用户名: 密码: 验证码:
多工位级进模成形仿真算法研究与系统集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车结构件、五金家电、仪器仪表、以及3C产品(计算机、通信和消费电子)等领域,多工位级进模得到广泛的应用。随着制造业的快速发展和行业竞争的日益激烈,产品形状越来越复杂,质量要求越来越高,生产周期越来越短,成本控制越来越严格,再加上新型的高速机床的应用,使级进模零件成形工艺不仅非常复杂,而且成形工序也很多。此外,级进模前后工序之间的关联性非常强,在产品、条料和模具设计的过程中需要考虑的因素也非常多,造成级进模工艺和模具设计难度很大,传统的依靠经验和反复试模的方法已经不能满足行业的需求。有限元数值模拟技术在汽车覆盖件和航空钣金件等大中型模具的冲压成形中已经得到了广泛应用,并且取得了良好的经济效益,但是,数值模拟在精密多工位级进模领域应用不多。因此,需要开发一套面向级进模产品、条料和模具设计全流程的仿真系统。
     论文结合国家自然科学基金资助项目“复杂汽车结构件多工位级进模条料设计的快速仿真模型与关键算法研究”(项目编号50905067)和华富集团昆山嘉华电子有限公司资助项目“级进模成形仿真系统研究”,对基于实体壳单元的中厚板或厚板成形和回弹模拟算法、复杂级进模零件中间构型生成算法以及CAD/CAE集成技术进行了深入研究,并在此基础上,开发了面向复杂级进模产品、条料和模具设计全流程的CAD/CAE集成系统Stamping Works。
     为了准确模拟级进模零件厚向挤压成形效果,开发了一种新的全三维实体壳单元模型。在求解实体壳单元节点内力时采用了平面内单点、厚向多点积分方案,既能剔除体积闭锁和剪切闭锁的不良影响,也能准确描述弯曲效应,并对这种平面内不精确积分激活的沙漏模式进行了处理。针对实体壳单元在板料成形中常常出现的厚向闭锁问题,提出了一种改进的平面应力本构模型,使得实体壳单元能同时获得实体单元和壳单元的特性。此外,推导了实体壳单元隐式增量算法列式,针对实体壳单元平面内完全减缩积分可能引起的病态情况,提出了一种基于二阶泰勒展开的稳定化方法。并编写了实体壳单元动力显式和隐式增量计算程序,用于中厚板/厚板的成形和回弹模拟。给出了实体壳单元模拟成形和回弹的若干个算例,并通过模拟结果与实验结果进行对比来验证实体壳单元的有效性和有限元求解程序的稳健性。
     复杂级进模条料中间构型设计基本以手工造型为主,耗时费力,精度差,是设计过程中的主要难点。针对级进模零件中大部分的成形工序都是弯曲成形的特点,在已知产品最终构型的情况下,提出了一种基于几何旋转和有限元逆算法的中间构型生成算法,用于复杂级进模条料设计。这种算法通过设置相关的求解条件,如旋转轴、固定区、固定约束线、变形区、形状约束线、非变形区、等长线、等长线缩放因子以及旋转角度等,通过曲面网格快速求解零件初步中间构型。将获得的初步中间构型网格作为修边线逆向展开的参考区域,能准确地获得级进模零件中间构型的边界线,完成中间构型的精确设计。
     在SolidWorks软件上还没有一套完整的板料成形数值模拟解决方案。本文基于所开发的实体壳单元求解器和中间构型生成算法,开发了首个无缝集成于SolidWorks平台的板料成形数值模拟系统Stamping Works,提供面向复杂级进模零件产品、条料及模具设计全过程的专业分析工具。该系统包括面向级进模零件产品设计的整体毛坯展开与可成形性评估系统Blank Estimation Xpert(BEX)、面向条料设计的级进模零件中间构型设计与分步展开系统Multistep Unfold Xpert(MUX)以及面向工艺与模具设计的级进模全工序成形同步仿真系统Forming Analysis Xpert(FAX),并在汽车结构件和3C等多个企业推广应用,解决复杂级进模设计和成形过程中的很多难题。
In the fields of automotive structural parts, hardware appliances, instruments, meters and3C products, progressive dies are widely applied. With the rapid development of the manufacturing sector and the increasing competition of industry, the more complex shape features of progressive die stamping parts, the higher quality requirements, the more stringent controls of costs, and the application of new high speed machine tools, lead to the more complex forming technology and the more forming process number. In addition, the relevance of adjacent processes is quite strong, and quite a few factors are needed to be considered in the designs of products, strips and dies, which greately increase the design difficulty of forming technology and dies. The traditional experience and repeated tryout can no longer meet the industry needs. FE simulation technology has been widely used in the large dies such as automobile covering parts and aircraft sheet metals, and achieved good economic benefits. However, numerical simulations are hardly applied in the multi-position progressive die field. Therefore, it is necessary to develop an analysis system for the whole design process of products, strips and dies.
