用户名: 密码: 验证码:
潜艇装备作战使用性能双域稳健优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论证工作处于潜艇装备全寿命周期的前端,其中潜艇装备作战使用性能论证作为连接军事需求与研制方案的桥梁,是论证工作中至关重要的一环。因此,作战使用性能指标的提出既要充分满足军事需求,又要具有较好的方案可行性。而现有的作战使用性能论证过程的一些局限之处,使得一方面难以从有效满足军事需求的角度证明提出的作战使用性能指标值是最优的,另一方面难以从可行性的角度证明提出的作战使用性能指标值是可实现的。这就导致在装备采办的后期阶段,有可能发现在作战使用性能论证阶段做出的决策存在重大失误。但是,此时如果想要对已经做出的决策进行调整,将会付出费用高昂的代价。因此,如何科学合理地从军事需求出发确定潜艇装备作战使用性能的量化要求,并保证所提出的作战使用性能指标具有一定的稳定性,这是一个需要迫切解决的问题。
     为了保证潜艇装备作战使用性能论证所提出的作战使用性能指标的量化要求具备相当的稳定性,本文提出了潜艇装备作战使用性能指标的双域稳健最优性的概念,并针对传统的潜艇装备作战使用性能论证模式存在的问题提出了新的潜艇装备作战使用性能双域稳健优化论证模式。具体来说,本文的主要研究内容和成果包括以下几个方面:
     (1)面向潜艇装备作战使用性能论证问题,提出了基于群决策的可追溯双域稳健优化(Multi-Expert based, requirement-Traceable dual-domain Robust Optimization,简称METRO)方法论。METRO方法论强调军事需求的牵引作用,作战使用性能论证是以顶层的军事需求为初始的出发点,同时论证结果的验证也是以对于顶层的军事需求的满足程度为最终的落脚点。首先,通过建立军事需求与作战使用性能之间的双向可追溯映射关系,并通过多专家信息融合的方式保证了在认知域内对于这一双向可追溯映射关系的认识具有相当的稳健性。然后,通过建立计算机化的潜艇装备概念方案设计综合模型来反映作战使用性能与概念方案之间的映射关系,并通过不确定性分析保证在物理域内概念方案的稳健性。最后,通过一个优化过程将上述要素集成为一个有着共同目标的协调一致运作的整体,能够以一种系统化的方式解决最终提出的作战使用性能要求的可行性、最优性、稳健性和可追溯性问题。
     (2)针对建立军事需求与作战使用性能的双向可追溯映射关系这一问题,提出了基于QFD/ANP和模糊积分的武器装备军事需求映射技术。首先,提出了一种基于QFD和ANP的武器装备作战需求分析模型,能够综合考虑军事需求、作战任务、作战使用性能、国内外同类装备和装备概念方案之间的复杂关系,同时能够以一种统一的和结构化的方式对其中所包含的信息进行处理,提高了判断的准确性和一致性,实现了从顶层的军事需求到底层的作战使用性能的映射。其次,以模糊测度的概念描述作战使用性能之间的相互关系,并提出了一种基于ANP的模糊测度计算方法,适用于没有历史数据可以利用的情况,并且易于专家的理解和操作,大大降低了模糊测度在实际决策问题中的应用难度。最后,在以上研究基础上建立了基于Choquet积分的潜艇装备概念方案军事效用模型,实现了从底层的作战使用性能到顶层的军事需求的映射。
     (3)为了在认知域内确保对于所建立的军事需求与作战使用性能指标的双向可追溯映射关系的判断具有稳健性,提出了基于多种形式偏好信息的多专家信息融合及共识技术。首先,研究了多种形式偏好信息的一致化方法,重点研究了多粒度多语义语言判断矩阵的一致化方法,该方法能够保证在任意语言评价集之间的信息无损的转换。这使得专家能够以自己熟悉的形式给出判断信息,有利于获取专家的真实偏好,可以提升决策结果的稳健性。其次,在专家偏好信息一致化的基础上,针对专家偏好可能存在关联关系的问题,提出了一种基于主客观信息的综合赋权方法,能够根据专家知识结构之间的相似度和专家偏好信息之间的相似度,确定专家的重要程度(用2-可加模糊测度的概念对其进行表示),并使用Choquet积分对专家偏好信息进行融合。通过合理确定专家的决策权力,能够获取真实反应群体意见的结果,同样有利于提升决策结果的稳健性。最后,通过对信息融合过程的评价以及对群体共识水平的测度,以反馈的方式引导群体达成共识。
     (4)针对在物理域内将备选分系统的不确定因素对于潜艇装备作战使用性能的影响程度进行量化的问题,提出了基于高斯过程元模型的潜艇装备概念方案稳健性评估技术。首先,定义了潜艇装备概念方案的稳健性指标,并基于蒙特卡洛方法对单个概念方案的稳健性指标进行评估。然后,为了解决大量概念方案的稳健性指标评估所带来的严重计算效率问题,提出了基于高斯过程元模型的稳健性评估技术,利用高斯过程元模型构建设计空间中概念方案的稳健性指标值的响应面,能够快速对任意方案的稳健性指标进行评估。针对高斯过程建模中关键的相关函数选择和超参数优化问题,提出了使用混合核函数的策略和基于确定性退火算法的超参数优化方法,与现有的超参数优化算法相比,优化效率和结果精度都有显著提高。
     (5)在以上研究基础上,采用基于双响应面的稳健优化策略,并将于边缘分布估计的多目标优化算法(MOMDA)应用于潜艇装备作战使用性能优化问题。最后,以一种多用途攻击型潜艇装备作战使用性能论证为例,应用所提出的方法论和关键技术解决问题,验证了方法的可行性和有效性。
The submarine demonstration is at the beginning of its whole life cycle. In particular, the demonstration of submarine operational performances is the key node in the whole demonstration process, which as a bridge connects military requirements and conceptual alternatives. Hence, the resulting operational performances should both satisfy top military requirements and be feasible in submarine engineering. But the current demonstration methodology has some limitations that lead to two questions. One question is that whether or not the resulting operational performances can satisfy top military requirements optimally. The other is that that whether or not the resulting operational performances would be feasible in practice. The current demonstration methodology can not answer the questions satisfactorily. Therefore, at the latter stage it is possible that some decisions made before would be found false. But at that time adjusting the decisions would be very costly. Hence, it is a very important problem to identify the submarine operational performances based on top military requirements reasonably, and at the same time to keep the resulting operational performances stable.
