用户名: 密码: 验证码:
岩溶堆积型铝土矿系统开采优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平果铝土矿是目前世界上最早开发成功的岩溶堆积型铝土矿,矿石分布点多面广,储量多,经济价值巨大。平果岩溶堆积型铝土矿床不但规模大,而且矿石品位质量变化大,其铝硅比值分布从3.92到33.93。中国铝业广西分公司氧化铝生产采用的是纯拜尔法生产工艺,铝硅比低于7的矿石不适合做为氧化铝生产的原材料。为保证铝土矿资源的可持续利用,必须对岩溶堆积型铝土矿进行系统开采研究,实现开采的整体最优化。
     本文就是在资源可持续性利用的理念基础上,采用系统工程、灰色系统理论、多目标决策以及物流规划等科学方法理论,对岩溶堆积型铝土矿整个生产工艺系统开展模型化和最优化研究。文中首先对岩溶堆积型铝土矿资源以及开采条件进行系统分析,接着采用灰色层次分析法优选主要的开采工艺,同时利用灰色模糊综合决策模型优选适合其开采工艺的剥采设备;然后构建基于灰参数的0-1整数规划模型,将厂址选择与配矿优化有机结合起来,并利用先进的运筹学优化软件FICO MP-Xpress展开计算与优化研究,从而得到堆积型铝土矿的最佳厂址以及长远生产规划方案;最后在长远规划的基础上对堆积型铝土矿采场与堆场联合配矿系统进行相应分析,运用灰色目标规划理论构建堆积型铝土矿的采场与堆场配矿的数学模型,从而保证铝土矿资源的综合利用,给氧化铝厂提供长期稳定的供矿品位。论文的主要研究成果如下:
     (1)对平果堆积型铝土矿三期太平南矿段的矿体进行勘探及现场地质调查研究,分析开采范围内堆积型铝土矿的赋存条件、矿区区域地质、矿床地质特征以及水文地质条件,获得铝土矿石的储量以及工业指标。对太平矿区南段的供矿能力和供矿质量进行研究,同时对其资源条件、开采技术条件和外部建设条件进行分析,结果表明设计开采范围内的矿体具有较高的经济开采价值,能满足中国铝业公司的生产要求。
     (2)结合岩溶堆积型铝土矿的主要特点,提出了灰色层次综合评价模型来进行岩溶堆积型铝土矿开采工艺的优选。首先对工艺选择的主要影响因素进行分析,再采用系统工程、灰色系统理论和科学决策的方法优选出满足工程需要的开采方式及采矿工艺流程,然后对堆积型铝土矿的露天境界进行相应分析,研究其境界参数,最后确定规划开采区的生产规模以及生产服务年限。
     (3)针对平果堆积型铝土矿矿床地质特征、地质水文特征、现有采矿机械装备、采矿工艺、氧化铝厂的矿石质量要求,结合矿体、围岩介质相关的物理力学性质,参照国内外类似矿山开采技术条件,按照堆积型铝土矿开采设备选择的原则,综合利用灰色系统理论、模糊数学理论以及运筹学等系统科学方法建立堆积型铝土矿开采设备灰色模糊综合决策模型,遴选出适合矿区资源开采的主要技术装备。
     (4)岩溶堆积型铝土矿的厂址选择问题实际上就是一个矿山物流优化问题,是一个厂址选择、运输、生产和氧化铝厂工艺需求的综合匹配问题。而矿山开采系统实际上是一个典型的灰色系统。本文引入灰色规划的方法体系,建立基于灰参数的厂址选择与配矿综合优化模型,然后利用先进的运筹学优化软件FICO Xpress-MP进行优化计算,得到最佳厂址以及铝土矿开采长远规划,同时保证了矿山开发的经济性和矿石供应的稳定持久性。
     (5)提出岩溶堆积型铝土矿采场配矿和堆场配矿联合技术体系,对配矿联合作用模式下采场配矿计划功效以及堆场配矿的缓冲调节功效进行分析。同时利用FICO Xpress-MP构建岩溶堆积型铝土矿采场配矿灰色多目标规划数学模型和堆场配矿数学模型,从而实现了岩溶堆积型铝土矿配矿优化的体系化和模型化。
Pingguo bauxite is the karst accumulated bauxite which is exploited firstly in the world. The ore is widely distributed with large reserves and tremendous economic value. The quality of the ore grade changes greatly, the aluminum-silicon ratio is distributed from3.92to33.93. Guangxi Branch of Aluminum Corporation of China uses the pure Bayer process for the alumina production. The bauxite with Al-Si ratio below7is not suitable for the alumina production. In order to ensure the sustainable use of bauxite resources, the exploitation of karst accumulated bauxite should be systematically and reach the global optimization.
