用户名: 密码: 验证码:
基于联二萘酚衍生物模拟酶受体的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是研究两种以上的化学物质(分子、离子等)通过分子间力相结合而形成的复杂有序且具有特定功能的超分子体系的科学。利用人工受体建立化学仿生体系或化学模型来研究生物体内的分子识别现象已成为超分子化学和生物有机化学前沿富于挑战性的课题之一。近些年来发现,一些具有特定结构的光学活性联二萘酚衍生物作为磷酸吡哆醛的人工模拟酶分子,在手性氨基酸构型转换、手性氨基醇对映选择性识别以及萃取拆分等方面具有很好地应用前景。此外,具有光学活性的1,1'-联二萘酚及其衍生物由于其本身具有C2对称轴而具有独特的化学性质和手性诱导功能,且在适合结构基团修饰下能产生很强的荧光,在离子荧光识别等方面得到了广泛的应用。荧光化学传感器具有选择性好、简便快速、灵敏度高等优点,被广泛地用于检测各种金属离子和阴离子。本论文设计合成了两类不同的受体:第一类是1,1'-联-2-萘酚类人工模拟酶分子,并研究了其对L-氨基酸的构型转化和手性氨基醇的对映选择性识别;第二类是设计合成基于联二萘酚衍生物的化学传感器,并研究了其识别和传感性质,取得了一些有意义的结果。具体内容如下:
     1、简要介绍了该类化合物的合成方法,综述了近年来联二萘酚类磷酸吡哆醛模拟酶在手性氨基酸构型转换、手性氨基醇对映选择性识别以及萃取拆分等方面的应用。在离子识别方面,对近几年报道的识别阳离子、阴离子的基于联二萘酚衍生物的化学传感器进行了综述。
     2、在联二萘酚的基础上设计、合成了两种新的含有胍基或环己基脲结构的联二萘酚类模拟酶分子2-1和2-2。其次,本文采用官能团保护法,探索了模拟酶分子2-3的合成,并表征了它们的结构。
     3、模拟酶分子2-1和2-2既可以用作构型转换试剂用于L-α-氨基酸的构型转换,而且对手性氨基醇具有对映选择性识别作用。在氘代二甲基亚砜溶液中,有三乙胺存在下,利用核磁共振氢谱跟踪,分别考察了它们对L-α-氨基酸的构型转换作用。同时,在氘代氯仿中,利用核磁共振氢谱跟踪,分别研究了它们对手性氨基醇的对映选择性识别作用。结果表明,2-1和2-2都可与氨基酸形成希夫碱,然后通过差相异构化作用,将L-α-氨基酸转变为D-α-氨基酸,其中2-1对丝氨酸的构型转换效率(KD/KL)为3.5,2-2对组氨酸的构型转换效率(KD/KL)为5.2,同时2-1对手性2-氨基-1-丙醇的立体选择性比率(KR/KS)为6.25,2-2对手性2-氨基-1-丁醇的立体选择性比率(KR/KS)为1.97。此外,还将本研究结果与部分已知模拟酶的作用进行了对比,并简单讨论了差异性。
     4、在联二萘酚的骨架上引入4-氨基-苯并15-冠-5基团,合成了一种新的荧光传感器4-3。当在乙腈与HEPES缓冲溶液为(v/v=1:1)的溶液中加入10倍于4-3的铜离子溶液后,化合物4-3的荧光发射峰几乎被完全淬灭;而相同倍数的其它金属离子(Hg~(2+), Pb~(2+),Sr~(2+), Ba~(2+), Cd~(2+), Ni~(2+), Co~(2+), Fe~(2+), Mn~(2+), Zn~(2+), Al3+, Mg~(2+), K+, Fe3+, Cr3+, Na+)的加入只使4-3荧光强度稍微降低。根据滴定实验数据,采用基于12的Benesi-Hildebrand方程线性拟合,结果表明4-3与Cu~(2+)之间是以12的结合比相结合的;通过抗干扰实验发现,4-3对Cu~(2+)的这种选择性的荧光识别作用受其它金属离子(Hg~(2+), Pb~(2+), Sr~(2+), Ba~(2+), Cd~(2+), Ni~(2+),Co~(2+), Fe~(2+), Mn~(2+), Zn~(2+), Al3+, Mg~(2+), K+, Fe3+, Cr3+, Na+)的干扰比较小。
     5、在联二萘酚的骨架上引入2-氨基苯并咪唑基团,合成了一种新型的荧光传感器5-1。在无水乙腈中当所加F-浓度为受体5-1的40倍的时,受体5-1的荧光强度基本达到平衡不再增强,而相同倍数的其它阴离子(H_2PO_4~-, Cl~-, Br~-, I~-, HSO_4~-, NO_3~-, Ac~-)的加入只使5-1的荧光强度略微增强。采用等摩尔连续法(Job’s plot)对F-与受体5-1的结合比进行了验证,结果表明受体5-1与F-是以12的方式结合的;通过抗干扰实验验证,在此识别过程其它阴离子(H2PO4-, Cl-, Br-, I-, HSO4-, NO3-, Ac-)对其有一定的干扰。
Supramolecular chemistry is a science of study on the intermolecular interactionsbetween two or more chemical species which could form a complicated and orderedsupramolecular system with certain functions. Study on molecular recognition using artificialreceptors to construct the chemical models or biomimetic system is one of the challenges inthe frontiers of bioorganic chemistry and supramolecular chemistry. Some recently studiedenzyme mimic binaphthol derivatives have the function of amino acid chiral conversion, theyalso can be used for enantioselective recognition of chiral1,2-amino alcohols and extractiveseparation of amino acids as well as1,2-amino alcohols are reviewed. Moreover, opticallyactive BINOL and its derivatives have unique chemical properties and chiral inductivefunction because of the C2symmetric axis. When they are introduced into a suitablefunctional group, they can produce strong