     In order to assure that the resulting operational performances have considerable stability, this dissertation define the concept of dual domain robust optimality, and bring forward a new demonstration pattern for submarine operational performances to avoid some flaws in the traditional pattern. The main contents and achievement of this dissertation are listed as follows:
     (1)Aiming at the issue of submarine operational performances demonstration, a methodology of Multi-Expert based requirement-Traceable dual-domain Robust Optimization (METRO) is put forward. METRO emphasizes the traction from top military requirements. That is, the identification and the validation of operational performances are both based on top military requirements. Firstly, it constructs the traceable mapping between top military requirements and operational performances, and the cognitive robustness to this mapping is assured through the information fusion of multi experts' preferences. Then, It constructs the mapping from operational performances to conceptual alternatives, and alternative's robustness is assured through the uncertainty analysis. At last, an optimization process is used to integrate the above elements as a whole in harmony. Summing up, this methodology can resolve the feasibility, optimality, robustness and traceability of the resulting operational performances in a systematic manner.
     (2)Aiming at the issue of constructing the traceable mapping between top military requirements and operational performances, a method for the mapping of military requirements based on QFD/ANP and fuzzy integral is proposed. Firstly, based on QFD driven by customer needs and ANP, an integrated operational requirement analysis method is proposed, which can consider the complex relations between military requirements, operational tasks, operational performances, similar equipments, and conceptual alternatives simultaneously, and can handle the information in an uniform and structural manner. Hence, the nicety and consistency of the experts'judgement is improved. Thus, the mapping from top military requirements to operational performances is built. Then, the concept of fuzzy measures is used to describe the relations between the operational performances, and a new algorithm for the calculating of fuzzy measures is developed by the integration of ANP and Influence Matrix, which is suit for the situations without historical data, and is easily understood and executed. With this algorithm, the difficulties in applying fuzzy measures in MCDM are greatly decreased. At last, the military utility model of submarine conceptual alternatives based on Choquet fuzzy integral is established.
     (3)In order to assure the judgement about the mapping between between top military requirements and operational performances to be robust, a method of information fusion based on multi-expert multi-format preference and consensus reaching is proposed. Firstly, the methods to uniform multi-format preferences are studied. Especially the method to uniform multi- granularity and multi-semantic linguistic matrices is studied, which proves that there is no information loss and the linguistic comparison matrix will keep its properties after unification. Thus, by these unification methods, an expert would express his real preferences using the familiar format, which would improve the robustness of decisions. Then, a new method to deal with the interactions between the experts'preferences is proposed, which is based on the resemblance degree between the experts'knowledge and between the experts' knowledge comparison matrices, to calculate the 2-additive fuzzy measures to represent the importance of experts. Choquet integral is used as the aggregation operators to obtain group's preference. By this method, experts'power in decision making problem could be identified reasonably, which would be beneficial to obtain sounder group preference and to improve the robustness of decisions. At last, based on the evaluation of the aggregation and the measurement of group consensus degree, group consensus is reached through feedback information.
     (4)In order to quantify the influence of uncertainty from submarine sub-systmems, a method for the evaluation of robustness index based on Gaussian Process (GP) surrogate model is proposed. Firstly, the concept of robustness index of submarine conceptual alternatives is defined, and the robustness index of a single alternative can be calculated by Monte Carlo approach. But, calculating the robustness index of many alternatives will lead to a serious issue of calculating efficiency. To resolve this problem, a method for the evaluation of robustness index based on Gaussian Process (GP) surrogate model is proposed, which construct a response surface in the design space to fit the values of robustness index. Through this method, the robustness index value of arbitrary alternative can be evaluated quickly. In the process of GP surrogate modeling, the difficulties arise in the selection of core functions and the identification of hyper-parameters. Hence, this dissertation propose to use mixed core functions, and a new hyper-parameters optimization algorithm based deterministic annealing is developed, which can effectively improve optimization efficiency and results'precision.
     (5) Based on the work above, it is proposed to adopt the dual response surface based optimization approach to find the resulting operational performances that is optimal. A multi-objective optimization algorithm based on marginal distribution estimation is applied in the optimization of submarine operational performances. At the end of this dissertation, a example of a multi-task attack submarine is illustrated, which is used to validate the proposed methodology.
引文
[1]汪玉,姚耀中.世界海军潜艇[M],北京:国防工业出版社,2006.
    [2]D.A. Goggins. response surface methods applied to submarine concept exploration[D],Massachusetts Institute of Technology,2001.
    [3]吕彬,于衍华,陆芳,等.武器装备规范化论证丛书——总论[M],北京:海潮出版社,2006.
    [4]仲晶.武器装备形成战斗力研究[M],北京:国防大学出版社,2002.
    [5]常天庆,刘德刚,刘晓斌.一种基于QFD的结构化装备作战需求论证方法[J].装甲兵工程学院学报,2003,17(2).
    [6]A. Brown, M. Thomas. Reengineering the naval ship concept design process, From Research to Reality in Ship Systems Engineering Symposium, ASNE, September,1998.
    [7]R. Wolf, J. Dickmann, R. Boas. SHIP DESIGN USING HEURISTIC OPTIMIZATION METHODS, AIAA,2004.
    [8]IEEE Computer Society. IEEE Standard for Application and Management of the Systems Engineering Process,1998.
    [9]Naval Virtual Systems Command. The Naval Systems Engineering Guide,2004.
    [10]W.A. Hockberger. Total System Ship Design in a Super-system Framework[J]. Naval Engineers Journal,1996 May.