     On the basis of the concept of sustainable use of resources, the paper used scientific method of systems engineering, gray system theory, multi-objective decision-making and logistics planning theory, to make the research on karst accumulated bauxite production process systems modeling and optimization. Firstly, karst accumulation bauxite resources and mining conditions were analyzed systematically. Secondly the gray analytic hierarchy process was used to select the major mining process, while the gray fuzzy comprehensive decision-making model was used to choose the stripping equipment suitable for the exploitation process. Thirdly, the0-1integer programming model with gray parameter was constructed. In the model, the site selection and the ore blending were combined. The best site of accumulated bauxite as well as long-term production planning program were got by the advanced operations optimization software FICO MP-Xpress. Finally, on the basis of long-term planning, the accumulated bauxite blending system combined with stope and yard was analyzed. By the gray goal programming theory, the stope and yard ore blending mathematical model for the accumulate bauxite were constructed. The model could guarantee the comprehensive utilization of bauxite resources and provide the stable supply of ore grade alumina in long term. The main research results were as follows:
     (1) After the exploration and geological survey of the ore body of Pingguo Taiping south, the occurrence condition, regional geological, geological features and hydrogeology condition of the ore deposit were studied, reserves and industrial index were got. The ore supply ability and quality are researched. The resource conditions, mining conditions, and external construction conditions were analyzed. The result shows that the accumulated bauxite in mine design has high economic value and it can meet the production requirements.
     (2) Considering the main characteristics of karst accumulated bauxite, the AHP-GRAM evaluation model for mining technology selection of karst accumulated bauxite was proposed. Firstly, the main influential factors of mining method selection were analyzed. Secondly, by using the system engineering, grey system theory and scientific decision-making method, the mining method and mining process were optimized to meet the needs of the project. And then, the open pit boundary of the accumulated bauxite was analyzed and the boundary parameters were studied. Finally, the production scale and service life of the mining area were determined.
     (3) The deposit geological characteristics, geology and hydrological characteristics, the existing mining machinery equipment, the mining methods, and the ore quality requirements of alumina plant were analyzed. Combining with the related physical and mechanical properties of the ore-body and surrounding rock medium, reference to the similar mining technical conditions at home and abroad, on the basis of the mining equipment selection principles for accumulated bauxite, the systematic science method such as grey system theory, fuzzy mathematics theory, and operational research were used comprehensively to establish the grey fuzzy comprehensive decision model for the mining equipments for accumulated bauxite. The model could select the main technical equipments for the mining area.
     (4) The site selection problem of karst accumulated bauxite is actually a mining logistics optimization problem. It is comprehensive optimization problem on site selection, transportation, production and alumina plant process need. The mining process system is actually a typical gray system. By introducing the method of gray planning system, the optimization model on site selection and ore blending with gray parameters was built. After the optimization calculation by advanced operations research software FICO Xpress-MP, the best site and the long-term planning of bauxite mining were got. The model ensures the economy of mine development and stable persistence of ore supply.
     (5) The united technology system on stope and yard ore blending of karst accumulated bauxite was proposed. The paper made the analysis on the planning efficiency of stope ore blending and buffer-regulating efficiency of yard ore blending under the combined effects mode. By taking advantage of FICO Xpress-MP, the gray multi-objective programming model for stope ore blending and mathematical model for yard ore blending were built. The study makes the karst accumulated bauxite ore blending problem turn systematism and modeling.
引文
[1]刘中凡.世界铝土矿资源综述[J].轻金属,2001(5):7-12.
    [2]刘中凡.我国铝土矿资源展望[J].轻金属,2001(2):4-9.
    [3]方启学.我国铝土矿资源特征及其开发利用前景[J].有色金属,2000,52(4):113-117,135.
    [4]邢东生,管永诗.我国铝土矿资源及氧化铝工业的现状与分析[J].采矿技术,2001,1(2):53-55.