     The paper is supported by a grant from National Natural Science Foundation of China (No.50575080) and Research and development on smulation technology for progressive die forming from JIAHUA Electronics CO., Ltd. The forming and springback simulation algorithms based on solid-shell element for medium thick or thick sheet metal, the generating algorithm of complex intermediate shapes and CAD/CAE integration technology are deeply studied. On that basis, a CAD/CAE integration system named Stamping Works for the whole design process of products, strips and dies are developed.
     A3D solid-shell eleent is developed to simulate accurately the normal extrusion process of thick progressive die parts. An in-plane one-point and thickness-direction multiple-point integration approach is developed to solve the internal force, which inhibits transverse shear locking and volume locking and describe accurately bending effects. And the hourglass mode actived by this integration method is eliminated. An improved plane-stress constitutive model is employed to inhibit the thickness locking. In this way, the solid-shell element obtains both solid-like and shell-like behaviours. In addition, the solid-shell implicit incremental formulas are deduced. Aimming at the pathologies activated by in-plane reduced integration scheme, a stabilization method based on taylor expansion is developed. The solid-shell dynamic elplicit and implicit incremental solvers are developed for the medium thick or thick sheet metal forming and springback simulation. Some numerical examples are taken to verify the effectiveness of the solid-shell element and the robustness of the FE solving programs.
     The progressive die intermediate shape design is main manual modeling, which is inefficient, inaccurate and the main difficulty of design. According to the situation that most of forming processes in progressive die are bending, a generating algorithm of intermediate shapes based on geometry rotation is developed for complex progressive die strip design. This algorithm need to input some corresponding solving conditions such as rotation axis, fixed area, fixed restraint lines, deforming area, shape restraint lines, un-deforming area, constant-length lines and rotation angle. The intermediate shapes of final products are obtained by surface mesh. The obtained intermediate shape mesh is considered the reference area of trimming line inverse unfolding model to obtain the precise boundry line and complete the accurate design of intermediate shape.
     There is no a complete sheet metal forming simulation solution in SolidWorks. A sheet metal forming simulation system which is firstly seamlessly integrated within SolidWorks is developed based on the solid-shell solvers and the generating algorithm of intermediate shapes. The system provides professional analysis tools for the whole design process of products, strips and dies. StampingWorks includes the blank estimation and formability prediction system-BEX for product design, the intermediate shape design and multistep unfold system-MUX for strip design, and the complete process forming analysis system-FAX for technology and die design. This system is extended and applied in enterprises such as automotive structural parts and3C products and can solve many difficulties in design and forming process of progressive die.
