用户名: 密码: 验证码:
皂角苷对重金属-PAHs复合污染土壤的强化修复作用及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国一些地方土壤重金属-有机物复合污染呈加重趋势,影响农产品安全和土地资源的持续利用,亟需发展经济高效的复合污染土壤修复技术。本文在评述重金属-有机物复合污染土壤修复技术研究现状的基础上,重点研究了天然生物表面活性剂皂角苷对多环芳烃(PAHs)的增溶作用及影响因素;深入研究了皂角苷同时增强洗脱复合污染土壤中重金属和PAHs的作用机制;初步探讨了皂角苷强化植物修复复合污染土壤的效果,试图为开发经济高效的复合污染土壤强化修复技术提供理论基础。论文取得了以下主要成果:
     (1)皂角苷通过分配作用增溶PAHs于胶束内部,同时胶束外部的亲水链上羟基和羧基可络合重金属离子。皂角苷对PAHs的增溶能力随介质pH值升高而降低,随离子强度和温度的升高而增大,环境中共存重金属离子可提高皂角苷对菲的溶解度;皂角苷与四种重金属离子的络合稳定常数大小次序为:Pb2+>Cu2+>Zn2+>Cd2
     (2)发现皂角苷能高效洗脱复合污染土壤中PAHs,同时有效去除土壤中重金属离子。皂角苷增溶洗脱复合污染土壤中菲和芘的效率均可达到90%左右,PAHs之间不存在竞争作用;皂角苷对Cd-菲复合污染土壤中Cd的洗脱效率可达87.7%,而对重金属-PAHs复合污染土壤中Cd的洗脱效率为55.8%,同时对Cu、Zn和Pb的去除率分别为58.1%、47.8%和22.1%,多种重金属离子之间则存在竞争络合现象。
     (3)发现皂角苷能促进黑麦草修复Pb-芘复合污染土壤。浓度为2000mg/kg时,种植30天后黑麦草根系和茎叶中Pb浓度分别达到1135.4mg/kg和231.4mg/kg,比空白对照增加了1.1倍和11.8倍;1000mg/kg皂角苷促进黑麦草修复复合污染土壤中芘的效果最好,土壤中芘的残留浓度为35.6mg/kg,比对照降低了43.0%。
The co-contaminated soils by heavy metals and persistent organic pollutants is a widespread environmental problem as the result of numerous industrial activities and rapid urbanization. Based on the review of remediatiaon of co-contaminated soils, This thesis studied the effect of saponin on remediation of PAHs and heavy metal co-contaminated soil, including the effect of environment factors on the solubility of PAHs, the complexation of heavy metals by saponin, the role and mechanism for biosurfactant saponin to enhance the desorption of heavy metals and PAHs from co-contaminated soils and the effect of saponin on the remediation of co-contaminated soils by plant. The main results of this thesis are shown below:
     (1) Saponin can effectively solubilize PAHs and complex heavy metals due to the complexation of heavy metals with the external carboxyl or hydroxyl groups of saponin micelle, on the other hand, it can incorpoate or partition of PAHs within saponin micelles. The solubilization capabilities of saponin for PAHs decreased with the increase of pH in solution, but increased with the increase of temperature and ionic strength. The conditional stability constants for saponin complexation of heavy metals were followed the order of Pb2+>Cu2+>Zn2+>Cd2+.
     (2) Saponin can effectively remove PAHs and heavy metals from the co-contaminated soils. The remove rates of PAHs by saponin were about90%, while the remove rates of Cu, Cd, Zn and Pb were58.1%,55.8%,47.8%and22.1%. This behavior was generally attributed to the PAHs had no competition each other, while the heavy metals had the competition with each other.
     (3) The presence of saponin can significantly enhance plant uptake of Pb and pyrene from the co-contaminated soils. With addition of saponin at2000mg/kg, the concertration of Pb in ryegrass roots and shoots were1.1and11.8times compared with the treatment without addition of saponin, respectively. The residual concentration of pyrene in soil was35.6mg/kg, which was about43.0%lower compared with the control.