    [5]穆新和.我国铝土矿资源合理开发利用的探讨[J].矿产与地质,2002,16(5):313-315.
    [6]张伦和.合理开发利用铝土矿资源实现我国氧化铝工业可持续发展[Z].太原:2008.
    [7]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述[J].轻金属,2008(2):6-8.
    [8]殷俐娟.我国铝土矿资源利用现状及未来管理政策[J].中国矿业,2004,13(1):11-15.
    [9]罗建川.基于铝土矿资源全球化的我国铝工业发展战略研究[D].中南大学,2006.
    [10]范振林,马茁卉.我国铝土矿资源可持续开发的对策建议[J].国土资源,2009(11):53-55.
    [11]孙志伟,鹿爱莉.我国铝土矿资源开发利用现状、问题与对策[J].中国矿业,2008,17(5):13-15.
    [12]陈建宏,古德生.矿业经济学[M].长沙:中南大学出版社,2007:302.
    [13]李昊,王庆飞.我国铝土矿资源开发利用现状及其产业研究[J].陕西科技大学学报(自然科学版),2009,27(5):154-157.
    [14]鹿爱莉,贾雅慧.我国铝土矿的综合利用研究[J].矿产保护与利用,2010(1):49-51.
    [15]韩中岭,娄世彬.论我国铝土矿资源状况及矿山综合开发利用问题[C].2010’中国矿业科技大会,中国江苏苏州
    [16]杨海洋.基于铝土矿资源供给的发展战略决策研究[J].矿冶工程,2008,28(2):104-108.
    [17]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
    [18]刘中凡,杜雅君.我国铝土矿资源综合分析[J].轻金属,2000(12):8-12.
    [19]鄢艳.我国铝土矿资源现状[J].有色矿冶,2009,25(5):58-60.
    [20]夏楚林,张起钻,王爱丽,等.广西平果岩溶堆积型铝土矿成矿机理及成 矿预测——以教美矿区岩溶堆积型铝土矿为例[C].华南青年地学学术研讨会论文集,2006:153-156
    [21]祝瑞勤,奚小双,吴堑虹,等.广西平果堆积型铝土矿成矿封闭环境研究[J].大地构造与成矿学,2011,35(3):386-393.
    [22]黎乾汉,曾德启.浅谈平果岩溶堆积型铝土矿的工业指标[J].矿产保护与利用,2001(6):49-52.
    [23]肖跃民.某堆积型铝土矿持续稳定供配矿研究[J].金属矿山,2006(5):7-10.
    [24]张幼蒂,王玉浚.采矿系统工程[M].徐州:中国矿业大学出版社,2000.
    [25]王青,王智静.露天开采整体优化[M].北京:冶金工业出版社,2000:256.
    [26]钱学森.论系统工程[M].上海交通大学出版社,2007:397.
    [27]汪应洛.系统工程[M].北京:机械工业出版社,2003:259.
    [28]白云飞,叶振华.基于突变优选理论的采矿方法选择[J].金属矿山,2011(10):61-63,67.
    [29]陈建宏,蒋权,郑海力,等.基于主成分聚类分析的采矿方法优选[J].科技导报,2011,29(27):36-41.
    [30]陈建宏,刘浪,周智勇,等.基于主成分分析与神经网络的采矿方法优选[J].中南大学学报(自然科学版),2010,41(5):1967-1972.
    [31]郭力.基于AHP的采矿方法模糊评价优选及开采动态模拟研究[D].青岛理工大学,2006.
    [32]李明,郑怀昌,赵勇,等.多目标决策密切值法在侯庄矿采矿方法优选中的应用[J].矿冶工程,2010,30(1):5-8.
    [33]刘方.金属矿山地下采矿方法选择系统[D].武汉理工大学,2011.
    [34]舒方坚.采矿方法选择的层次分析模型及应用[J].矿冶工程,2003,23(1):8-11.
    [35]孙征南.基于人工智能理论的采矿方法选择的研究[D].东北大学,2009.
    [36]魏一鸣,胡清淮.采矿方法选择中的多目标决策模型[J].有色矿冶,1993,9(3):4-9.
    [37]吴爱祥,郭立,余健,等.采矿方法模糊优选的神经网络模型构造及其应用[J].矿冶工程,2003,23(3):6-8,11.