fluorescence, so they are widely applied toasymmetric catalytic reactions and fluorescence recognition of chiral object. Fluorescencechemosensors are widely used to detect metal ions and anions because of their high selectivity,sensitivity and simplicity. In this thesis, two kinds of different receptors based on binolderivatives were synthesized and investigated for their applications. Firstly, enzyme mimicbinapthol derivatives were synthesized and investigated for their applications in L-aminoacids chiral conversion and1,2-amino alcohols enantioselective recognition. Secondly, twonew chemosensors based on binol derivatives were synthesized and investigated for theirapplications in the detection of copper ion (Cu2+) and fluorin ion (F-). The details are asfollows:
     1. The methods of synthesizing receptor were introduced briefly. The application of PLPenzyme mimic binaphthol derivatives in chiral conversion of amino acids andenantioselective recognition of chiral1,2-amino alcohols in recent years were summarized. Inthe ion recognition, binaphthol based chemosensors for anion and cation recognizing in recentyears were summarized.
     2. Two binaphthol based enzyme mimic reagents2-1and2-2, which containingcyclohexyl urea and guanidinium hydrogen bonding moiety respectively, were synthesizedand characterized.
     3. Both molecules not only can be applied to amino acid chirality inversion but also canbe applied to enantioselective recognition of1,2-amino alcohols. The chirality inversioneffects of2-1and2-2for L-α-amino acids to D-α-amino acids were examined by1H NMR inDMSO-d6in the presence of triethylamine. The results showed that2-1and2-2can react withthe tested L-α-amino acids to form corresponding imine and subsequently convert partiallythe amino acid from its L form to D form through an epimerization processes. The chiralityinversion efficiency (KD/KL) of2-2to L-histidine is5.2, the value of (KD/KL) of2-1toL-serine is3.5. The enantioselective recognition effects of2-1and2-2for1,2-amino alcoholwere examined by1H NMR in CDCl3. The enantioselective recognition efficiency(KR/KS)of2-1to2-amino-1-ppropanol is6.25, the value of (KR/KS) of2-2to2-amino-1-butanol is1.97.Comparision of the application of2-1and2-2with those of some known enzyme mimicreagents are also discussed.
     4. A new metal ion fluorescence sensor4-3was designed and synthesized by introducing4-amino benzo-15-crown-5into the framework of Binol which showed a high selectivitytowards Cu~(2+)through fluorescence quenching in CH3CN:HEPES (v:v=1:1). The bindingstoichiometry of4-3and Cu~(2+)is12according to the titration data based onBenesi-Hildebrand plot. The Cu~(2+)recognition process of4-3is not significantly influenced byother coexisting metal ions (Hg~(2+), Pb~(2+), Sr~(2+), Ba~(2+), Cd~(2+), Ni~(2+), Co~(2+), Fe~(2+), Mn~(2+), Zn~(2+), Al3+,Mg~(2+), K+, Fe3+, Cr3+, Na+).