    [11]B.G. Duren. Building Ships as a System:An Approach to Total Ship Integration [J]. Naval Engineers Journal,1997.
    [12]C.N. Calvano, O. Jons, R.G. Keane. Systems Engineering in Naval Ship Design[J]. Naval Engineers Journal,2000 July.
    [13]唐志拔.水面舰艇设计[M].北京:国防工业出版社,1993.
    [14]海军装备论证研究中心.武器装备研制立项综合论证工作程序研究报告[R],1994.
    [15]M.R. Reed. Ship Synthesis Model for Naval Surface Ships[D], MIT,1976.
    [16]W. M. Richardson. Extension and application of ship design optimization code(SHIPDOC)[J]. Naval Engineers Journal,1984, (5):177-190.
    [17]S. N. Neti. Ship Design Optimization Using Asset[D]. Blacksburg, Virginia, Virginia Polytechnic Institute and State University,2005.
    [18]S. Shahak. Naval ship concept design:an evolutionary approach[D], Massachusetts Institute of Technology,1998.
    [19]A. Brown, J. Salcedo. Multiple Objective Genetic Optimization In Naval Ship Design[J]. Naval Engineers Journal,2003,115 (4):49-61.
    [20]D.G. Ullman, F.A. Robust.Decision-Making for Engineering Design[J]. Journal of Engineering Design,2001, (1).
    [21]J.D. Pinder. Evaluating Future Force Options for the U.S. Army:A Hybrid, interactive, Multiple-Attribute Exploratory Approach[D]. Rand Graduate School, 2000.
    [22]黄炎焱.武器装备作战效能稳健评估方法及其支撑技术研究[D],长沙,国防科技大学,2006.
    [23]李强,卜先锦.多属性群决策在武器装备研制立项中的应用[J].2008,2008,28(6):10-14.
    [24]张志伟,胡晓峰,蒋亚群,等.面向武器装备体系的群决策支持系统设计[J].装备指挥技术学院学报,2008,19(3):23-27.
    [25]沈鹏高,王磊,杨峰,等.基于仿真和群决策的武器综合能力评估方法[J].计算机仿真,2008,25(8):83-88.
    [26]郝智爽,刘焕章.坦克武器作战能力评估的不完全信息群决策法[J].火力与指挥控制,2008,33(1):123-126.
    [27]迟宝山,金毅,黄小天,武器研制风险评估决策支持系统研究[J].微计算机信息,2006,22(3-3):179-181.
    [28]董扬琴,肖亮.群体意见共识法在武器系统能力评估中的应用[J].计算机工程与应用,2007,43(12):243-246.
    [29]M. Delgado, J.L. Verdegay, M.A. Vila. On Aggregation Operations of Linguistic Lable[J]. International Journal of Intelligent Systems,1993, (8):351-370.
    [30]F. Herrera, E. Herrera-Viedma, J.L. Verdegay. A Linguistic Decision Process in Group Decision Making[J]. Group Decision Negotiation,1996, (5):165-176.
    [31]M. Umano, I. Hatono, H. Tamura. Lingustic Lables for Expressing Fuzzy Preference Relations in Fuzzy Group Decsion Making[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,1998,28 (2):205-218.
    [32]F. Herrera, L. Matinez. A 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems,2000,8 (12):746-752.
    [33]王欣荣,樊治平.基于二元语义信息处理的一种语言群决策方法[J].管理科学学报,2003,6(5):1-5.
    [34]魏军,姚路,李必强.基于语言OWA算子的潜艇研制立项风险评估[J].武汉理工大学学报(信息与管理工程版),2005,27(6):109-11 1.
    [35]张肃,王颖龙,高莹.基于不确定语言信息的群决策方法及其应用[J].空军工程大学学报(自然科学版),2006,7(6):47-50.
    [36]胡涛,杨建军,狄鹏.基于OWA算子和语言OWA算子的舰船研制方案群决策[J].舰船科学技术,2007,29(6):144-148.
    [37]董杨琴,肖亮,吴慧中.基于语言评价和模糊数的群体意见共识方法[J].火力指挥与控制,2007,32(3).
    [38]代旻,江洋溢,陈云翔.基于语言值的导弹武器规划方案决策方法[J].火力与指挥控制,2008,33(6):87-100.
    [39]F. Herrera, E. Herrera-Viedma, L. Martinez. A fusion approach for managing multi-granularity linguistic term sets in decision making[J]. Fuzzy Sets and Systems,2000, (114):43-58.
    [40]王欣荣,樊治平.一种具有不同形式偏好信息的群决策方法[J].东北大学学报(自然科学版),2003,24(2):178-181.
    [41]李荣均.模糊多准则决策理论和应用[M],北京:科学出版社,2002.
    [42]吴江.群决策中4种偏好信息的转换方法研究[J].武汉理工大学学报(信息与管理工程版),2004,26(3):4.
    [43]M.L. Herrera F. A 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems,2000,8 (12):7.
    [44]M.L. Herrera F. A model based on linguistic 2-tuples for dealing with multigranularity hierarchical linguistic contexts in multi-expert decision-making[J]. IEEE Transactions on Systems, Man and Cybernetics Part B:Cybernetics,2001,31 (2):8.
    [45]Z.F. Chen, D. Ben-Arieh. On the fusion of multi-granularity linguistic label sets in group decision making[J]. Computers & Industrial Engineering,2006, (51):526-541.
    [46]姜艳萍,樊治平.基于不同粒度语言判断矩阵的群决策方法[J].系统工程学报,2006,21(3):5.
    [47]陈岩,樊治平,陈侠.一种基于不同粒度语言判断矩阵的群决策方法[J].东北大学学报(自然科学版),2007,28(7):4.
    [48]刘军,郭亚军,田喜龙,潘德惠.不同粒度语言评价集的融合方法研究[J].东北大学学报(自然科学版),2007,28(11):4.
    [49]姜艳萍,樊治平.一种具有不同粒度语言判断矩阵的群决策方法[J].中国管理科学,2006,14(6):5.