    [38]刘晓亮,褚洪涛.采矿方法选择辅助决策专家系统[J].采矿技术,2010,10(4):1-2,37.
    [39]Bitarafan M R, Ataei M. Mining method selection by multiple criteria decision making tools[J]. The Journal of The South African Institute of Mining and Metallurgy,2004,9(104):493-498.
    [40]Alpay S, Yavuz M. A decision support system for underground mining method selection[M] New Trends in Applied Artificial Intelligence, Okuno H, Ali M, Springer Berlin/Heidelberg,2007:4570,334.
    [41]Azadeh A, Osanloo M, Ataei M. A new approach to mining method selection based on modifying the Nicholas technique[J]. Applied Soft Computing,2010, 10(4):1040-1061.
    [42]宋健,王福才,安长保.急倾斜极薄矿体采矿方法选择中的多目标灰色决策[J].东北大学学报(自然科学版),1998,19(6):642-644.
    [43]古德生,周科平.信息扩散原理及神经网络在采矿方法选择中的应用[J].中国矿业,2000,9(4):82-86.
    [44]肖木恩.模糊数学在采矿方法选择中的应用[J].矿业研究与开发,2003,23(1):15-17.
    [45]池秀文,田金华.改进层次分析法在采矿方法选择中的应用[J].武汉理工大学学报,2003,25(5):50-52.
    [46]王新民,赵彬,张钦礼.基于层次分析和模糊数学的采矿方法选择[J].中南大学学报(自然科学版),2008,39(5):875-880.
    [47]Boyce D. A short history of the field of regional science[J]. Papers in Regional Science,2004(83):31-57.
    [48]Greenhut M L. Integrating the leading theories of plant location [J]. Southern Economic Journal,1952,18(4):526-538.
    [49]Safari M, Ataei M, Khalokakaie R, et al. Mineral processing plant location using the analytic hierarchy process-a case study:the Sangan iron ore mine (phase 1)[J]. Mining Science and Technology (China),2010,20(5):691-695.
    [50]Humphreys K K, Leonard J W. Optimum selection of mining sites[J]. Coal Age,1978,83(11):72-77.
    [51]Magda R. Aspects of optimum mine site selection[J]. Mining science & technology,1985,2(3):217-228.
    [52]Yavuz M. Selection of plant location in the natural stone industry using the fuzzy multiple attribute decision making method[J]. Journal of The South African Institute of Mining and Metallurgy,2008,108(10):641-650.
    [53]方海秋.场(厂)址选择的优化研究与应用[J].化工矿物与加工,2006,35(6):31-35.
    [54]方海秋.厂址选择中的物流分析[J].化工矿物与加工,2000,29(8):19-21.
    [55]王琦.DEA在厂址选择中的应用[J].镇江市高等专科学校学 报,2000,13(3):77-79.
    [56]程运材,杨海洋,裴启涛,等.堆积型铝土矿选矿厂址与配矿的综合优化研究[J].湖南科技大学学报:自然科学版,2008,23(2):115-119.
    [57]漆杨,秦子玄,陈霞,等.基于免疫克隆算法的容量受限工厂选址问题研究[J].计算机应用,2009,29(1):127-129.
    [58]Caccetta L, Hill S P. An application of branch and cut to open pit mine scheduling[J]. Journal of Global Optimization,2003,27(2):349.
    [59]Egger F. Implementation of a dynamic mining strategy following changing conditions in a multipit, multielement blending iron ore mining operation[J]. BHM Berg- und Huttenmannische Monatshefte,2011,156(8):325.
    [60]Newman A, Martinez M, Kuchta M. A review of long-and short-term production scheduling at Lkab's Kiruna mine[M] Handbook of Production Scheduling, Herrmann J W, Springer US,2006:89,265.
    [61]Schulze M, Zimmermann J. Scheduling in the context of underground mining[M] Operations Research Proceedings 2010, Hu B, Morasch K, Pickl S, et al, Springer Berlin Heidelberg,2011,611.
    [62]Strang K. Applying multidisciplinary logistic techniques to improve operations productivity at a mine[J]. Logistics Research,2011,3(4):207.
    [63]刘文生.数学规划在露天矿生产规划中的应用[D].河北理工学院河北理工大学,2004.