引文
1. United States Environmental Protection Agency(USEPA). A resource for MGP site characterization and remediation.2000, EPA/542-R-00-005, Washington, DC
    2. Bernnett G F. Fundamentals of site remediation for metal and hydrocarbon contminated soils. Journal of Hazardous Materials,2001,83:281-282
    3. Brusseau M L, Wang X, Wang W Z. Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environmental Science & Technology,1997,31:1087-1092
    4. Zhang W H, Tsang D C W, Lo I MC. Removal of Pb and MDF from contaminated soils by EDTA-and SDS-enhanced washing. Chemosphere,2007,66:2025-2034
    5. Krishna R R, Ashraf A. Enhanced sequential flushing process for removal of mixed contaminants from soils. Water Air Soil Pollution,2013,224:1709-1717
    6. Wang X J, Brusseau M L.Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environmental Science & Technology, 1995,29:2632-2635
    7. Mulligan C N, Yong R N, Gibbs B F, James S and Bennett H P J. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environmental Science & Technology,1999,33:3812-3820
    8. Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials,2001,85:111-125
    9. Hong K J, Tokunaga S, Kajiuchi T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemoshpere,2002,49:379-387
    10. Cao M H, Hu Y, Sun Q, Wang L L, Chen J, Lu X H. Enhanced desorption of PCB and trace metal elements(Pb and Cu) from contaminated soils by saponin and EDDS mixed solution. Enviroonmental Pollution,2013,174:93-99
    11. Lima T M S, Procopio L C, Brandao F D, Carvalho A M X, Totola M R, Borges A C. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution. Biodegradation,2011,22:1007-1015
    12. Wang G H, Zhou Y M, Wang X G, Chai X J, Huang L, Deng N. Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine-B-cyclodextrin. Journal of Hazardous Materials,2010,184:690-695
    13.沈国清,陆贻通,周培.土壤中重金属和多环芳烃复合污染研究进展.上海交通大学学报(农业科学版),2005,23(1):102-106
    14.周东美.土壤中有机污染物-重金属复合污染的交互作用.土壤与环境,2000,9(2):143-145
    15.曲健,宋云横,苏娜.沈抚灌区上游土壤中多环芳烃的含量分析.中国环境监测,2006,22:29-31
    16. Wu L H,Li Z,Han C L,Liu L,Teng Y, Sun X H,Pan C,Huang Y J,Luo Y M,Christie P. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. International Journal of Phytoremediation,2012,14 (6):570-584
    17. Yang C J, Zhou Q X, Wei S H, Hu Y H, Bao Y Y. Chemical-assisted phytoremediation of Cd-PAHs contaminated soils using Solarium nigrum. International Journal of Phytoremediation,2011,13 (8):818-833
    18. Zhang Z, Rengel Z, Meney K, Pantelic L, Tomanovic R. Polynuclear aromatic hydrocarbons(PAHs) mediate cadmium toxicity to an emergent wetland species. Journal of Hazardous Materials,2011,189:119-126
    19. Khodadoust A P, Reddy K R, Maturi K. Effect of different extraction agents on metal and organic contaminant removal from a field soil. Journal of Hazardous Materials,2005, B117:15-24
    20. Bliss C. The toxicity of poisons applied jointly. Annals of Applied Biology,1939, 26(3):585-615
    21. Duce R A, Ray B J, Quinn J G. Enrichment of heavy metals and organic compounds in the surface microlayer of narragansett bay, Rhode island. Science, 1972,176(4031):161-163
    22. United States Environmental Protection Agency(USEPA). Recent developments for in situ treatment of metal contaminated soils, office of solid waste and emergency response.1997, Washington,DC
    23. Volkering F, Breure A M, Rulkens W H. Microbiological aspects of surfactant use for bi ological soil remediation. Biodegradation,1998,8:401
    24. Chukwujindu, Lwegbue M A. Assesment of heavy metal speciation in soils impacted with crude oil in the Niger Delta, Nigeria. Chemical Speciation and Bioavailiability,2011,23(1):7-15
    25. Elgh-Dalgrena K, Arwidssona Z, Camdzija A, et al. Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site:Changes in concentration and toxicity. Journal of Hazardous Materials,2009,17(2): 1033-1040
