广州:华南理工大学,2010
    [90]李青.基坑开挖预留土作用及其实例分析[D].广州:华南理工大学,2011
    [91]黄春娥.考虑渗流作用的基坑稳定分析[D].杭州:浙江大学,2001
    [92]张洪涛.石台县陈良山边坡稳定性分析与预测的研究[D].合肥:合肥工业大学,2005
    [93]父春秋.非线性有限单元法在土体稳定分析中的理论与应用研究[D].武汉:武汉大学,2004
    [94]李立洐.基坑极限承载力的弹塑性有限元分析[D].长沙:中南大学,2007
    [95]朱以文,吴春秋,蔡元奇.基于滑移线场理论的边坡滑裂面确定方法[J].岩石力学与工程学报,2005,24(15):2609-2616
    [96]胡敏萍.极限平衡法和有限单元法分析复杂边坡的稳定性[D].杭州:浙江大学,2004
    [97]沈伟志.富阳来龙山滑坡分析研究[D].杭州:浙江大学,2003
    [98]郑颖人,赵尚毅.用有限元法求边坡稳定安全系数[J].公路交通技术,2002,3(1):7-9
    [99]刘凌云.门架式水力插板桩抗倾覆抗滑移稳定性研究[D].青岛:中国海洋大学,2005
    [100]宋卓男.牛少卿.深基坑开挖对极近距离大型建筑物的影响及加固技术研究[J].中国外资,2013,2(1):244-247
    [101]庞建国,汶垣,谢飞.双排桩支护及被动区土体加固对城际铁轨的保护效应[J].科学技 术与工程,2013,7(13):1878-1883
    [102]李腾.双排桩支护结构在高边坡工程中应用分析与研究[D].西安:长安大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700