    [50]张园林,匡兴华.一种基于多粒度语言偏好矩阵的多属性群决策方法[J].控制与决策,2008,23(11):5.
    [51]许叶军,达庆利.基于不同粒度语言判断矩阵的多属性群决策方法[J].管理工程学报,2009,23(2):5.
    [52]F. Chiclana, F. Herrera, E. Herrera-Viedma. Integrating three representation nxxtels in fuzzy multipurpose decision making based on fuzzy preference relation[J]. Fuzzy Sets and Systems,1998, (97):33-48.
    [53]M. Delgado, F. Herrera, E. Herrera-Viedma. Combining numerical andlinguistic information in group decision making[J]. Information Sciences,1998, (107):177-194.
    [54]肖四汉,樊治平,王梦光.群决策中两类偏好信息集成的目标规划模型[J].东北大学学报(自然科学版),2000,(4):453-455.
    [55]K.-S. Chin, Y.-M. Wang, J.-B. Yang, etc. An evidential reasoning based approach for quality function deployment under uncertainty[J]. Expert Systems with Applications,2009, (36):5684-5694.
    [56]Z.F. Zhang, X.N. Chu. Fuzzy group decision-making for multi-format and multi-granularity linguistic judgements in quality function deployment[J]. Expert Systems with Applications,2009,36:9150-9158.
    [57]G. Buyukozkan, O. Feyzioglu. Group decision making to better respond customer needs in software development[J]. Computers & Industrial Engineering, 2005, (48):427-441.
    [58]G. Buyukozkan, O. Feyzioglu, D. Ruan. Fuzzy group decision-making to multiple preference formats in quality function deployment[J]. Computers in Industry,2007,58:392-402.
    [59]F. Herrera, E. Herrera-Viedma. Choice functions and mechanisms for linguistic preference relations[J]. European Journal of Operational Research,2000, (144):144-161.
    [60]F. Herrera, L. Martinez. P.J. Sanchez, Managing non-homogeneous information in group decision making[J]. European Journal of Operational Research,2005, (166):115-132.
    [61]巩在武,刘思峰.不同偏好形式判断矩阵的二元语义群决策方法[J].系统工程学报,2007,22(2):185-189.
    [62]L. Martinez, J. Liu, D. Ruan, etc. Dealing with heterogeneous information in engineering evaluation processes[J]. Information Sciences,2007, (177):1533-1542.
    [63]L.G. Vargas, An Overview of the Analytic Hierarchy Process and its Application[J]. European Journal of Operational Research,1990,48 (1):2-8.
    [64]周宇峰,魏法杰.一种综合评价中确定专家权重的方法[J].工业工程,2006,9(5):23-27.
    [65]宋光兴,邹平.多属性群决策中决策者权重的确定方法[J].系统工程,2001,19(4):83-89.
    [66]张骏.群决策过程中系统评价的专家权重反馈算法[J].武汉理工大学学报,2002,24(12):145-149.
    [67]王硕,费树岷,夏安邦.关键技术选择与评价的方法论研究[J].中国管理科学,2000,13(专辑):69-75.
    [68]彭本红,孙绍荣,胡若.研讨厅中专家的权重确定及方案评价研究[J].上海理工大学学报,2004,26(2):160-163.
    [69]R. Ramanathan, L.S. Ganesh. Group Preference Aggregation Methods Employed in AHP:an Evaluation and an Intrinsic Process for Deriving Members' Weightages[J]. European Journal of Operational Research,1994,1994:79.
    [70]胡毓达,田川.求解群体多指标决策问题的偏爱度法[J].系统工程理论与实践,1996,16(3):52-56.
    [71]H.M. Hsu. Aggregation of Fuzzy Options under Group Decision Making[J]. Fuzzy Sets and Systems,1996,79 (4):278-285.
    [72]吴云燕,华中生,徐晓燕.一种AHP判断矩阵一致性调整的新方法[J].系统工程与电子技术,2003,25(1):38-44.
    [73]梁樑,熊立,王国华.一种群决策中专家客观权重的确定方法[J].系统工程与电子技术,2005,27(4):652-655.
    [74]刘万里,王金艳.群决策中基于SVDD的专家权重的评价方法[J].武汉理工大学学报(交通科学与工程版),2009,33(4):807-811.
    [75]万树平.基于相对熵的不完全信息群体专家权重的集结[J].应用数学与计算数学学报,2009,23(1):66-70.
    [76]J. Ma, Z.P. Fan, L.H. Huang, A subjective and objective integrated approach to determine attribute weights[J]. European Journal of Operational Research,1999, (112):397-404.
    [77]P. Eclund, A. Rusinowska, H.D. Swart. Consesus Reaching in Committees[J]. European Journal of Operational Research,2007, (178):185-193.
    [78]刘业政,徐德鹏,姜元春.多属性群决策中权重自适应调整的方法[J].系统工程与电子技术,2007,29(1):45-48.
    [79]刘业政,姜元春,林文龙.基于模糊距离和神经网络的自适应群决策方法[J].系统工程学报,2008,23(1):28-35.
    [80]章玲,周德群,李存芳.R-WGA算子的构建及其在群决策分析中的应用[J].控制与决策,2007,22(12):1352-1357.
    [81]陈晓红.复杂大群体决策方法与应用[M],北京:科学出版社,2009.
    [82]S. Queiroz. Multiperson Choquet-Compromise Search on Large Combinatorial[J]. IEEE,2007:187-192.
    [83]吴昭仪.层级分析法群体决策整合模式之研究[D],台南,成功大学,2005.
    [84]P.K. Bhatia. On the measures of information energy[J]. Information Sciences, 1997,97 (3-4):233-240.
    [85]X. Du, W. Chen. Towards a better understanding of modeling feasibility robustness in engineering[J]. ASME Journal of Mechanical Design 2000,122 (4):385-394.
    [86]K.N. Otto, E.K. Antonsson. Extensions to the Taguchi Method of Product Design[J]. ASME Journal of Mechanical Design,1991,115 (1):5-13.