     5. A new anion fluorescence sensor5-1was designed and synthesized by combiningBinol and2-benzimidazolamine which showed a high selectivity towards F-throughfluorescence enhancement in CH3CN. The results of Job's plot based on a1:2binding modeindicated that sensor5-1and F-formed a1:2stoichiometric complex. This highly selective F-recognition process of5-1is barely influenced by other coexisting anions (F~-, Cl~-, Br~-, I~-,HSO_4~-, NO_3~-, Ac~-).
引文
[1] Kaushik Patel,Sarah Angelos,William R Dichtel,Ali Coskun,Ying-Wei Yang, Jeffrey I Zink,andJ Fraser Stoddart. Enzyme-Responsive Snap-Top Covered Silica Nanocontainers[J]. J. Am. Chem.Soc.,2008,130:2382-2383.
    [2]刘有芹,颜芸,沈含熙.模拟酶的研究与发展[J].化学进展,2005,17:1067-1072.
    [3]齐志宏,郑可,宋耀虹.常规试剂加入磷酸吡哆醛测定丙氨酸转氨酶催化活性浓度的研究[J].北京医学,2007,29:95-97
    [4] J. Frantz Folmer-Andersen, Vincent M Lynch, and Eric V Anslyn. Colorimetric Enantiodiscriminationof α-Amino Acids in Protic Media[J]. J. Am. Chem. Soc.,2005,127:7986–7987.
    [5] Kazunori Tsubaki, Daisuke Tanima, Mohammad Nuruzzaman, Tomokazu Kusumoto, Kaoru Fuji, andTakeo Kawabata. Visual Enantiomeric Recognition of Amino Acid Derivatives in Protic Solvents[J]. J.Org. Chem.,2005,70:4609–4616
    [6] Sunderraman Sambasivan, Dae-sik Kim and Kyo Han Ahn. Chiral discrimination of α-amino acids witha C2-symmetric homoditopic receptor[J]. Chem. Commun.,2010,46:541-543.
    [7] Qin Wang, Xi Chen, Lan Tao, Li Wang, Dan Xiao, Xiao-Qi Yu, and Lin Pu. EnantioselectiveFluorescent Recognition of Amino Alcohols by a Chiral Tetrahydroxyl1,1‘-Binaphthyl Compound[J].J.Org. Chem.,2007,72:97-101.
    [8] Yusuke Ishii, Yoichi Onda, Yuji Kubo.2,2′-Biphenyldiol-bridged bis(free base porphyrin): synthesis andchiroptical probing of asymmetric amino alcohols[J]. Tetrahedron Lett.,2006,47:8221-8225.
    [9] Kwan Mook Kim, Hyunjung Park, Hae-Jo Kim, Jik Chin, and Wonwoo Nam. EnantioselectiveRecognition of1,2-Amino Alcohols by Reversible Formation of Imines with Resonance-AssistedHydrogen Bonds[J]. Org. Lett.,2005,7:3525-3527.
    [10] Lijun Tang, Sujung Choi, Raju Nandhakumar, Hyunjung Park, Hyein Chung, Jik Chin and KwanMook Kim.Reactive Extraction of Enantiomers of1,2-Amino Alcohols via StereoselectiveThermodynamic and Kinetic Processes[J]. J. Org. Chem.,2008,73:5996-5999.
    [11] Hyunjung Park, Raju Nandhakumar, Jooyeon Hong, Sihyun Ham, Jik Chin, Kwan Mook Kim.Stereo-Conversion of Amino Acids and Peptides in Uryl-Pendant Binol Schiff Bases[J]. Chem. Eur. J.,2008,14:9935-9942.
    [12] Hyunjung Park, Kwan Mook Kim, Areum Lee,Sihyun Ham, Wonwoo Nam, and Jik Chin. BioinspiredChemical Inversion of l-Amino Acids to d-Amino Acids[J]. J. Am. Chem. Soc.,2007,129:1518-1519.
    [13] Paola Gilli, Valerio Bertolasi, Valeria Ferretti, and Gastone Gilli. Evidence for Intramolecular N H···OResonance-Assisted Hydrogen Bonding in β-Enaminones and Related Heterodienes. A CombinedCrystal-Structural, IR and NMR Spectroscopic, and Quantum-Mechanical Investigation[J]. J. Am.Chem. Soc.,2000,122:10405–10417.