    26. Loukia C, Panagiotis G, Athanasios K, et al. Distribution of persistent organic pollutants, polycyclic aromatichydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environment International,2008,34(2):210-225
    27. Tang X J, Shen C F, Shi D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling:An emerging e-waste recycling city in Taizhou area, China. Journal of Hazardous Materials,2010,17(3):653-660
    28.朱岗辉,孙璐,廖晓勇,阎秀兰,周立祥.郴州工业场地重金属和PAHs复合污染特征及风险评价.地理研究,2012,31(5):831-839
    29. Gabriele F, Mattia B, Renzo B, Franco A M. Soil contamination by organic and inorganic pollutants at the regional scale:the case of Piedmont, Italy. Journal of Soil Sediments,2010,10:190-300
    30. Ellen L A, Pamela J R, Patricia J R, Todd A A, Sadika M B, Keri L D H, Joel R C. Phytoremediation-an overview. Critiacl Reviews in Plant Sciences,2005, 24:109-122
    31. Lasat M M. Phytoextraction of toxic metals:A review of biological mechanisms. Journal of Environmental Quality.2002,31(1):109-120
    32. Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Engineering Geology, 2001,60:1-4
    33. Mulligan C N. Environmental applications for biosurfactants. Enviroonmental Pollution.2005,133(2):183-198
    34. Jorfi S, Rezaee A, Mobeh-Ali G A. Application of Biosurfactants Produced by Pseudomonas aeruginosa SP4 for Bioremediation of Soils Contaminated by Pyrene. Soil&Sediment Contamination.2013,22(8):890-911
    35. Pelaez A I, Lores I, Sotres A. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil. Environmental Pollution, 2013,181:190-199
    36. Gu Y Y, Yeung A T, Tsang D C W. Applications of citric acid industrial wastewater and phosphonates for soil remediation:effects on temporal change of cadmium distribution. Soil&Sediment Contamination,2013,22(8):876-889
    37. Yan D Y S, Lo I M. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environmental Pollution.2013,178:15-22
    38. Pociecha M, Lestan D. Washing of metal contaminated soil with EDTA and process water recycling. Journal of Hazardous Materials,2012,235:384-387
    39. Wan J Z, Yuan S H, Chen J. Solubility-enhanced electrokinetic movement of hexachlorobenzene in sediments:A comparison of cosolvent and cyclodextrin. Journal of Hazardous Material.2009,166(1):221-226
    40. Zheng G Y, Selvam A, Wong J W. Enhanced solubilization and sesorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic Surfactant. Environmental Science & Technology,2012,46(21): 12062-12068
    41. Semer R, Reddy K. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. Journal of Hazardous Materials,1996,45: 45-47
    42. Shin M, Barrington S F, Marshall W D, Kim J W. Simultaneous soil Cd and PCB decontamination using a surfactant/ligand solution. Journal of environmental science and health Part A-Toxic/Hazardous substances and Environmental Engineering,2004,39(11-12):2783-2798
    43. Ehsan S, Prasher S O, Marshall W D. Simultaneous mobilization of heavy metals and polychlorinated biphenyl(PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemoshpere,2007,68:150-158
    44. Dwarakanath V, Kostarelos K, Pope G A, Shotts D, Wade W H. Anionic surfactant remediation of soil columns contaminated by nonaqueous phase liquids. Journal of Contaminate Hydrology,1999,38:465-488
    45. Roy D, Kommalapati R R, Mandava S S, Valsaraj K T, Constant W D. Soil washing potential of a natural surfactant. Environmental Science and Technology, 1997,31:670-675
    46. Kommalapati R R, Valsaraj K T, Constant W D, Roy D. Aqueous solubility enhancement and desorption of hexanechlorobenzene from soil using plant-based surfactant. Water Research,1997,31:2161-2170
    47. Sanchez-Camazano M A, Sacchez-Martin M J, Rodriguez-Cruz M S. Sodium dodectl sulphate-enhanced desorption of atrazine:effect of surfactant concentration and of organic matter content of soils. Environmental Science & Technology,2000,34:1310-1305