引文
[1]李志刚.模具计算机辅助设计(第一版).武汉:华中科技大学出版社,1990
    [2]邹锦辉.精密级进模CAD/CAPP技术应用研究:[硕士学位论文].武汉:华中科技大学,2009
    [3]漓沙.快速发展的中国汽车模具业记.汽车与配件,2007,29:28-30
    [4]周永泰.我国汽车冲压模具的现状及发展.汽车与配件,2007,29:24-27
    [5]邵京伟.现场改善在高速级进模中的应用研究:[硕士学位论文].上海:上海交通大学,2006
    [6]何云.大型精密复杂级进模具技术综合研究:[博士学位论文].大连:大连理工大学,2000
    [7]邹冻林.多工位精密复杂接插件级进模设计研究:[硕士学位论文].兰州:兰州理工大学,2007
    [8]黄珍媛,阮峰,管灿等.基于数值模拟的级进模筒形拉深工步工艺分析.电加工与模具,2006,(4):50-53
    [9]陈志超,夏琴香,郭新年等.某高强钢板汽车结构件多工位级进模设计.锻压技术,2012,37(2):47-50
    [10]黄珍媛,刘文娟,周驰等.高速冲压中硬质合金级进模磨损研究.模具工业,2007,33(1):71-73
    [11]黄珍媛,郭雷,阮峰等.听筒T铁级进模冷锻工艺研究.锻压技术,2009,34(5):80-84
    [12]徐波.级进模关联设计技术的研究与开发:[硕士学位论文].武汉:华中科技大学,2005
    [13]张兰,杨屹,冯可芹等.虚拟制造在汽车覆盖件模具制造中的应用.锻压技术,2006,31(1):104-108
    [14]Dowlatshahi S.. Comparison of Approaches to Concurrent Engineering. Int.J.of Advanced Manufacturing Technology,1994,9(2):106-113
    [15]王建华.CAE技术在汽车模具行业中的应用探讨.航空制造技术,2005,(8):48-51
    [16]柳玉起,李志刚,杜亭等.FASTAMP在汽车覆盖件及其工艺设计中的应用.机械工人:冷加工,2006,(4):18,20-21
    [17]陈磊,白颖,邱超斌.铝合金板料橡皮成形数值模拟研究.航空科学技术,2007, (6):32-35
    [18]韩志仁,吴娜,詹庆熙等.基于试验和有限元方法的橡皮囊液压成形回弹规律.塑性工程学报,2010,17(3):98-102
    [19]章志兵,柳玉起,杜亭等.基于快速仿真方法的多工位级进模条料设计.中国机械工程,2010,21(5):611-614
    [20]杜亭.面向冲压全工序与设计全流程的板料成形模拟系统:[博士学位论文].武汉:华中科技大学,2008
    [21]Kubli W., Reissner J.. Optimization of sheet-metal forming processes using the special-purpose Program AUTOFORM. J. Mater. Proc. Tech.,1995,50:292-305
    [22]关毅.基于Dynaform的货车底门板模具设计.模具工业,2011,37(10):28-31
    [23]肖海峰,徐艳琴.基于PAM-STAMP的汽车加强板模具结构优化.模具工业,2011,37(4):14-16
    [24]戴隆明,柳玉起,杜亭等.基于实体拉深筋的汽车覆盖件冲压成形同步仿真技术.塑性工程学报,2011,18(2):1-6
    [25]闫卫京,柳玉起,章志兵等.基于CATIA的汽车覆盖件产品设计可成形性同步仿真系统.塑性工程学报,2010,17(6):37-40
    [26]桂鑫平.DW620型电机定子片转子片级进模CAD系统的开发:[硕士学位论文].合肥:合肥工业大学,2006
    [27]周永新,林康,王莉等.基于DYNAFORM软件模拟分析的级进模工艺切口设计.轻工机械,2008,26(6):48-50
    [28]闫洁,江开勇.马达外壳盒形拉深件成型模拟与冲压级进模设计.重庆理工大学学报(自然科学版),2011,25(9):25-28
    [29]周永新,刘红.基于Dynaform的多次拉深工序优化设计.现代制造工程,2009,(9):106-108
    [30]江丙云,殷黎明,陈炜等.基于能量守恒和数值模拟的精密级进模弯曲成形研究.模具工业,2009,35(11):1-4
    [31]谷维亮,陈炜,贝建伟等.基于转矩平衡和数值模拟的级进模压力中心优化方法.模具工业,2008,34(9):32-36
    [32]陈丽军,戴源德.基于DEFORM的级进模两步冲裁工艺噪声研究.佳木斯大学学报(自然科学版),2010,28(3):405-407
    [33]Hong C. H., Kim Y. H.. A partial assumed strain formulation for triangular solid shell element. Finite Elements Anal. Des.,2002,38:375-390
    [34]Abed-Meraim F., Combescure A.. SHB8PS-a new adaptative assumed-strain continuum mechanics shell element for impact analysis. Comput. Struct.,2002,80: 791-803
    [35]Legay A., Combescure A.. Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS. Int. J. Numer. Meth. Eng.,2003,57: 1299-1322
    [36]Sze K. Y., Yao L. Q., Pian T. H. H.. An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures. Finite Elements Anal. Des.,2002, 18:353-374