    [87]陈立周.工程稳健设计发展现状与趋势[J].中国机械工程,1998,9(8):59-62.
    [88]X. Du, W. Chen. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design[J]. ASME Journal of Mechanical Design, 2000,122 (4):385-394.
    [89]王宇,余雄庆.稳健优化的表述、不确定分析与求解策略[J].中国制造业信息化,2008,37(3):49-54.
    [90]H.-G. Beyer, B. Sendhoff. Robust optimization-A Comprehensive survey[J]. Computer Methods in Applied Mechanics and Engineering,2007, (196):3190-3218.
    [91]刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J].中国机械工程,2006,17(17):1834-1841.
    [92]窦毅芳.稳健性优化设计理论与方法及其在固体发动机中的应用研究[D],长沙,国防科技大学,2007.
    [93]Y.T. Wu. Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis[J]. AIAA Journal,1994,32 (8):1717-1723.
    [94]B.D. Youn. Advances in Reliability-based Design Optimization and Probability Analysis [D], Graduate College of The University of Iowa,2001.
    [95]X.P. Du, W. Chen. A Most Probable Point-based Method for Efficient Uncertainty Analysis[J]. Design Manufacturing,2001,4(1):47-66.
    [96]O. Bandte. A Probabilistic Multi-Criteria Decision Making Technique for Conceptual and Preliminary Aerospace Systems Design[D], Georgia,Georgia Institute of Technology,2000.
    [97]E. Klasen. Confidence of Success in Multi-Criteria Optimization of Multi-Disciplinary Ship Design Models[D], Blacksburg,Virginia Polytechnic Institute and State University,2005.
    [98]N.A. Good. Multi-Objective Design Optimization Considering Uncertainty in a Multi-Disciplinaryl Ship Synthesis Model[D], Blacksburg, Virginia,Virginia Polytechnic Institute and State University,2006.
    [99]K.K. Choi, B.D. Youn. Hybrid Analysis Method for Reliability-based Design Optimization ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pittsburgh, Pennsylvania, 2001.
    [100]Y.-K. Kim, J.-P. Hong, G.-H. Lee, etc. Application of Response Surface Methodology to Robust Design for Racetrack Type High Temperature Superconducting Magnet[J]. IEEE Transactions on Applied Superconductivity, 2002,12(1):1434-1437.
    [101]R. Ding, D.K.J. Lin, D. Wei. Dual-Response Surface Optimization:A Weighted MSE Approach[J]. Quality Egineering,2004,16 (3):377-385.
    [102]O. yeniay, R. Unal, R.A. Lepsch. Using Dual Response Surface to Reduce Variability in Launch Vehicle Design:A Case Study[J]. Reliability Engineering and System Safety,2006,91 (1):407-412.
    [103]Y. Zheng, X.M. Wu, B.W. Christopher. Dual Respnse Surface-Optimized Process for Feruloylated Diacylglycerols by Selective Lipase-Catalyzed Transesterification in Solvent Free System[J]. Bioresource Technology,2009, 100(6):2896-2901.
    [104]赵媚,潘尔顺,郭瑜,孙志礼.基于双响应曲面法的稳健参数设计[J].工业工程与管理,2010,15(1):87-91.
    [105]S. Varadarajan, W. Chen. Robust Concept Exploration of Propulsion Systems with Enhanced Model Approximation Capabilities[J]. Engineering Optimization, 2000,32 (3):309-334.
    [106]许焕卫,孙伟,张旭.基于混合响应面的多目标稳健设计[J].机械科学与技术,2008,27(5):628-632.
    [107]郭惠听.模糊稳健优化设计中的神经网络技术[J].湖南文理学院学报(自然科学版),2004,16(3):52-55.
    [108]张义民,高娓,贺向东,等.基于神经网络的机械零部件可靠性稳健设计[J].应用力学学报,2009,26(1):172-177.
    [109]K.L. Hsieh. Optimization of Multiple Quality Responses involving Qualitative and Quantitative Characteristics in IC Manufacturing Using Neural Networks[J]. Computer in Industry,2001,46 (1):1-12.
    [110]O. Koksoy, T. Yalcinoz. A hopfield neural network approach to the dual response problem [J]. Quality and reliability engineering international,2005,21 (6):595-603.
    [111]李建平.仿真元模型中的拟合方法及其应用研究[D],长沙,国防科技大学,2007.
    [112]崔庆安.基于支持向量机的稳健性参数设计与实现[J].组合机床与自动化加 工技术,2008,(8):5-8.
    [113]C.E. Rasmussen, C.K.I. Williams. Gaussian processes for machine learning[M], Cambridge:MIT Press,2006.
    [114]熊志化,黄国宏,邵惠鹤.基于高斯过程和支持向量机的软测量建模比较及应用研究[J].信息与控制,2004,33(6):754-757.
    [115]李明,刘鹏.武器装备发展系统论证方法与应用[M],北京:国防工业出版社,2000.
    [116]杨建军,龙光正,赵保军.武器装备发展论证[M],北京:国防工业出版社,2009.
    [117]罗忠良.基于案例推理的装甲车辆指标论证系统的研究和设计[D],大连,大连理工大学,2005.
    [118]杨峰.舰艇装备数字化论证流水线的理论和实践,海军装备研究院,北京,2009.
    [119]D.J.C. Mackay. Introduction to Gaussian Process, UK:Cavendish Laboratory, Cambridge University,1998.
    [120]INCOSE, Systems Engineering HandBook:A Guide for Symtem Life Cycle Processes and Activities, NO. TP-2003-002-03 in Version 3,2006.
    [121]DoD, S.M. College. Systems Engineering Fundamentals[M], Defense Acquisition University Press,2001.
    [122]NASA Procedural Requirements, NPR 7123.1A, Systems Engineering Processes and Requirements,2007.
    [123]余高达.军事装备学[M],北京:国防大学出版社,2000.