    [14] Hae-Jo Kim, Woosung Kim, Alan J Lough, B Moon Kim, and Jik Chin. A Cobalt (III) Salen Complexwith an Axial Substituent in the Diamine Backbone: Stereoselective Recognition of AminoAlcohols[J]. J. Am. Chem. Soc.,2005,127:16776–16777.
    [15] Hae-Jo Kim,Hyunwoo Kim, Gamil Alhakimi, Eui June Jeong,Nirusha Thavarajah, Lisa Studnicki,Alicja Koprianiuk, Alan J. Lough, Junghun Suh, and Jik Chin. Preorganization in HighlyEnantioselective Diaza-Cope Rearrangement Reaction[J]. J. Am. Chem. Soc.,2005,127:16370–16371
    [16] Jik Chin, Dong Chan Kim, Hae-Jo Kim, Francis B. Panosyan,and Kwan Mook Kim.Chiral ShiftReagent for Amino Acids Based on Resonance-Assisted Hydrogen Bonding[J]. Org. Lett.,2004,6:2591–2593.
    [17] Gastone Gilli, Fabrizio Bellucci, Valeria Ferretti, Valerio Bertolasi. Evidence for resonance-assistedhydrogen bonding from crystal-structure correlations on the enol form of the.beta.-diketonefragment[J]. J. Am. Chem. Soc.,1989,111:1023–1028
    [18] Valerio Bertolasi, Paola Gilli, Valeria Ferretti, Gastone Gilli. Evidence for resonance-assisted hydrogenbonding. Intercorrelation between crystal structure and spectroscopic parameters in eightintramolecularly hydrogen bonded1,3-diaryl-1,3-propanedione enols[J]. J. Am. Chem. Soc.,1991,113,13:4917-4925.
    [19] Raju Nandhakumar, Jayoung Ryu, Hyunjung Park,Lijun Tang, Sujung Choi,Kwan Mook Kim. Effectsof Ring Substituents on Enantioselective Recognition of Amino Alcohols and Acids in Uryl BasedBinol Receptors[J]. Tetrahedron.,2008,64,33:7704-7708.
    [20] Lijun, Tang,Hyerim, Ga, Jiyoung, Kim, Sujung, Choi,Raju Nandhakumar, Kwan Mook Kim. ChiralityConversion and Enantioselective Extraction of Amino Acids by Imidazolium-BasedBinol-Aldehyde[J]. Tetrahedron Lett.,2008,49,48:6914-6916.
    [21] Raju Nandhakumar, Yun Soo Ahn, Hoe-Jin Yoon, and Kwan Mook Kim. Stereoselective Recognitionof Amino Alcohols and Amino Acids by Carbonylurea-and Carbonyguanidinium-based ImineReceptors[J]. Bull. Korean Chem. Soc.,2009,30:2938-2942.
    [22] Raju Nandhakumar, Ahn Yun Soo, Jooyeon Hong,Sihyun Ha,Kwan Mook Kim. Enantioselectiverecognition of1,2-aminoalcohols by the binol receptor dangled with pyrrole-2-carboxamide and itsanalogues[J]. Tetrahedron.,2009,65:666-671.
    [23] Jiyoung Kim, Raju Nandhakumar,and Kwan Mook Kim. Enantioselective Recognition of AminoAlcohols and Amino Acids by Chiral Binol-Based Aldehydes with Conjugated Rings at the HydrogenBonding Donor Sites[J]. Bull. Korean Chem. Soc.,2011,32:1263-1266.
    [24] Hyein Jung, Raju Nandhakumar, Hoe-Jin Yoon, Sang-gi Lee,and Kwan Mook Kim. Synthesis ofNovel H8-Binaphthol-based Chiral Receptorsand Their Applications in Enantioselective Recognitionof1,2-Amino alcohols and Chirality Conversion of L-Amino acids to D-Amino acids[J]. Bull. KoreanChem. Soc.,2010,31:1289-1294.
    [25]刘育,尤长城,张衡益编.超分子化学—合成受体的分子识别和组装[M].南开大学出版社,2001, l-5.
    [26]郭志龙,汤立军,魏恭繁.光学活性1,1-联-2-萘酚类合成受体的应用研究进展[J].化学与粘合,2011,33:56-60.