    [37]Sousa R. J. A., Cardoso R. P. R., Valente R. A. F., et al. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness:Part Ⅰ-Geometrically Linear Applications. Int. J. Numer. Meth. Eng.,2005,62:952-977
    [38]Sousa R. J. A., Cardoso R. P. R., Valente R. A. F., et al. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness:Part Ⅱ-Nonlinear applications. Int. J. Numer. Meth. Eng.,2006,67:160-188
    [39]Sousa R. J. A., Yoon J. W., Cardoso R. P. R., et al. On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. Int. J. Plast., 2007,23:490-515
    [40]Sousa R. J. A., Cardoso R. P. R., Valente R. A. F., et al. Development of a One Point Quadrature EAS Solid-Shell Element. Materials Processing and Design,2004: 2228-2233
    [41]Sousa R. J. A., Jorge R. M. N., Valente R. A. F., et al. A new volumetric and shear locking-free 3D enhancedstrain element. Eng. Comput.,2003,20:896-925
    [42]Valente R. A. F., Sousa R. J. A., Jorge R. M. N.. An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput. Mech.,2004,34: 38-52
    [43]Cardoso R. P. R., Yoon J. W., Mahardika M., et al. Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int. J. Numer. Meth. Eng.,2008,75:156-187
    [44]Cardoso R. P. R., Yoon J. W., Valente R. A. F.. A new approach to reduce membrane and transverse shear locking for one point quadrature shell elements: linear formulation. Int. J. Numer. Meth. Eng.,2005,194:1161-1199
    [45]Cardoso R. P. R., Yoon J. W.. One point quadrature shell elements:a study on convergence and patch tests. Computational Mechanics,2007,40:871-883.
    [46]Parente M. P. L, Valente R. A. F., Jorge R. M. N., et al. Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elements Anal. Des., 2006,42:1137-1149
    [47]Reese S.. A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int. J. Numer. Meth. Eng.,2007,69:1671-1716
    [48]Reese S., Wriggers P.. A stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Eng.,2000,48:79-109
    [49]Li L. M., Peng Y. H., Li D. Y.. A stabilized underintegrated enhanced assumed strain solid-shell element for geometrically nonlinear plate/shell analysis. Finite Elements Anal. Des.,2011,47:511-518
    [50]Li L. M., Li D. Y., Peng Y. H.. The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method. Engineering with Computers,2011,27(3):273-284
    [51]李丽明,李大永,彭颖红.基于实体壳单元的板壳非线性变形分析.上海交通大学学报,2008,42(11):1908-1911
    [52]李丽明,李大永,彭颖红.一种带有沙漏控制的新型EAS实体壳单元.应力力学学报,2011,28(2):117-122
    [53]Tor S. B., Britton G. A., Zhang W. Y.. A knowledge-based blackboard framework for stamping process planning in progressive die design. International Journal of Advanced Manufacturing Technology,2005,26:774-783