    48. Juan C M, Karns J, Torrents A. Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soil. Environmental Science & Technology,2002, 36:4669-4675
    49. Chen W J, Hsiao L C, Chen K K Y. Metal desorption from copper(Ⅱ) nickel(Ⅱ)-spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochemistry,2008,43:488-498
    50.孟佑婷,袁兴中,曾光明等.生物表面活性剂修复重金属污染研究进展.生态学杂志,2005,24(6):677-680
    51. Clementina O O. Biosurfactant enhanced remediation of a mixed contaminated soil.Montreal, Concordia University,2006
    52. Song S S, Zhu L Z, Zhou W J. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin,a plant-derived biosurfactant. Environmental Pollution,2008,156:1368-1370
    53.朱清清,邵超英,张琢,温晓华.生物表面活性剂皂角苷增效去除土壤中重金属的研究.环境科学学报,2010,30(12):2491-2498
    54. Ian J A, Kirk T S, Rina H, et al. Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries. Environmental Science & Technology,2007,41:5498-5504
    55. Berselli S, Milone G, Canepa P, et al. Effect of cyclodextrins,humic substances and rhamnolipid on the washing of a historically contaminated soil and on the aerobic bioremediation of the resulting effluents. Biotechnol Bioeng,2004,88(1): 111-120
    56. Hirner A V, Pestke F M, Busche U, Eckelhoff A. Testing contaminant mobility in soils and waste materials. Journal of Geochemical Exploration,1998,64:127-132
    57. Paris S. Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science,2008,138:24-58
    58. Lena Q M, Gade N R. Chemical fraction of Cadmium, Copper,Nickel and Zinc in contaminated soils. Journal of Environmental Quallity,1997,26(2):259-264
    59. Amro M M. Factors affecting chemical remediation of oil contaminated water wetted soil. Chemical Engineering and Technology.2004,27(8):890-894
    60. Gevao B, Sample K T, Jones K C. Bound pesticide residues in soils:A review. Environmental Pollution.2000,108:3-14
    61. Ko S O, Schlautman M A and Carraway E R. Partitioning of hydrophobic organic compounds to hydroxypropyl-beta-cyclodextrin:Experimental studies and model predictions for surfactant-enhanced remediation applications. Environmental Science & Technology,1999,33 (16):2765-2770
    62. Juwarkar A A, Nair A, Dubey K V, Singh S K, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere,2007,68:1996-2002
    63. Dahrazma B, Mulligan C N. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 2007,69:705-711
    64. Hatzinger P B, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractaisility. Environmental Science & Technology,1995, 29:537-545
    65. Boyajian G E, Carreira L H. Phytoremediation:A clean transition from laboratory to marketplace? Nature Biotechnology,1997.15:127-128
    66. Singh O V, Labana S, Pandey G, Budhiraja R, Jain R K. Phytoremediation:An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology,2003,61:405-412
    67. Gonzaga M I S, Santos J A G, Ma L Q. Phytoextraction by arsenic hyperaccumulator Pteris vittta L. from six arsenic-contaminated soils:Repeated harvests and arsenic redistribution. Environmental Pollution,2008,154:212-218
    68. Kirkham M B, Cadmium in plants on polluted soils:Effects of soil factors, hyperaccumulationi, and amendments. Geoderma,2006,137:19-32
    69. Gao Y Z, He J Z, Ling W T, Hu H Q, Liu F. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environment International,2003,29:613-618
    70. He B, Yang X E, Ni W Z, Wei Y Z, Long X X, Ye Z Q. Sedum alfredii:A new lead-accumulating ecotype. Acta Batanica Sinica,2002,44:1365-1370
    71.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47:207-210
    72. Gao Y Z, Zhu L Z. Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere,2004,55 (9):1169-1178
    73. Meng L, Qiao M, Arp H P H. Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono-and mixed cultures. Journal of Soils and Sediments,2011,11(3):482-490
    74. Lee S H, Lee W S, Lee C H, Kim J G. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials,2008,153 (1-2):892-898