    [27]王伟,段振华,李宝林.联二萘酚配合物催化的不对称异原子Diels-Alder反应研究进展[J].化学研究,2007,18:93-97.
    [28]刘天穗,陈亿新,刘军涛等.柱前衍生化高效液相色谱法拆分1,1′-联-2-萘酚光学异构体[J].精细化工,2007,24:1091-1094.
    [29王辉,梅明华,房喻等.阳离子荧光敏感器的器件化问题研究[J].感光科学与光化学(Photographic Science and Photochemistry),2002,20:118-125.
    [30] Vichet A, Patellis A M, Galy J P, et al. Crown Ethers Derived from2,7-Dihydroxyacridine and2,7-Dihydroxyacridan-9-one[J]. J. Org. Chem.,1994,59:5156-5161
    [31] Martínez-Má ez, R., Sancenón, F. Fluorogenic and chromogenic chemosensors and reagents foranions[J]. Chem. Rev.,2003,103:4419-4476.
    [32]许胜,刘斌,田禾.阴离子荧光化学传感器新进展[J].化学进展,2006,18:687-697.
    [33]魏太保,王军,张有明.人工合成受体的阴离子识别研究(IV)含有酚羟基化合物的设计合成及阴离子识别研究[J].无机化学学报,2006,22:2212-2216.
    [34] Pu L. Fluorescence of Organic Molecules in Chiral Recognition[J]. Chem. Rev.,2004,104:1687-1716.
    [35] Zhang G X, Zhang D Q, Guo X F, et al. A New Redox-Fluorescence Switch Based on a Triad withTetrathiafulvalene and Anthracene Units[J]. Org. Lett.,2004,6:1209-1212.
    [36] Zheng X P, Zhang D Q, Zhu D B. A new tetrathiafulvalene-perylene diimide dyad with apentaoxa-heptadecane chain as the spacer: metal-ions-induced aggregation[J]. Tetrahedron Lett.,2006,47:9083-9087.
    [37] Tan W, Zhang D Q, Zhu D B.4-N-Methyl-N′-(2-dihydroxyboryl-benzyl)amino benzonitrile and itsboronate analogue sensing saccharides and fluoride ion[J]. Bioorg. Med. Chem. Lett.,2007,17:2629-2633.
    [38] Dale T J, Rebek J Jr. Fluorescent Sensors for Organophosphorus Nerve Agent Mimics[J]. J. Am. Chem.Soc.,2006,128:4500-4501.
    [39] Qi X, Jun E J, Kim S J, et al. New BODIPY Derivatives as OFF ON Fluorescent Chemosensor andFluorescent Chemodosimeter for Cu2+: Cooperative Selectivity Enhancement toward Cu2+[J]. J. Org.Chem.,2006,71:2881-2884.
    [40] Mei X F, Martin R M, Wolf C. Synthesis of a Sterically Crowded Atropisomeric1,8-Diacridylnaphthalene for Dual-Mode Enantioselective Fluorosensing[J]. J. Org. Chem.,2006,71:2854-2861.
    [41] Harris S J, Smyth M R, Diamond D, et al. Determination of the Enantiomeric Composition of ChiralAmines Based on the Quenching of the Fluorescence of a Chiral Calixarene[J]. Anal. Chem.,1996,68:3775-3782.
    [42]吴世康.荧光化学传感器研究中的光化学与光物理问题[J].化学进展,2004,16:174-183.
    [43] Qin H J., He Y B, Qing G Y, et al. Novel chiral fluorescent macrocyclic receptors: synthesis andrecognition for amino acid anions[J]. Tetrahedron: Asymmetry.,2006,17:2143-2148.
    [44] Yang H, Bohne C. Chiral discrimination in the fluorescence quenching of pyrene complexed toβ-cyclodextrin[J]. J. Photochem. Photobiol.A: Chemistry.,1995,86:209-217.
    [45] Ikeda H, Li Q, Ueno A. Chiral recognition by fluorescent chemosensors based on N-dansyl-aminoacid-modified cyclodextrins[J]. Bioorg. Med. Chem. Lett.,2006,16:5420-5423.
    [46] Riela S, Anna F D, Meo P L, et al. Chiral recognition of protected amino acids by means of fluorescentbinary complex pyrene/heptakis-(6-amino)-(6-deoxy)-β-cyclodextrin[J]. Tetrahedron.,2006,62:4323-4330
    [47]杨郁,双少敏,钞建宾等. β-环糊精与氨基苯酸异构体的分子识别研究[J].化学学报,2004,62:176-182.