    [54]Li J. Y., Nee A. Y. C., Cheok B. T.. Integrated feature-based modelling and process planning of bending operations in progressive die design. International Journal of Advanced Manufacturing Technology,2002,20:883-895
    [55]李小勇.多工位级进模冲压载体形式对成形精度的影响:[硕士学位论文].重庆:重庆大学,2007
    [56]田燕.面向再设计的级进模结构设计方法研究:[硕士学位论文].武汉:华中科技大学,2004
    [57]杜亭,柳玉起,章志兵等.基于UGS/NX的板料成形快速仿真系统.锻压技术,2008,33(4):145-149
    [58]Armstrong C. G.. Modeling requirements for finite-element analysis. Comput. Aided Des.,1994,26(7):573-578
    [59]Martino T. D., Falcidieno B., Hassinger S.. Design and engineering process integration through a multiple view intermediate modeler in a distributed object-oriented system environment. Comput. Aided Des.,1998,30(6):437-452
    [60]张世莹.欧洲CATIA-CADCAM会议.世界制造技术与装备市场,2001,1:56-57
    [61]盛传禹.CATIA曲线和曲面功能详解.(第一版).北京:机械工业出版社,2004
    [62]尤春风.CATIA V5曲面造型.(第一版).北京:清华大学出版社,2004
    [63]黄俊波,陈先有.飞机钣金零件的计算机辅助设计与制造.机械设计与制造,2008,(2):83-85
    [64]姜葵.SolidWorks2008基础教程与实例解析.(第一版).青岛:中国海洋大学出版社,2008
    [65]胡仁喜.SolidWorks 2010中文标准版实例教程.(第一版).北京:机械工业出版社,2010
    [66]郎代兵.UG NX汽车自动化设计.(第一版).北京:清华大学出版社,2006
    [67]关振宇.UGNX5中文版基础教程.(第一版).北京:人民邮电出版社,2008
    [68]葛正浩.Pro/E注塑模具设计实例教程.(第一版).北京:化学工业出版社,2007
    [69]肖爱民,戴峰泽,袁铁军.Pro\E注塑模具设计与制造.(第一版).北京:化学工业出版社,2008
    [70]冯天飞,施法中.冲压成形模拟技术与SheetForm软件.机械工人:冷加工,2002,9:48-49
    [71]郑国君,张向奎,胡佳楠,胡平.KMAS软件系统在复杂车身部件快速工艺设计中的应用.汽车工艺与材料,2008,11:1-5
    [72]柳玉起,章志兵,杜亭.板料成形快速仿真软件FASTAMP.现代零部件,2007,12:58-61
    [73]Du T., Liu Y. Q., Zhang Z. B., et al. Fast FE analysis system for sheet metal stamping-FASTAMP. Journal of Materials Processing Technology,2007, 187-188(06):402-406
    [74]Zhang Z. B., Liu Y. Q., Du T., et al. Blank design and formability prediction of complicated progressive die stamping part using a multi-step unfolding method. Journal of Materials Processing Technology,2008,205(1~3):425-431
    [75]Gordon S.. An analyst's view:STEP-enabled CAD/CAE integration. In: Presentation materials of NASA's STEP for aerospace workshop. Jet Propulsion Laboratory, Pasadena, CA:2001,01
    [76]Lee S. H.. A CAD/CAE integration approach using feature-based multi-resolution and multi-abstraction modeling techniques. Computer Aided Design,2005,37(9): 941-955
    [77]刘祖良,庞守关,郑继周.CAD/CAE代表软件集成接口技术浅析.机械研究与应用,2007,20(4):104-106
    [78]吴彦骏,赵震,刘川林等.热收口智能优化设计系统中的CAD/CAE集成技术 研究.塑性工程学报,2007,14(4):49-53
    [79]谢邵辉.飞机钣金件冷成形快速模拟系统的研究与开发:[博士学位论文].武汉:华中科技大学,2011
    [80]蒋亮,柳玉起,章志兵等.基于CATIA'“发布”的板料成形同步仿真技术研究.锻压技术,2010,35(6):58-62
    [81]高建峰.面向产品设计全流程的板料成形仿真集成系统的研究与开发:[硕士学位论文].武汉:华中科技大学,2009
    [82]章志兵,王同俊,柳玉起等.汽车覆盖件修边与翻边工序的快速仿真系统.锻压技术,2008,33(4):140-144