    [124]段采宇.武器装备需求建模、量化、集成的理论与方法研究[D],长沙,国防科技大学,2008.10.
    [125]张宝书.陆军武器装备作战需求分析概论[M],北京:解放军出版社,2005.
    [126]邵家骏.质量功能展开[M],北京:机械工业出版社,2004.
    [127]G.A. Kent. A more coherent framework for defense planning, Rand Corporation, California,1983.
    [128]G.A. Kent. A framework for defense planning, RAND Corporation, California, 1989.
    [129]E.L. Warner, G.A. Kent. A framework for planning the employment of air power in theater war, Rand Corporation, California,1984.
    [130]L. Lewis, J.A. Coggin, C.R. Roll. The United States special operations command resource management Process:an application of the Strategy to Tasks Framework, Rand Corporation, California,1994.
    [131]M. Richman, J. Kenyon, R. Sega. High speed and hypersonic science and technology,41st Joint Propulsion Conference and Exhibit, AIAA,2005.
    [132]N.R. Council. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs, The National Academies Press, Washington, D. C., 2006.
    [133]D. Sullivan, J. Totah, S. wegener. Intelligent Mission Management for Uninhabited Aerial Vehicles[J].2003.
    [134]陈静.一种新的决策分析方法一VFT的原理、防御与应用[J].军事运筹与系统工程,2006,20(4):1672-1682.
    [135]吴红,许永平,王磊.武器装备体系能力需求论证方法初探[J].计算机仿真,2009,26(2).
    [136]T.L.Saaty.层次分析法[M],北京:煤炭工业出版社,1986.
    [137]T.L. Saaty. Decision Making with Dependence and Feedback [M], Pittsburgh:RWS Publications,1996.
    [138]王莲芬.网络分析法(ANP)的理论和算法[J].系统工程理论与实践,2001,(3):44-50.
    [139]A.P. Baker, D.N. Mavris. Assessing the simultaneous impact of requirements, vehicle characteristics, and technologies during aircraft design,39th AIAA Aerospace Sciences Meeting and Exhibit,2001.
    [140]N.P. Suh. Axiomatic Design:Advances and Applications[M], New York:Oxford University Press,2000.
    [141]何丹超,周南桥,徐文,等.公理化设计方法在塑料微孔发泡连续挤出成型系统设计中的应用[J].塑料,2005,34(4):14-20.
    [142]O. Kulak, M.B. Durmusoglu, S. Tufekci. A complete cellular manufacturing system design methodology based on axiomatic design principles[J]. Computers & Industrial Engineering,2005, (48):765-787.
    [143]程贤福.公理化设计在企业电子商务策略中的应用[J].机械设计与制造,205,(11):135-137.
    [144]M.J. Schnetzler. A. Sennheiser, P. Schonsleben, A decomposition-based approach for the development of a supply chain strategy[J]. International Journal of Production Economics,2007, (105):21-42.
    [145]江屏,檀润华,张瑞红,等.公理设计下的闸阀结构分析[J].计算机集成制造系统,2003,9(3):247-252.
    [146]H. Hirani, N.P. Suh. Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches[J]. Tribology International,2005, (38):481-481.
    [147]J.L. Duigou, A. Bernard, N. Perry, etc. Global approach for technical data management. Application to ship equipment part families[J]. CIRP Journal of Manufacturing Science and Technology,2009,(1):185-190.
    [148]C. Togay, A.H. Dogru, J.U. Tanik. Systematic Component-Oriented development with Axiomatic Design[J]. The Journal of Systems and Software,2008, (81):1803-1815.
    [149]G. Heo, S.K. Lee. Design evaluation of emergency core cooling systems using Axiomatic Design[J]. Nuclear Engineering and Design,2007, (237):38-46.
    [150]林志航,车阿大.质量功能部署及研究现状[J].机械科学与技术,1998,17(1):119-122.
    [151]L.K. Chan, M.L. Wu. Quality Function Deployment:a literature review[J]. European Journal of Operational Research,2002,143 (463-497).
    [152]赵武,张颖,石贵龙.质量机能展开(QFD)研究综述[J].世界标准化与质量管理,2007,(4):56-60.
    [153]袁贵勇,刘晓东.QFD方法在空战武器装备需求分析中的应用[J].装备指挥技术学院学报,2004,15(4):23-26.
    [154]刘伟,李智华.基于质量功能展开方法的登陆艇装备需求分析[J].炮兵学院学报,2006,(2):46-48.
    [155]周宏,蒋志勇.质量功能展开在潜艇研制中的应用[J].华东船舶工业学院学报(自然科学版),2005,19(1):10-14.
    [156]翟丽.质量功能展开技术及其应用综述[J].管理工程学报,2000,14(1):52-60.
    [157]W. Ho. Integrated analytic hierarchy process and its applications -A literature review[J]. European Journal of Operational Research,2008, (186):211-228.
    [158]刘鸿恩,张列平,车阿大,等.改进的质量功能展开——系统方法[J].系统工程理论与实践,2000,20(2):58-62.
    [159]刘鸿恩.质量功能展开问题解决理论和方法研究[D],上海,上海交通大学,2001.
    [160]K. Lam, X. Zhao. An application of quality function deployment to improve the quality of teaching[J]. International Journal of Quality and Reliability Management,1998,15 (4):389-413.
    [161]C.K. Kwong, H. Bai. A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment[J]. Journal of Intelligent Manufacturing 2002,13 (5):367-377.
    [162]A. Bhattacharya, B. Sarkar, S.K. Mukherjee. Integrating AHP with QFD for robot selection under requirement perspective[J]. International Journal of Production Research,2005,43 (17):3671-3685.
    [163]X. Zhang, J. Bode, S. Ren. Neural networks in Quality Function Deployment[J]. Computers & Industrial Engineering,1996,31 (3-4):669-673.
    [164]Y.S. Yang, B.S. Jang. QFD-based optimization using response surface method[J]. International Journal of Vehicle Design,2002,28:275-293.