    [48]刘育,康诗钊.超分子体系中的分子识别研究—含吡啶基β-环糊精衍生物的合成及其对氨基酸分子的手性识别[J].中国科学,2001,31:214-219.
    [49]尤长城,李玉梅,刘育.超分子体系中的分子识别研究[J].南开大学学报(自然科学)(ActaScientiarum Naturalium UniversitatisNankaiensis),1999,32:111-117.
    [50]张有明,魏太保. β-环糊精对D/L-酪氨酸对映体的手性识别及超分子包合物的合成[J].应用化学(Chinese Journal of Applied Chemistry),1998,15:45-48.
    [51]张强,刘育. β-环糊精及其衍生物对脂肪族手性对映体及有机染料的分子识别研究[J].高等学校化学学报(ChemicalJournal of Chinese Universities),2004,25:458-461.
    [52]郝雅琼,王立旭,马立军等.桥联双β-环糊精对N-[4-(1-芘基)]丁酰-D/L-苯丙氨酸的手性识别及机理研究[J].高等学校化学学报(Chemical Journal of Chinese Universities),2006,27:920-924.
    [53]李伟,谢剑炜,翟言强等. D,L-色氨酸对映体的环糊精手性识别荧光定量分析[J].军事医学科学院院刊(Bulletin of TheAcademy of Military Medical Sciences),2002,2:20-22.
    [54] Liu S Y, He Y B, Qing G Y et al. Fluorescent sensors for amino acid anions based on calyx arenesbearing two dansyl groups[J]. Tetrahedron:Asymmetry.2005,16:1527-1534.
    [55]赵文峰,陈朗星,何锡文.杯芳烃荧光识别试剂研究进展[J].化学试剂,2006,28:269-273.
    [56]马会民,马泉莉.杯芳烃光学识别试剂[J].分析化学(Chinese Journal of Analytical Chemistry),2002,30:1137-1142.
    [57] Chen Y, Yekta S, Yudin A K. Modified BINOL ligands in asymmetric catalysis[J]. Chem. Rev.,2003,103:3155-3212.
    [58] Brunel J M. BINOL: A versatile chiral reagent[J]. Chem. Rev.,2005,105:857-897.
    [59] Kocovsky P, Vyskocil S, Smrcina M. Non-Symmetrically Substituted1,1′-Binaphthyls inEnantioselective Catalysis[J]. Chem. Rev.,2003,103:3213-3245.
    [60] Pu L.1,1'-Binaphthyl Dimers, Oligomers and Polymers: Molecular Recognition, AsymmetricCatalysis, New Materials[J]. Chem. Rev.,1998,98:2405-2494.
    [61] Ji-Ting Hou, Qin-Fang Zhang, Bang-Yu Xu, Qiao-Sen Lu, Qiang Liu, Ji Zhang, Xiao-Qi Yu.A novelBINOL-based cyclophane via click chemistry: synthesis and its applications for sensing silver ions[J].Tetrahedron Letters.,2011,52:4927-4930.
    [62] Tian-HuaMa,Ai-JiangZhang,MingDong,Yu-ManDong,YuPeng n,Ya-WenWang.A simply and highlyselective ‘‘turn-on’’ type fluorescent chemosensor for Hg2+based on chiral BINOL-Schiff’s baseligand[J]. Journal of Luminescence.,2010,130:888–892.
    [63] Qiao-Sen Lu, Liang Dong, Ji Zhang, Jing Li, Lu Jiang, Yu Huang, Song Qin,Chang-Wei Hu, andXiao-Qi Yu. Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic andChiral Anion Recognition[J]. Org. Lett.,2009,11:669-672.
    [64] P. Gilli, V. Bertolasi, V. Ferretti, and G. Gilli, Evidence for intramolecular N–H···O resonance-assistedhydrogen bonding in β-enaminones and related heterodienes. A combined crystal-structural, IR andNMR spectroscopic, and quantum-mechanical investigation[J]. J. Am. Chem. Soc.,2000,122:10405-10417.
    [65] Ami D Patel, Judith M Nocek, and Brian M Hoffman. Equilibrium/Nonequilibrium InitialConfigurations in Forward/Reverse Electron Transfer within Mixed-Metal Hemoglobin Hybrids[J]. J.Am. Chem. Soc.,2005,127:16776-16777.