    [83]阚文军,柳玉起,杜亭.基于CATIA的修边线展开与翻边成形性模拟系统.塑性工程学报,2012,19(1):50-54
    [84]Belytschko T., Lin J., Tsay C. S.. Explicit Algorithms for Nonlinear Dynamics of Shells. Comp. Meth. Appl. Mech. Eng.,1984,42:225-251
    [85]李尚健.金属塑性成形过程模拟.(第一版).北京:机械工业出版社,1999
    [86]Kulikov G. M., Plotnikova S. V.. Non-linear geometrically exact assumed stress-strain four-node solid-shell element with high coarse-mesh accuracy. Finite Elements Anal. Des.,2003,43:425-443
    [87]Harnau M., Schweizerhof K.. Artificial kinematics and simple stabilization of solid-shell elements occurring in highly constrained situations and applications in composite sheet forming simulation. Finite Elements Anal. Des.,2006,42: 1097-1111
    [88]Kulikov G. M., Plotnikova S. V.. Geometrically exact assumed stress-strain multilayered solid-shell elements based on the 3D analytical integration. Comput. Struct.,2006,84:1275-1287
    [89]Klinkel S., Gruttmann F., Wagner W.. A robust non-linear solid shell element based on a mixed variational formulation. Comput. Methods Appl. Mech. Engrg.,2006, 195:179-201
    [90]Harnau M., Konyukhov A., Schweizerhof K.. Algorithmic aspects in large deformation contact analysis using'Solid-Shell'elements. Comput. Struct.,2005, 83:1804-1823
    [91]Cho C., Park H. C., Lee S. W.. Stability analysis using a geometrically nonlinear assumed strain solid shell element medel. Finite Elements Anal. Des.,1998,29: 121-135
    [92]Tan X. G., Vu-Quoc L.. Optimal solid shell element for large deformable composite structures with piezoelectric layers and active vibration control. Int. J. Numer. Meth. Eng.,2005,64:1981-2013
    [93]Xu H. J., Liu Y. Q., Zhong W.. Three-dimensional finite element simulation of medium thick plate metal forming and springback. Finite Elements Anal. Des., 2012,51:49-58
    [94]殷有泉.非线性有限元基础.(第一版).北京:北京大学出版社,2007
    [95]王勖成.有限单元法.(第一版).北京:清华大学出版社,2003
    [96]Sousa R. J. A., Jorge R. M. N., Valente R. A. F., et al. A new volumetric and shear locking-free 3D enhanced strain element. Engineering Computations,2003,20(7/8): 896-925
    [97]Huang H. C.. Implementation of assumed strain degenerated shell elements. Computers and Structures,1987,25(1):146-155
    [98]李忠学.梁板壳有限单元中的各种闭锁现象及解决方法.浙江大学学报(工学版),2007,41(7):1119-1125,1167
    [99]Choi C. K., Yoo S. W.. Combined use of multiple inprovement techniques in degenerated shell element. Computers and Structures,1991,39(5):557-569
    [100]张冬娟.板料冲压成形回弹理论及有限元数值模拟研究:[博士学位论文].上海:上海交通大学,2006
    [101]Li K. P., Cescotto S.. An 8-node brick element with mixed formulation for large deformation analyses. Comput. Meth. Appl. Mech. Eng.,1997,141:157-204.