    [64]黄启富,陈建宏.基于多轮PSO算法的中长期动态优化配矿研究[J].计算机应用研究,2010,27(10):3711-3717.
    [65]Gershon M E. Use of mathematical programming for strip mine planning and scheduling [J]. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Society,1983,274:1986-1990.
    [66]Gershon M E. Open-pit production scheduler:algorithm and implementation[J]. Mining Engineering,1987,39(8):793-796.
    [67]Gershon M E. Developments in computerized mine production scheduling[J]. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Society,1986,280(pt A):1801-1804.
    [68]Gershon M E, Murphy F H. Optimizing single hole mine cuts by dynamic programming[J]. European Journal of Operational Research,1989,38(1):56-62.
    [69]Gershon M. Linear programming approach to mine scheduling optimization[C]. Golden, CO, USA:Soc of Min Eng of AIME,1982.
    [70]Gershon M. Comparison of geostatistical approaches for drillhole site selection[C]. Lexington, KY, USA:Univ of Kentucky,1986.
    [71]Gershon M. Blending-based approach to mine planning and production scheduling[C]. Universal Park, PA, USA:Soc of Mining Engineers of AIME,1986.
    [72]Gershon M E. Use of mathematical programming for strip mine planning and scheduling[C]. Atlanta, Ga, USA:Soc of Mining Engineers of AIME,1983.
    [73]Gershon M E. Mine scheduling optimization with mixed integer performance[C]. Honolulu, HI, USA:Soc of Min Eng of AIME,1982.
    [74]Gershon M E. Developments in computerized mine production scheduling[C]. New York, NY, USA:Soc of Mining Engineers of AIME,1985.
    [75]Gershon M E, Murphy F H. Optimizing single hole mine cuts by dynamic programming[J]. European Journal of Operational Research,1989,38(1):56-62.
    [76]Gershon M E. Mine scheduling optimization with mixed integer programming [J]. Mining Engineering,1983,35(4):351-354.
    [77]Dowd P A, Onur A H. Open-pit optimization[J]. Transactions of the institution of mining and metallurgy, Section A:Mining Technology,1993,102:95-113.
    [78]Ramazan S. Large-scale production scheduling with the fundamental tree algorithm-model, case study and comparisons [C]. Perth, WA, Australia:Australasian Institute of Mining and Metallurgy,2007.
    [79]Ramazan S, Dagdelen K, Johnson T B. Fundamental tree algorithm in optimising production scheduling for open pit mine design[J]. Transactions of the Institutions of Mining and Metallurgy, Section A:Mining Technology,2005,114(1):A45-A54.
    [80]Ramazan S. The new fundamental tree algorithm for production scheduling of open pit mines[J]. European Journal of Operational Research,2006,177(2):1153-1166.
    [81]程曦.烧结配矿配比的线性分式优化模型研究[D].武汉科技大学,2010.
    [82]董绍宾.唐钢烧结配矿及工艺条件优化研究[D].河北理工大学,2007.
    [83]贺真.烧结含铁原料性能与配矿试验研究[D].中南大学,2005.
    [84]侯煜.线性规划法在露天矿配矿领域的应用[J].矿业工程,2006,4(1):22-24.
    [85]黄玉明.重钢烧结配矿优化研究[D].重庆大学,2005.
    [86]李发本.三道庄露天矿配矿管理系统研究[D].西安建筑科技大学,2004.
    [87]李云涛.烧结优化配矿系统的研究[D].中南大学,2004.
    [88]刘振.翼钢烧结矿配矿优化研究[D].西安建筑科技大学,2007.
    [89]王宾.岩峰石灰石矿配矿系统优化的研究[D].武汉科技大学,2005.
    [90]文超.基于GIS技术的露天矿配矿管理系统研究[D].西安建筑科技大学,2009.
    [91]熊炎飞.灵乡石灰石矿实时配矿系统的研究[D].武汉科技大学,2005.
    [92]袁晓丽.烧结优化配矿综合技术系统的研究[D].中南大学,2007.
    [93]彭兆祥.乌龙泉矿白云石动态实时配矿系统的研究[D].武汉科技大学,2010.
    [94]易丽平,王李管,房智恒.线性规划在露天配矿中的应用[J].现代矿业,2010(1):42-44.
