用户名: 密码: 验证码:
过渡金属掺杂TiO_2薄膜亲水性及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从提高TiO_2光催化活性和亲水性的角度对TiO_2进行掺杂改性,用溶胶-凝胶法在玻璃基底上制备出了高活性的过渡金属离子掺杂的TiO_2光催化剂,通过X射线衍射、原子力显微镜(AFM)、热重(TG)、红外光谱(FT-IR)、紫外-可见光谱(UV-vis)、表面接触角测量仪等多种检测手段对薄膜的形成、形貌、结构等进行了表征。探讨了光催化改性的微观机理,寻找制约光催化效率的本质原因,为高效光催化剂的设计和制备提供理论依据。本论文有创新和有意义的研究结果如下:
     系统研究了Ni~(2+)、Cu~(2+)、Fe~(3+)掺杂对TiO_2亲水性能的影响。实验结果表明,当Ni~(2+)离子的掺杂摩尔浓度为3%、催化剂热处理温度为500℃,锻烧时间为2h时,在黑暗的条件下能保持一周的超亲水性。XRD和AFM分析表明,Ni~(2+)离子TiO_2抑制晶粒生长,使得粒径变小,增强TiO_2薄膜的亲水性能。薄膜在经紫外光照2h后,Ni~(2+)离子掺杂TiO_2薄膜可恢复超亲水性能,一定程度上解决了催化剂中毒问题。而Cu~(2+)、Fe(3+)掺杂对TiO_2薄膜亲水性能影响不大。
     系统研究了Ni~(2+)、Cu~(2+)、Fe~(3+)掺杂对TiO_2光催化降解有机物性能的影响。研究结果表明,Cu~(2+)掺杂TiO_2的光催化性能最好,掺杂Cu~(2+)能大幅度提高纳米TiO_2的光催化特性;Fe~(3+)掺杂效果略差;Ni~(2+)掺杂反而使光催化性能降低。当Cu~(2+)的掺杂摩尔浓度为3%、催化剂热处理温度为500℃,退火时间为2h时,薄膜降解甲基橙的能力增加了14%。Ni~(2+)、Fe~(3+)和Cu~(2+)离子掺杂后使TiO_2的晶格发生畸变,产生晶格缺陷,从而使TiO_2晶体中电子浓度发生变化,进而影响TiO_2薄膜光催化性能和亲水性能。我们通过对过渡金属离子掺杂改性的微观机理进行了探讨,认为掺杂TiO_2光催化剂的光催化活性与掺杂离子的大小和掺杂离子在TiO_2晶格中所处的位置有关。当掺杂离子的半径小于或接近Ti~(4+)离子半径时,杂质离子的掺入将大大提高TiO_2光催化剂的活性;当杂质离子的半径远远大于Ti~(4+)离子半径时,掺杂效果较低,ZiO_2光催化活性变化不大。于我们的研究而言,过渡金属离子掺杂TiO_2光催化剂的活性大小次序为Cu~(2+)>Fe~(3+)>未掺杂>Ni~(2+)。
In this paper, TiO_2 was doped to enhance photocatalytic activity and hydrophilicity. TiO_2 films and Ni~(2+), Fe~(3+) and Cu~(2+) doped TiO_2 multilayers were grown by sol-gel on glass substrates were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM) and water contact angle measurement. By means of many advanced experiments, the microcosmic mechanism of photocatalytic process was studied in order to find basic factors that affect photocatalytic efficiency and provide theoretical basis of designing and preparing high efficient photocatalys.
     We investigated systematically the effect of transition metal ions doping TiO_2 on its activity of hydrophilicity production. The high active hydrophilic of transition metal ions doping TiO_2 had been prepared by sol-gel method.Among all the doped samples, TiO_2 doped with Ni~(2+)photocatalyst has the best hydrophilicity activity. When the doped molar content of Ni~(2+) was 2m01%, the calcinated temperature was 500℃and the calcinated time was 2h, the contact angles of Ni~(2+) doping TiO_2 can keep hydropilicity after storage in dark for 7 days. The sample of Ni~(2+) doping TiO_2 also had excellent photo-induced superhydrophilicity. After under UV irradiation for 2h, the contact angles were reduced to 0°, the hydropilicity activity of Ni~(2+) doped TiO_2 was well repaired, the TiO_2 photocatalyst poisoning problem has been well solved. The analysis of structure indicated that transition metal ions doping in TiO_2 didn't influence the crystal paterns of TiO_2 particle, the crystal transformation of TiO_2 from anatase to rutile was prevented, the particle diameter decreased and the hydroplicity of TiO_2 was increased. The hydrophilicity of TiO_2 films was little affected by Cu~(2+) doping and Fe~(3+) doping.