    75. Reilley K A, Banks M K, Schwab A P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. Journal of Environmental Quality,1996,25 (2): 212-219
    76. Teng Y, Shen Y Y, Luo Y M, Sun X H, Sun M M, Fu D Q, Li Z Q, Christie P. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. Journal of Hazardous Materials,2011,186(2-3):1271-1276
    77. Yi H, Crowley D E. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environmental Science & Technology,2007, 41(12):4382-4388
    78. Tu C, Teng Y, Luo Y M, Sun X H, Deng S P, Li Z G, Liu W X, Xu Z H. PCB removal, soil enzyme activities,and microbial community structures during the phytoremediation by alfalfa in field soils. Journal of Soils and Sediments,2011, 11 (4):649-656
    79. Yoshitomi K J, Shann J Rcorn. (Zea mays L.) root exudates and their impact on C14-pyrene mineralization. Soil Biology and Biochemistry,2001,33 (12-13): 1769-1776
    80. Cheema S A, Khan M I, Shen C F, Tang X J, Farooq M, Chen L, Zhang C K, Chen Y X. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials,2010,177 (1-3): 384-389
    81. Meng L, Zhu Y G, Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition:how does it affect functional microbial abundance? Environmental Science & Technology,2011,45 (4):1579-1585
    82. Wang M C, Chen Y T, Chen S H, Chang C S W, Sunkara S V. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere,2012b,87 (3):217-225
    83. Sun L, Yan X L, Liao X Y, Wen Y, Chong Z Y, Liang T. Interactioins of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L Environmental Pollution,2011,159:3398-3405
    84. Singer A C, Bell T, Heywood C A, Smith J A C, Thompson I P. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel. Environmental Pollution,2007,147:74-82
    85. Wang K, Huang H G, Zhu Z Q, Li T Q, He Z L, Yang X E, Alva A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of sedum alfredii with ryegrass (Lolium Perenne) or castor (Ricinus Communis). International Journal of Phytoremediation,2013,15(3): 283-298
    86. Mclntyre T, Glennis M L. The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation or restoration of contaminated sites in Canada:A discussion paper. Journal of Soil Contamination, 1997,6(3):227-241
    87. Zhang H, Dang Z, Zheng L C, Yi X Y. Remediation of soil co-contaminated with pyrene and cadmium by growing maize(Zea mays L.). International Journal of Environmental Science & Technology,2009,6(2):249-258
    88.丁克强,骆永明.苜蓿修复重金属Cu和有机物苯并[a]芘复合污染土壤的研究.农业环境科学学报,2005,24(4):766-770
    89. Almeida C M R, Mucha A P, Delgado M F C, Cacador M I, Bordalo A A, Vasconcelos M T S D. Can PAHs influence Cu accumulation by salt marsh plants? Marine Environmental Research,2008,66:311-318
    90. Lin Q, Shen K L, Zhao H M, Li W H. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Journal of Hazardous Materials,2008,150:515-521
    91.许超,夏北成,冯涓等.玉米根系形态对土壤Cd和芘复合污染的响应.生态环境,2007,16(3):771-774
    92.邢维芹,骆永明等.铅和苯并[a]芘混合污染酸性土壤上黑麦草生长对污染物的吸取作用.土壤学报,2008,45(3):485-490
    93.杨传杰,魏树和,周启星,张蕾等.外源氨基酸对龙葵修复Cd-PAHs污染土壤的强化作用.生态学杂志,2009,28(9):1829-1834
    94. Xia H L, Chi X Y, Yan Z J, Cheng W W. Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin. Bioresource Technology,2009,100(20):4649-4653
    95. Xiao W D, Wang H, Li T Q, Zhu Z Q, Zhang J, He Z L, Yang X E. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environmental Science and Pollution Research,2013,20(1): 380-389
    96. Weyens N, Croes S, Dupae J, Newman L, van der Lelei D, Carleer R, Vangronsveld J. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environmental Pollution,2010,158(7):2422-2427
    97. Greman H, Velikonja B S, Vodnik D, Kos B, Lestan D. EDTA enhanced heavy metal phytoextraction:metal accumulation,leaching and toxicity. Plant and soil, 2001,235(1):105-114
    98. Liu D, Islam E, Li T Q, Yang X E, Jin X F, Mahmood Q. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials,2008,153(1-2):114-122