    [95]张立溥,胡清淮.多矿山综合配矿线性规划问题研究[J].武汉化工学院学报,2004,26(1):88-91.
    [96]舒航,戚国安.可变系数目标规划配矿模型及双重多目标决策[J].冶金矿山设计与建设,1992,2(3):50-56.
    [97]胡清淮.受限条件下的矿山生产配矿数模研究[J].矿业研究与开发,2002,22(6):1-3.
    [98]韦立凡.浅谈堆积型铝土矿配矿数学模型[J].露天采矿技术,2004(2):1-3.
    [99]程运材.平果铝土矿资源合理规划综合利用研究[D].中南大学,2008.
    [100]徐铁军,杨鹏.基于模糊多目标优化算法的矿山配矿优化[J].北京科技大学学报,2009,31(11):1363-1367.
    [101]姚旭龙,胡乃联,周立辉,等.基于免疫克隆选择优化算法的地下矿山配矿[J].北京科技大学学报,2011,33(5):526-531.
    [102]杨海洋.岩溶堆积型铝土矿采矿用地与生态重建技术研究[D].中南大学,2010.
    [103]程运材,王太海.平果铝土矿可持续发展探讨[J].世界采矿快报,1999,15(7):6-9.
    [104]李宝祥.金属矿床露天开采[M].北京:冶金工业出版社,1992:266.
    [105]刘霁.喀斯特石漠化地区采矿环境影响及综合治理研究[D].中南大学,2009.
    [106]杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].北京:清华大学出版社,2008:219.
    [107]姚骥,罗显峰.平果岩溶堆积型铝土矿反铲开采工艺的优化与应用[J].湖南有色金属,2005,21(4):1-5.
    [108]杨海洋.平果堆积型铝土矿开采方法与工艺[J].采矿技术,2002,2(2):31-33.
    [109]陈剑,李晓波.模糊综合评价在矿山设备选型中的应用[J].矿业快报,2005,21(4):13-14,27.
    [110]董金波.工业企业厂址选择与总体规划[M].北京:冶金工业出版社,1993.
    [111]雷明.厂址选择[M].北京:科学技术文献出版社,1992.
    [112]唐冬梅.厂址选择及其方案评价的研究[D].西安:西安建筑科技大学,2001.
    [113]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002:496.
    [114]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005:169.
    [115]谢乃明,刘思峰,党耀国,等.灰色系统理论及其应用[M].北京:科学出版社,2010:415.
    [116]冯耕中.现代物流规划理论与实践[M].北京:清华大学出版社,2005:311.
    [117]彭扬,伍蓓.物流系统优化与仿真[M].北京:中国物资出版社,2007:378.
    [118]曹阳,李永康,贺正楚.堆积型铝土矿露天采场选址与开拓顺序优化研究[J].矿业研究与开发,2009,29(1):96-98.
    [119]杨珊,程运材,杨海洋,等.Xpress-MP在铝土矿配矿优化中的应用[J].矿业研究与开发,2008,28(5):33-35.
    [120]Gueret C, Prins C, Sevaux M. Applications of optimization with Xpress-MP[M]. Dash Optimization Ltd.,2000.
    [121]何艳梅.平果铝土矿配矿模型的建立及优化研究[D].长沙:中南大学,2008.
    [122]黄三江.铝土矿采场配矿技术探讨[J].湖南有色金属,2000,16(4):54-55.
    [123]潘晓锋.堆积型铝土矿出矿阶段的配矿模型[J].广西科学院学报,2012,28(2):140-143.
    [124]雷鸣.平果铝土矿供矿管理系统开发[J].采矿技术,2002,2(3):75-76.
    [125]冯英浚.大系统多目标规划的理论及应用[M].北京:科学出版社,2004:110.
    [126]路正南,张怀胜.运筹学基础教程[M].合肥:中国科学技术大学出版社,2004.
    [127]党耀国,刘思峰,王正新,等.灰色预测与决策模型研究[M].北京:科学出版社,2009:191.
    [128]杨珊,程运材,杨海洋,等. Xpress-MP在铝土矿配矿优化中的应用[J].矿业研究与开发,2008(5):33-35.
    [129]杨珊,陈建宏,杨海洋,等.基于Xpress-MP堆积型铝土矿堆场配矿优化研究[J].金属矿山,2010(3):9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700