     We investigated systematically the effect of transition metal ions doping TiO_2 on its activity of photocatalytic production. The high active photocatalyst of transition metal ions doping TiO_2 had been prepared by sol-gel method. Among all the doped samples, TiO_2 doped with Cu~(2+) photocatalyst has the highest activity, Fe~(3+) doping caused little affect on photocatalytic activity and Ni~(2+) doping even caused a decrease in the photocatalytic activity. When the doped molar content of Cu~(2+) was 3mol%, the calcinated temperature was 500℃and the calcinated time was 2h, the photocatalytic activity of Cu~(2+) doping TiO_2 after UV light irradiating for lh had increased from pure TiO_2 40% to 54%. The analysis of structure indicated that transition metal ions doping in TiO_2 didn't influence the crystal paterns of TiO_2 particle, but Ni~(2+), Cu~(2+)or Fe~(3+) doping produced latice deformation which caused the change of the electron density in TiO_2, and then influcenced the hydroplicity and photocatalytic of TiO_2. We researched the doping mechanism of TiO_2. It was found that the photocatalytic activities depend on the size and location of the doping ions in TiO_2. When the radii of doping ions were smaller than that of Ti~(4+) or closer to the Ti~(4+), the doping effect was obvious; while the radii of doping ions were much larger than that of Ti~(4+), the doping effect was lower. The doped TiO_2 photocatalytica ctivities were in the order: Cu~(2+)>Fe~(3+)>Ni~(2+). This result is very important to realize the essence of photocatalysis.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
    [2] Allen J., Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry, 1979, 10(1):59-75.
    [3] Hagfeldt A, Gratzel M. L ight induced redox reactions in nanocrystalline systems[J]. Chem Rev, 1995, 95(1): 49-68.
    [4] Wang R, Hashimoto K, Fujishima A. Light induced amphiphilic surfaces[J]. Nat ure, 1997, 388:431-432.
    [5] 果玉忱.半导体物理学[M].北京:国防工业出版社,1988,19-21
    [6] 张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术发展[J].环境科学进展,1977,5(3):1-4.
    [7] 符春林,魏锡文.二氧化钛晶型转变研究进展[J].涂料工业,1999,(2):28-30.
    [8] Tanaka K, Capule M F V, Hisanaga T., Effect of crystallinity of TiO_2 on its photocatalytic action[J]. Chem pHys Lett, 1991, 187(1-2): 73-76
    [9] Bickley I B, Gonzalez-Carreno T,Lees J S, et al., A structural investigation of titanium dioxide photocatalysts[J]. J Solid State Chem, 1991, 92: 178-190
    [10] 何超,于云等.Ag/TiO_2薄膜结构和光催化性能研究.无机材料报,2002 17(5):1025-1033
    [11] Hagfeldt A, Gratzel M. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Review, 1995, 95(1):49-55
    [12] Vorontsov A V, Stoyanova I V, Kozlov D V,et al. Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Ti-tanium Dioxide[J]. J Catal, 2000, 189: 360-369.
    [13] Linsebigler A L, Guangqun Lu, Yates J T. Photocatalysison TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem Rev., 1995, 95:735.
    [14] 陈亦琳,李旦振,付贤智等.乙烯在Pt/Pt~(4+)-TiO_2上的可见光降解[J].高等学校化学学报,2004,25(2):342-346
    [15] 安立超,曾桁,李海燕等.载银TiO_2催化剂的制备与性能研究[J].环境污染治理技术与设备,2001,2(4):30-33
    [16] 张金龙,安保正一.贵金属负载光催化剂在丙炔光催化水解反应中的研究(Ⅲ)[J].高等学校化学学报,2004,25(4):733-736.
    [17] 贺攀科等.Au/TiO_2光催化分解臭氧[J].催化学报,2006年1月.27(1):71-74
    [18] Sheng-Yi Zhang, Xiao-Jing Chen, et al. Preparation and characterization of novel SeO_2/TiO_2 nano-composite[J]. Journal of Crystal Growth, 2007, 304(1): 42-46.