    99. Ling W T, Ren L L, Gao Y Z, Zhu X Z, Sun B Q. Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biology and Biochemistry,2009,41(10):2187-2195
    100. Muhlbachova G. Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecological Engineering, 2011,37(7):1064-1071
    101. Wu L H, Luo Y M, Xing X R, Christie P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems and Environment,2004,102(3):307-318
    102. Yu H S, Zhu L Z, Zhou W J. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants. Journal of Hazardous Materials,2007,142(1-2):354-361
    103. Zhou W J, Zhu L Z. Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant. Water research,2008,42(1-2):101-108
    104. Zhou WJ, Zhu LZ. Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. Environmental Pollution,2008,152(1): 99-105
    105. Cheng K Y, Lai K M, Wong J W C. Effects of pig manure compost and nonionic-surfactant Tween80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere,2008,73(5):791-797
    106. Gao Y Z, Ling W T, Zhu L Z, Zhao B W, Zheng Q S. Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere,2007,17(4):409-418
    107. Zhu L Z, Zhang M. Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environmental Pollution,2008,156(1):46-52
    108. Sheng X F, Hel Y, Wang Q Y, et al. Effects of inoculation of biosurfactang-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium amended soil. Journal of Hazardous Materials,2008,155:17-22
    109. Wu S C, Luo Y M, Cheung K C, et al. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil:a laboratory study. Environmental Pollution.2006,144:765-773
    110. Wu Q T, Deng J C, Long X Y, et al. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. Journal of Environmental Sciences.2006,18:1113-1118
    111. Schulz B J E, Boyle C J C, Sieber T N. What are endophytes? Microbial Root Endophytes,2006:1-13
    112. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D. Endophytic becteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnology and Genetic Engineering Reviews,2006,23:175-207
    113. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert J V, Vangronsveld J, van der Lelie D. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnology,2004,22(5):583-588
    114. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied and Environmental Microbiology,2005, 71(12):8500-8505
    115. Yu X Z,Wu S C, Wu F Y, Wong M H.(Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Journal of Hazardous Materials,2011,186(2-3):1206-1217
    116. Lee W, Wood T K, Chen W. Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnology and Bioengineering,2006,95(3):399-403
    117. Gejlsbjerg B, Madsen T, Thorup A T. Comparison of biodegradation of surfactants in soils and sludge-soil mixtures by use of 14C-labelled compounds and automated respirometry. Chemosphere,2003,50:321-331
    118. Cort T L, Song M S, Bielefeldt A R. Nonionic surfactant effects on pentachlorophenol biodegradation. Water Research,2002,36:1253-1261
    119. Boopathy R. Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. Journal of Hazardous Materials,2002,92:103-114
    120. Doong R A, Lei W G. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Psedudomonas putida in the presence of surfactant. Journal of Hazardous Materials,2003, B96:15-27
    121. Garrison A W, Nzengung V A, Avants J K. Phytodehgradation of p,p'-DDT and the enentionmers of o,p'-DDT. Environmental Science & Technology,2000,34: 1663-1670
    122. Joner E J, Corgie S C, Amellal N, Leyval C. Nutritional constrains to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biology and Biochemistry,2002,34:859-864
    123. Kelley S L, Aitchison E W, Deshpande M, Schnoor J L, Alvarez P J J. Biodegradatio of 1,4-dioxane in planted and unplanted soil:effect of bioaugmaentation with Amycolata sp. Cb1190. Water Research,2001,35: 3791-3800