    [66] Hae-Jo Kim, Woosung Kim, Alan J Lough, B Moon Kim, and Jik Chin.A Cobalt (III) Salen Complexwith an Axial Substituent in the Diamine Backbone: Stereoselective Recognition of Amino Alcohol[J].J. Am. Chem. Soc.,2005,127:16370-16371.
    [67] Jik Chin, Dong Chan Kim, Hae-Jo Kim, Francis B Panosyan,and Kwan Mook Kim. Chiral ShiftReagent for Amino Acids Based on Resonance-Assisted Hydrogen Bonding[J]. Org. Lett.,2004,6:2591-2593.
    [68] Gastone Gilli, Fabrizio Bellucci, Valeria Ferretti, Valerio Bertolasi.Evidence for resonance-assistedhydrogen bonding from crystal-structure correlations on the enol form of the.beta.-diketonefragment[J]. J. Am. Chem. Soc.,1989,111:1023-1028.
    [69] Ivo A WFilot, Anja R A Palmans, Peter A J Hilbers, Rutger A van Santen, Evgeny A Pidko and Tom FA de Greef. Understanding cooperativity in Hydrogen-Bond-Induced Supramolecular Polymerization:A Density Functional Theory Study[J]. J. Phys. Chem. B.,2010,114:13667–13674.
    [70] Badugu R, Lakowicz J R, Geddes C D. Enhanced Fluorescence Cyanide Detection at PhysiologicallyLethal Levels: Reduced ICT-Based Signal Transduction[J]. J. Am. Chem. Soc.,2005,127:3635-3641.
    [71] Lu G, Grossman J E, Lambert J B. General but discriminating fluorescent chemosensor for aliphaticamines[J]. J. Org. Chem.,2006,71:1769-1776.
    [72] Descalzo A B, Rurack K, Weisshoff H, et al. Rational Design of a Chromo-and Fluorogenic HybridChemosensor Material for the Detection of Long-Chain Carboxylates[J]. J. Am. Chem. Soc.,2005,127:184-200.
    [73] Tang Y L, Feng F D, He F, et al. Direct visualization of enzymatic cleavage and oxidative damage byhydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative[J]. J. Am. Chem.Soc.,2006,128:14972-14976.
    [74]韩占江,王伟华.几种模拟酶的研究进展[J].广东农业科学,2008,1:61-63.
    [75]陈燕珠.氨基酸的应用与发展趋势[J].化学时刊,2001,7:4-6.
    [76] Jik Chin, Dong Chan Kim, Hae-Jo Kim, Francis B. Panosyan, andKwan Mook Kim.Chiral ShiftReagent for Amino Acids Based on Resonance-Assisted Hydrogen Bonding[J]. Org. Lett.,2004,6:2591-2593.
    [77] Hyunjung Park, Raju Nandhakumar, Jooyeon Hong, Sihyun Ham,Jik Chin, and Kwan MookKim.Stereoconversion of Amino Acids and Peptides in Uryl-Pendant Binol Schiff Bases[J]. Chem. Eur.J.,2008,14:9935–9942.
    [78]梅乐和,姚善泾,关怡新,林东强. D-氨基酸的生物转化与拆分技术研究的新进展[J].中国医药工业杂志,1999,30:235-238.
    [79]陈建波,徐.毅. D-型氨基酸的生物法制备[J].分子催化,2006,20:284-28.
    [80]陈曾三.氨基酸的制造技术[J].发酵科技通讯,2002,31:41-43.
    [81]陶影,张小林,漆剑,田建文,程金星.不对称转换法制备D-型氨基酸的研究进展[J].天津化工,2005,19:1-5.
    [82]谷传洲,未本美,郑颖平,蒋立建.不对称转换方法制备D-型氨基酸[J].科技进展,2002,12:21-25.
    [83]舒国伟,陈合,张璐,王旭.氨基酸及其衍生物生产现状[J].中国调味品,2009,34:39-41.
    [84] J Inanaga. Development of Self-Organized Polymeric Lewis Acid Catalysts for theZero-EmissionSynthesis of2-Amino Alcohols[J]. Journal of Fudan University.,2005,44:678-679.
    [85]翁文,周宏英,傅忠祥,吕士杰.手性氨基醇在不对称催化中的应用及新进展[J].有机化学,1998,18:509-520.