    [165]E.E. Karsak, S. Sozer, S.E. Alptekin. Product planning in quality function deployment using a combined analytic network process and goal programming approach[J]. Computers & Industrial Engineering,2002, (44):171-190.
    [166]R.A.C. Fariborz, Y. Partovi. Quality function deployment for the good of soccer[J]. European Journal of Operational Research,2002,137:15.
    [167]C.H. Yoon, Y.P. Kim. Redesigned quality function deployment process to ensure customer satisfaction[J]. International Journal of Business Innovation and Research,2006,1 (2):149-169.
    [168]E. Tolga, S E Alptekin. Product Development Process Using a Fuzzy Compromise-Based Goal Programming Approach[C], ICCSA,2007.
    [169]Hendry Raharjo, A. C. Brombacher, Min Xie. Dealing with subjectivity in early product design phase:A systematic approach to exploit Quality Function Deployment potentials[J]. Computers & Industrial Engineering,2008, 55:253-278.
    [170]M. Sugeno. Theory of fuzzy integrals and its application[D], Tokyo,Tokyo Institute of Techno logy,1974.
    [171]J.L. Marichal. An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting criteria[J]. IEEE Transactions on Fuzzy Systems, 2000,8 (6):800-807.
    [172]M. Grabisch. k-order additive discrete fuzzy measures and their representation[J]. Fuzzy Sets and Systems,1997,92 (2):167-199.
    [173]M. Grabisch. A new algorithm for identifying fuzzy measurs and its application to pattern recognition, Interna. Joint Conf. of 4th IEEE Internat. Conf. on Fuzzy Systems and the 2nd Internat. Fuzzy Engineering Symp., Yokohama, Japan, 1995:145-150.
    [174]I. Kojadinovic. Minimum variance capacity identification[J]. European Journal of Operational Research,2007,177 (1):498-516.
    [175]P.M. Elias, F. Combarro. Identification of fuzzy measures from sample data with genetic algorithms[J]. Computers & Operations Research,2006,33:3046-3066.
    [176]Y. W. Chen. Implementing an Analytical Hierarchy Process by Fuzzy Integral[J]. International Journal of Fuzzy Systems,2001,3 (3):493-502.
    [177]E. Takahagi. On Identification methods of λ-fuzzy measures using weights and λ[J]. Japanese Journal of Fuzzy Sets and Systems,2000,12 (5):665-676.
    [178]M.R. J.L. Marichal. Dependence between criteria and multiple criteria decision aid,2nd Int.Workshop on Preferences and Decisions,, Trento, Italy,1998:69-75.
    [179]章玲,周德群.基于Choquet积分的层次多属性决策方法研究[J].南京航空航天大学学报,2007,20(6):824-828.
    [180]M. Yoneda, S. Fukami, M. Grabisch. Interactive detemination of a utility function represented by a fuzzy integral[J]. Information Sciences,1993, (71):43-64.
    [181]程楠,祝彦知.深基坑支护体系的模糊积分多元决策研究[J].系统工程理论与实践,2002,22(8):121-126.
    [182]C.-b.M. Chao Zhang, Jia-dong Xu. A New Fuzzy MCDM Method Based on Trapezoidal Fuzzy AHP and Hierarchical Fuzzy Integral, FSKD 2005.
    [183]W.-W. Wu. Choosing knowledge management strategies by using a combined ANP and DEMATEL approach[J]. Expert Systems with Applications,2008, 35:828-835.
    [184]徐玖平,武巍.多属性决策的理论与方法[M],北京:清华大学出版社,2006.
    [185]岳超源.决策理论与方法[M],北京:科学出版社,2006.
    [186]吕建伟,李积源,张鑫.舰船作战能力评估的效用函数方法研究[J].船舶工程,1999,(4):58-62.
    [187]魏汝祥,张怀强,李积源.基于效用函数的常规潜艇作战能力评估研究[J].装备指挥技术学院学报,2002,13(5).
    [188]张文,周林,娄寿春.效用函数在低空导弹阵地评价中的应用研究[J].装备指挥技术学院学报,2002,13(6):6-9.
    [189]李宝来,夏惠诚,李健.效用函数在舰空导弹武器通道性能分析中的应用[J].舰船科学技术,2005,27(1):80-82.
    [190]蔺美清,杨峰,李群.基于效用评估算子的装甲装备作战效能评估[J].计算机仿真,2007,24(1):14-17.
    [191]夏勇其,吴祈宗,王运吉.基于效用函数的打击目标选择方法[J].火力与指挥控制,2005,30(6):39-42.
    [192]R. Smolikova, M.P. Wachowiak. Aggregation Operators for Selection Problems[J]. Fuzzy Sets and Systems,2002, (131):23-34.
    [193]R.R. Yager. On Ordered Averaging Aggregation Operators in Multicriteria Decision Making[J]. IEEE Transactions on Systems, Man and Cybernetics 1988,18 (2):183-190.
    [194]C.L. Hwang, K. Yoon. Multiple Attribute Decision Making Methods and Application[M], Berlin:Springer,1981.
    [195]W.S. Tai, C.T. Chen. A new evaluation model for intellectual capital based on computing with linguistic variable[J]. Expert Systems with Applications,2009, (36):3483-3488.
    [196]冯强,修世超,王瑶.基于AHP和三角模糊数的磨削工艺绿色度评价指标权重分析[J].精密制造与自动化,2007,(2):17-21.
    [197]姜艳萍,樊治平.基于不同粒度语言判断矩阵的群决策方法[J].系统工程学报,2006,21(3):249-253.
    [198]肖四汉,樊治平,王梦光.群决策中两类偏好信息——AHP判断矩阵和模糊偏好关系矩阵的一致化方法[J].系统工程学报,2002,17(1):82-86.
    [199]杨雷.群体决策理论与应用一一群体决策中的个体偏好集结方法研究[M],北京:经济科学出版社,2004.
    [200]孟波.有限方案模糊多目标群决策方法的研究[J].系统工程,1995,13(4):43-46.