    [19] An-Wu Xu, Yuan Gao, Han-Qin Liu., The Preparation, Characterization and their Photoc atalytic Activities of Rare-Earth-Doped TiO_2 Nanoparticles[J]. J Catal, 2002, 207: 151-157.
    [20] Sayilkan F., Asiltürk M.,et al. Photocatalytic performance of Sn-doped TiO_2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights[J], Journal of Hazardous Materials, 2007, 144(1-2): 140-146.
    [21] Choi WY, Termin A, Hoffmann MR. The Role of Metal-Ion Dopants in Quantum-Sized TiO_2: Correlation between Photore activity and Charge-Carrier Recombination Dynamics[J]. J Phys Chem, 1994, 98: 13669-13679.
    [22] Mills A., Wang J. Photobleaching of methylene blue sensitized by TiO_2 an ambiguous system[J]. J Photochem Photobiol A: Chem, 1999, 127: 123-134.
    [23] Asahi R, Morikawa T, Ohwaki T, et al., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293: 269-271.
    [24] Masakazu Anpo., Design and development of titanium oxide photocatalysts operatingunder visible and UV light irradiation.The applications of metal ion-implantation techniques to semiconducting TiO_2 and Ti/zeolite catalysts[J]. Current Opinion in Solid State and Materials Science, 2002, 6. 381-388
    [25] Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J Phys Chem, 1994, 98(51): 13669-13679.
    [26] Yan Ou, Jing-Dong Lin, et al. Effects of surface modification of TiO_2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms[J]. Journal of Molecular Catalysis A: Chemical, 2005, 241(1):59-64.
    [27] Muggli DS, Ding L. Photocatalytic performance of sulfated TiO_2 and De gussa P-25 TiO_2 during oxidation of organic[J]. Appl Catal B: Environ, 2001, 32(3):181-189
    [28] 陈士夫,程雪丽.空心玻璃微球附载TiO_2清除水面漂浮的油层[J].中国环境科学,1999,19(1):47-50.
    [29] 崔斌,韩欢牛,李淑妮等.Fe_2O_3掺杂TiO_2薄膜对甲基紫溶液光催化降解[J].应用化学,2001,18(12):958-961.
    [30] Chu W., Wong C. C., The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by differrent near UV irradiations[J]. Water Research, 2004. 38(4): 1037-1043.
    [31] 黄金球,唐超群等.电场对TiO_2纳米膜光催化性能的影响[J].催化学报,2006,27(9):783-786.
    [32] 杨俊伟,王绪绪等.Pt/TiO_2上苯和乙烯光催化氧化过程的磁场效应光催化降解[J],物理化学学报,2006,22(1):92-97.
    [33] 丁正新,王绪绪等.微波辐射对TiO_2制备及其光催化氧化乙醛性能的影响[J].无机化学学报.2005,21(8):1175-1180.
    [34] 张雯,王绪绪,付贤智.Pt/TiO_2催化剂上苯的光催化降解[J].福州大学学报(自然科学版),2004,32(2):232-234.
    [35] Fujishima A, Rao T N, et al. Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol C.: Photochem. Rev., 2000, 1: 12-21.
    [36] Sakai N., Komoda Y., et al. Effect of adsorbed water on the photoelectrorheology of TiO_2 particle suspensions[J]. Journal of Electroanalytical Chemistry, 1998, 445:1-6.
    [37] Takatal Y, Yidakal S, Masuda M, et al. Pool boiling on a superhydrophilic surface[J]. Int. J. Energy Res, 2003, 27: 111-119.
    [38] Miyanchi M, Nakajiama A, Fujishima A, et al., Photoinduced surface reactions on TiO_2 and SrTiO_3 films: photocatalytic oxidation and photoinduced hydrophilicity[J]. Chem. Mater., 2000, 12:3-5.
    [39] 余家国,赵修建.多孔TiO_2薄膜自清洁玻璃的亲水性和光催化活性[J].高等学校化学学报,2000,21(9):1437-1440.
    [40] 刘平,凌岚,林华香等.光催化抗雾膜材料的制备及其亲水性研究[J].高等学校化学学报,2000,21(3)462-465
    [41] 沈杰,章壮健.溶胶-凝胶法制备二氧化钛薄膜的亲水性研究[J].真空科学与技术,2000,6:385-390.