    [86]肖蓉,李若华,崔建国.手性氨基醇的合成及应用[J].化工技术与开发,2009,34:10-14.
    [87]龚大春,涂志英,何红华,韦萍,欧阳平凯.手性氨基醇的绿色催化工艺研究[J].现代化工,2007,27:151-154.
    [88]李叶芝,郭纯孝,鲁向阳,申连春,赵晓刚,黄化民. R-四氢噻唑-2-硫酮-4-羧酸同R. S-氨基醇的手性识别反应[J].合成化学,1998,6:155-160.
    [89]冷艳丽,王文利,张有明,魏太保.4′-磺酰肼苯并-15-冠-5的合成及阳离子识别研究[J].化学试剂,2009,31:769-772.
    [90]张衡益,杨英威,刘育.冠醚的分子设计含硫\硒杂环的苯并-15-冠-5的合成及其对阳离子的选择性[J].高等学校化学学报,2000,21:1858-1860.
    [91]刘育,张衡益.冠醚的分子设计及其识别性质研究进展[J].有机化学,2002,22:91-100.
    [92] Tian-HuaMa,Ai-Jiang Zhang,Ming Dong,Yu-Man Dong,Yu Peng n,Ya-Wen Wang. A simply andhighly selective ‘‘turn-on’’ type fluorescent chemosensor for Hg2+based on chiral BINOL-Schiff’sbase ligand[J]. Journal of Luminescence.,2010,130:888–892.
    [93] Ji-Ting Hou, Qin-Fang Zhang, Bang-Yu Xu, Qiao-Sen Lu, Qiang Liu, Ji Zhang, Xiao-Qi Yu.A novelBINOL-based cyclophane via click chemistry: synthesis and its applications for sensing silver ions[J].Tetrahedron Letters.,2011,52:4927-4930.
    [94] Ostaszewskir. The synthesis of anthracene crown ethers derived from benzo crown ethers[J].Tetrahedron.,1998,54:6897-6902.
    [95] Liu Yu, Han Bao hang, Chen Rong ti. The complexation thermodynamics of light lanthanides bycrown ethers[J]. Coord. Chem. Rev.,2000,200:53-73.
    [96] Percec V, Bera T K. Cell membrane as a model for the design of emifluorinated ion2selectivenanostructured supramolecular systems[J]. Tetrahedron.,2002,58:4031-4040.
    [97]张来新,杨琼,杨旭朝等.4′-苯甲酰缩氨基硫脲苯并-15-冠-5的合成[J].化学试剂,1995,17:235-236.
    [98] Nakatsuj I Y, Wakita R, Harada Y, et al. New type of ionophores for lithium ion: N-pivot lariat ethersbased on monoaza-14-crown-4[J]. J. Org. Chem.,1989,54:2988-2990.
    [99]焦书燕,马金飞,杨丽,徐括喜.手性联萘酚的多胺缀合物的合成与表征[J].化学进展,2010,21:52-55.
    [100]李扬,曹利峰,田禾.1,8-萘酰亚胺修饰的卟啉及其作为F-识别化学传感器的研究[J].化学通报,2007,2:151-154.
    [101]游俊,徐勤娟,林丽榕,黄荣彬,郑兰荪. N-(对二甲氨基苯基)水杨醛亚胺选择性识别氟离子研究[J].厦门大学学报,2009,48:236-240.
    [102] Qiao-Sen Lu, Liang Dong, Ji Zhang, Jing Li, Lu Jiang, Yu Huang, Song Qin, Chang-Wei Hu, andXiao-Qi Yu. Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic andChiral Anion Recognition[J]. Org. Lett.,2009,11:669-672.
    [103]魏太保,王军,郭潇迪,张有明.含酚羟基Schiff碱化合物的阴离子识别研究[J].化学研究与应用,2008,20:858-861.
    [104]周义锋.基于萘二酰胺衍生物的氟离子荧光传感器[J].上海应用技术学院学报,2009,9:122-125.
    [105]魏太保,王军,张有明.人工合成受体的阴离子识别研究(IV)含有酚羟基化合物的设计合成及阴离子识别研究[J].无机化学学报,2006,22:2212-2216.
    [106]朱玉莲,张小燕,张岐,戴雪芹,吴静波.新型硫脲分子-Gd(III)配合物对氟离子的选择性识别研究[J].化学学报,2011,69:709-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700