    [102]Belytschko T., Bindeman L. P.. Assumed strain stabilization of the eight-node hexahedral element. Comput. Meth. Appl. Mech. Eng.,1993,105:225-260
    [103]Flanagan D. P., Belytschko T.. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Num. Meth. Eng.,1981,17:679-706
    [104]Belytschko T., Ong J. S. J., Liu W. K., et al. Hourglass control in linear and nonlinear problems. Comp. Meth. Appl. Mech. Eng.,1984,43:251-276
    [105]Belytschko T., Bindeman L. P.. Assumed strain stabilization of the eight-node hexahedral element. Comp. Meth. Appl. Mech.Eng.1993,105:225-260
    [106]Wang J., Wagoner R. H.. A practical large-strain solid finite element for sheet forming. Int. J. Num. Meth. Eng.2005,63(4):473-501
    [107]Kemp B. L., Cho C., Lee S. W.. A four-node solid shell element formulation with assumed strain. Int. J. Numer. Meth. Eng.,1998,43:909-924
    [108]Cho C., Park H. C., Lee S. W.. Stability analysis using a geometrically nonlinear assumed strain solid-shell element model. Finite Elements Anal. Des.,1998,29: 121-135
    [109]Sze K. Y., Yao L. Q., Pian T. H. H.. An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures. Finite Elements Anal. Des.,2002, 38:353-374
    [110]Sze K. Y., Zheng S. J.. A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses. Comput. Meth. Appl. Mech. Eng.,2002,38:353-374
    [111]Roehl D., Ramm E.. Large elasto-plastic finite element analysis of solids, shells with the enhanced assumed strain concept. Int. J. Solids Struct.,1996,33: 3215-3237
    [112]金朝海.板料成形动力显式弹塑性有限元仿真技术研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [113]Yoon J. W., Barlat F., Chung K., et al. Earing predictions based on asymmetric nonquadratic yield function. Int. J. Plast.,2000,16(9):1075-1104
    [114]Yoon J. W., Barlat F., Dick R. E., et al. Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int. J. Plast.,2006,22(1):172-193
    [115]谢晖.基于CAE仿真的冲压回弹模拟研究.塑性工程学报,2005,12(5):8-12
    [116]麻桂艳,付文智,李明哲.中厚板多点成形中回弹的数值模拟.锻压技术,2006,31(4):141-144
    [117]Hill R.. Mathematical Theory of Plasticity. Oxford:Clarendon Press,1950
    [118]霍如同,徐秉业.板料成形的计算机辅助工程系统.力学进展,1996,26(4):548-557
    [119]陈炎嗣.多工位级进模的使用条件与合理应用.机械工人,2007,11:50-51
    [120]谢邵辉,柳玉起,杜亭等.板料对向液压成形模拟算法开发及应用.锻压技术,2009,34(6),52-55
    [121]Batoz J. L., Guo Y. Q., Mercier F.. The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Eng. Comput.,1998,15(7):864-892
    [122]Guo Y. Q., Batoz J. L., Detraux J. M., et al. Finite element procedures for strain estimations of sheet metal forming parts. Int J Num. Meth. Eng.,1990,39: 1385-1401
    [123]Guo Y. Q., Naceur H., Debray K., et al. Initial solution estimation to speed up inverse approach in stamping modeling. Eng. Comput.,2003,20(7):810-834
    [124]Liu Y. Q., Li Z. G, Yan Y. K.. Fast accurate prediction of blank shape in sheet metal stamping forming. Acta Mechanica Solida Sinica,2004,17(1):36-42
    [125]吴勇国.板料成形过程数值模拟研究:[博士学位论文].武汉:华中理工大学,1995
    [126]章志兵.面向冲压产品设计的快速仿真与优化技术的研究:[博士学位论文].武 汉:华中科技大学,2008
    [127]戴威波,柳玉起,章志兵等.集成SolidWorks平台的修边线展开与翻边成形同步模拟系统.塑性工程学报,2010,17(6),9-13
    [128]王文波,涂海宁,熊君星.SolidWorks 2008二次开发基础与实例.(第一版).北京:清华大学出版社,2009
    [129]江洪,魏峥,王涛威.SolidWorks二次开发实例解析.(第一版).北京:机械工业出版社,2004
    [130]江洪,李仲兴,邢启恩.SolidWorks二次开发基础与实例教程.(第一版).北京:电子工业出版社.2003
    [131]严竹生.SolidWorks二次开发关键技术的研究.中国科技信息报,2006,21:146-149
    [132]秦宁,章志兵,许恒建等.基于SolidWorks的钣金成形快速分析系统开发.中国机械工程,2011,22(9):1026-1030
    [133]许恒建,柳玉起,金伟等.基于中间构形的级进模条料分步展开算法研究.锻压技术,2012,37(2):43-47
    [134]谢邵辉,柳玉起,杜亭.冲压成形模拟过程中的工艺切口算法及应用.中国机械工程,2008,19(10):1205-1208
    [135]许江平.金银纪念币压印成形模拟算法研究及成形工艺优化:[博士学位论文].武汉:华中科技大学,2009
    [136]金伟,许恒建,柳玉起.基于SolidWorks平台的板料成形参数化模拟技术.塑性工程学报,2011,18(6):70-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700