    124. Mitra S, Dungan S R. Micellar properites of quillaja saponin.1.Effects of temperature, salt, and pH on solution properties. Journal of Agricultural and Food Chemistry,1997,45:1587-1595
    125. Urum K, Pekdemir T. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere,2004,57:1139-1150
    126. Paria S. Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science,2008,138:24-58
    127. Kile D E, Chiou C T, Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environmental Science & Technology,1989,23:832-838
    128. Edwards D A, Luithy R G, Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology,1991,25:127-133
    129. Jafvert C T, Vanhoof P L, Heath J K. Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Research,1994,28:1009-1017
    130. Zhang Y, Maier W J, Miller R M. Effect of rhamnolipids on the dissolution, bioavailabiltiy, and biodegradation of phenanthrene. Environmental Science & Technology,1997,31:2211-2217
    131. Prak D J L, Pritchard P H. Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar nonionic surfactant solutions. Water Research,2002,36: 3463-3472
    132. Shin K H, Kim K W, Seagren E A. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Appllied Microbiology and Biotechnology,2004,65:336-343
    133. Mukherjee P, Cardinal J R, Desai N R. The nature of the local microenvironments in aqueous micellar systems. In micellization, solubilization and microemulsions, 1977,1:241-261
    134. Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,1979,51:844-851
    135. Partyka S, Zaini S, Lindheimer M, Brun B. Sorption of nonionic surfactant. Colloids Surfaces,1984,12:255
    136. Levitz P E. Adsorption of nonionic surfactants at the solid/water interface. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002, 205:31-38
    137. Somasundaran P, Huang L. Adsorption/aggregation of surfactants and their mixtures at the solid-liquid interfaces. Advances in Colloid and Interface Science, 2000,88:179-208
    138. Zhou W J, Zhu L Z. Efficiency of surfactant-enhanced desorption for contaminated soils on the component characteristics of soil-surfactant-PAHs system. Environmental Pollution,2007,147:66-73
    139. Gao Y Z, Zeng Y C, Shen Q, Ling W T, Han J. Fractionation of polycyclic aromatic hydrocarbon residues in soils. Journal of Hazardous Materials,2009, 172(2-3):897-903
    140. Schubert J. Use of ion exchangers for the determination of physical-chemical properties of substances, particularly radiotracers. Journal of Physical and Colloid Chemistry,1948,52:340-350
    141. Li W F, Wang X L. Studies on soil humin and chelation stabilities of metal ion-humic substances in soil. Guiyang Science and Technology Publishing,1999, 73-75
    142. Liu B F, Wang Q, Meng W, We S Q. The impact of acidity on the complexation reaction of humic acid with Cd2+and Zn2+. Journal of Southwest Agricultural University (Natural Science),2005,27(4):451-455
    143. Peters R W. Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials,1999,166:151-210
    144. Hauser L, Tandy S, Schulin R, Nowack B. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science & Technology,2005,39:6819-6824
    145. Clevenger T E. Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Pollution,1990,50:241-254
    146.周文军.阴-非离子混合表面活性剂增溶、洗脱土壤有机污染的作用及机理.博士论文,2006,65
    147.卢宁川,冯效毅.生物表面活性剂强化植物修复重金属污染土壤的可行性.环境科技,2009,22(4):18-22
    148. Wild E, Dent J, Thomas G O, Jones K C. Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:Further studies utilizing two-photon excitation microscopy. Environmental Science & Technology,2006, 40:907-916
    149. Luo L X, Sun T H. Effect of cadmium-surfactant combined pollution on physiological characteristics of wheat led. Chinese Journal of Applied Ecology, 1998,9(1):95-100
    150. Blaylock M J, Salt D E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology,1997,31:860-865

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700