    [201]G. Sharfer. A Mathematical Theory of Evidence[M], Princeton, New Jersey: Princeton University Press,1976.
    [202]L. Mikenina, H.J. Zimmermann. Improved feasure selection and classification by the 2-additive fuzzy measure[J]. Fuzzy Sets and Systems,1999, (107):197-218.
    [203]N.F. Matsatsinis, A.P. Samaras. MCDA and preference disaggregation in group decision support systems[J]. European Journal of Operational Research,2001, 130 (2):414-429.
    [204]程发新,李怀祖.群决策中共识过程的研究回顾与展望[J].统计与决策,2007,(8):135-137.
    [205]J.C. Bezdek, B. Spillman, R. Spillman. A Fuzzy Selaiton Space for Group Decision Thoery[J]. Fuzzy Sets and Systems,1978, (1):255-268.
    [206]E. Herrera-Viedma, F. Herrera, F. Chiclana, A Consensus Model for Multiperson Decision Making With Different Preference Structures[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART A: SYSTEMS AND HUMANS,2002,32 (3):394-402.
    [207]J. Kacprzyk, On Some Fuzzy Cores and "Soft" Consensus Measures in Group Decision Making,[M], CRC Press,1987.
    [208]NSWC, ASSET Version 4.6 User Manual, Carderock Division, Naval Surface Warfare Center,2000.
    [209]许永平,杨峰.核潜艇战术技术指标优化论证技术研究报告[R],海军装备研究院,北京,2009.
    [210]包慎良.导弹核潜艇计算机辅助论证[R],海军装备研究院,北京,1987.
    [211]沈国鉴.潜艇设计原理[M],上海:上海交通大学出版社,1988.
    [212]A. D. Cotney. The Development of a Computer-Aided Conceptual Submarine Design Evaluation Tool, AD771448,1973.
    [213]GAO. Better Management of Technology Development Can Improve Weapon System Outcomes, General Accouting Office,1999.
    [214]刘新亮.技术引入对武器装备体系能力影响的评估方法[D].长沙,国防科技大学,2009.
    [215]郭齐胜,郅志刚,杨瑞平.装备效能评估概论[M].北京:国防工业出版社,2005.
    [216]魏勇,逄洪照.基于蒙特卡洛法的发射管内弹道参数分布的研究[J].鱼雷技术,2006,14(1):31-34.
    [217]阎长顺,李一军.卫星成本预测的蒙特卡洛优化模型研究[J].宇航学报,2007,28(4):1039-1044.
    [218]C.E. Rasmussen, Evaluation of Gaussian Processes and Other Methods for Nonlinear Regression[D], Toronto, University of Toronto,1996.
    [219]D. J. C. Mackay, Introduction to Gaussian Processes, http://wol.ra.phy.cam.ac.uk/mackay/.
    [220]K. Rose, E. Gurewitz, G.C. Fox. Statistical mechanics and phase transitions in clustering[J]. Physical Review letters,1990,65:945-948.
    [221]杨广文,李晓明,王义和.确定性退火技术[J].计算机学报,1998,21(8):765-768.
    [222]C. Tsallis. Possible Generalization of Boltzmann-Gibbs Statistics[J]. Journal of Statistical Physics,1988,52 (1):479-487.
    [223]R.L. Streit, T.E. Luginbuhl. Maximum likelihood training of probabilistic neural networks[J]. IEEE Transactions on Neural Networks,1994,5 (5):764-783.
    [224]江志宇.虚拟试验理论、方法及其应用研究[D].国防科学技术大学研究生院,2007.
    [225]李建平.仿真元模型中的拟合方法及其应用研究[D].国防科学技术大学研究生院,2007.
    [226]A. Parkinson, C. Sorensen, N. Pourhassan. A General Approach for Robust Optimal Design[J]. Transactions of the ASME,1993,115 (1):74-80.
    [227]R.H.Myers, D.C.Montgomery. Response Surface Methodology:Process and Product Optimization Using Designed Experiments[M], New York:John Wiley & Sons, Inc,1995.
    [228]R.H.Myers, W.H. Carter. Response Surface Techniques for Dual Response System[J]. Technometrics,1973,15 (8):301-317.
    [229]G.G. Vining, R.H. Myers. Combining Taguchi and Response Surface Philosophies:A Dual Response Approach[J]. Journal of Quality Technology, 1990,22(1):38-45.
    [230]李玉强.板料拉深成形工艺的6-sigma稳健优化设计研究[D],上海,上海交通大学,2006.
    [231]操安喜,赵敏,刘蔚,等.多学科设计优化方法在潜艇概念设计中的应用研究[J].船舶力学,2007,11(3):373-382.
    [232]李学斌,潘治.潜艇概念设计阶段的多目标优化研究[J].海军工程大学学报,2008,20(2):56-60.
    [233]周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124.
    [234]H. Muhliebei, G. Paass, From recombination of genes to the estimation of distributions Part 1, binary parameter, lecture notes in computer science, Parallel Problem Sloving from Nature-PPSN IV, Berlin, Germany,1996:178-187.
    [235]Q. Zhang, H. Muhliebei. On the convergence of a class of estimation of distribution algrithms[J]. IEEE Transactions on Evolutionary Computation, 2004,8 (2):127-136.
    [236]李斌,钟润添,肖金超,等.一种基于边缘分布估计算法的多目标优化算法[J].电子与信息学报,2007,29(11):2683-2688.
    [237]众勰.潜艇基础知识[M],北京:国防工业出版社,1985.
    [238]D.R. Lavis, B.G. Forstell. The cost-benefit of emerging technologies using physics-based ship-design synthesis, Band, Lavis & Associates, Inc, Maryland, 2000.
    [239]J. J. Szatkowski. Manning and automation of naval surface combatants:A functional allocation approach using axiomatic design theory[D]. Massachusetts institute of technology,2000.
    [240]D.J. Andrews. A comprehensive methodology for the design of ships (and other complex systems)[J]. Proc. R. Soc. Lond. A,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700