    [42] Vinodgopal K, Kamt P V. Enhanced rates of Photocatalytic Dgradation of an Azo Dye use SnO_2/TiO_2 Coupled Semiconductor Thin Films[J]. Environ. Sci. Technol., 1995, 29: 841-845
    [43] Jose A.Rodriguez, Tomas Jirsak, Gang Liu, Jan Htbek, Joseph Dvorak and Amitesh Maiti, Chemistry of NO_2 on Oxide Surfaces: Formation of NO_3 on TiO_2(110) and NO_2←→O Vacancy Interactions[J], Am. Chem Soc., 2001,123, 9597-9605.
    [44] Watanabe T., Nakajima A, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass[J]. Thin Solid Films, 1999,352:260-263.
    [45] 殷好勇,金振声等,TiO_2膜的亲水性丧失原因及其光催化再生[J].中国科学B辑,2002,32(5):413-419.
    [46] 陈光华,邓金祥等.新型薄膜电子材料[M],北京:化学工业出版社.2002,9:445-448.
    [47] 肖循,唐超群.TiO_2薄膜的溶胶-凝胶法制备及其光学特性[J].功能材料,2003,34(4):442-444
    [48] 尹荔松,周歧发,唐新桂.溶胶一凝胶法制备纳米TiO_2的胶凝过程机理研究[J].功能材料,1999,30(4):407-409.
    [49] 张夏虹,杨建文等.溶胶-凝胶法制备二氧化钛纳米粒子及在光固化体系中的稳定分散[J].高分子学报,2006.(6):750-755
    [50] 尹荔松,周歧发等.纳米TiO_2粉晶的XRD研究[J].功能材料,1999,30(5):498-511.
    [51] 沃松涛,崔晓莉等.紫外光下纳米TiO_2薄膜亲水性机理的电化学研究[J].化学物理学报,2004,17(2):211-214.
    [52] 段世铎,谭逸玲.界面化学[M],北京:高等教育出版社,1990.
    [53] 尤静林,蒋国昌等.TiO_2晶型及其相变的高温拉曼光谱研究[J].光散射学报.2004年7月.16(2):95-98
    [54] 余家国,赵修建等.光催化多孔TiO_2薄膜的表面形貌对亲水性的影响[J].硅酸盐学报.2002,28(3):245-250
    [55] 张金龙,陈锋等.光催化[M].上海:华东理工大学出版社.73-77
    [56] Othman I., Mohamed R.M., et al. Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO_2[J]. Journal of Photochemistry and Photobi-ology A: Chemistry, 2007, 189(1):80-85.
    [57] Ivanova T., Harizanova A., et al. Investigation of sol-gel derived thin films of titanium dioxide doped with vanadium oxide[J]. Solar Energy Materials and Solar Cells, 2003, 76(4): 591-598.
    [58] 袁颂东,袁静玲,张智.Fe~(3+)/TiO_2多孔纳米薄膜的制备与光催化活性研究[J].感光科学与光化学,2003,21(6),426-431.
    [59] Nedoloujko A, Kiwi J. TiO_2 speciation precluding mineralization of 4tert-burylpy-ridine accelerated mineralization via Fenton photo-assisted reation[J]. Wat Res, 2000, 34(13): 3247-3284.
    [60] 张天永,李祥忠,赵进才.国产二氧化钛在光催化降解染料废水中的应用[J]. 催化学报,1999,20(3):356-358.
    [61] 冯良荣,吕绍洁,邱发礼.过渡元素掺杂对纳米TiO_2光催化剂性能的影响[J].化学学报.2002,60(3):463-467.
    [62] 毛磊,童仕唐等.过渡元素离子表面改性锐钛型TiO_2光催化活性规律探讨[J],武汉科技大学学报(自然科学版),2006,29(1):66-68
    [63] 王艳芹,程虎民,马季铭.二氧化钛与三氧化二铁复合纳米晶电极的光电化学性质[J].物理化学学报,1999,15(3):222-227.
    [64] 余锡宾,王桂华,罗衍庆等.TiO_2微粒的掺杂改性与催化活性[J].上海师范大学学报(自然科学版),2000,29(1):75-78.
    [65] 樊钦平,王训等.纳米TiO_2光催化剂的活性与使用寿命[J],无机化学学报,2003.5,19(5):521-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700