用户名: 密码: 验证码:
多层油藏渗流规律研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田精细开发面临一系列新问题,如大厚油层中垂向渗透率等参数的测量,分层注水井的流量调配及考虑温度的气井压力解释等。这些问题中均涉及到多层油藏渗流规律这一共性问题。为此本文将不同渗流参数及热力学参数油藏视为多层,开展多层渗流基础方法研究。作者在油田进行多次现场试验,建立了符合油田实际的物理模型和数学模型,解决了问题并将这一研究成果应用到油田精细开发中。
     为解决大厚油层的垂向渗透率问题,本文首先从渗流力学基本方程出发,给出了考虑垂向渗流的单层油藏井底压力解析解,绘制了双对数图版并给出了相应的压力解释方法。考虑垂向流动的多层油藏和单层油藏的渗流规律具有一定的相似性,在建立多层油藏物理模型时,认为除了各层内流体的径向流动和垂向流动外,在两层交界面上还有层间越流,且相邻两层在交界面上的压力相等,垂直方向的渗流速度也相等。流体均通过第一层的射开段流入井筒,其它层与井筒不连通。通过定义一系列无量纲参数,将各层渗流方程和定解条件转换为无量纲形式,并在拉普拉斯空间上使用分离变量法联立求解各层的渗流方程,在求出井底压力表达式后通过拉普拉斯数值反演得到实空间上的井底压力表达式,根据各层的井底压力表达式画出双对数图版,供试井分析使用。双对数图版的形态由定义的无量纲参数决定,通过调整这些参数,使理论压力曲线与实测压力曲线吻合,即可得到真实的地层渗透率、井储系数和表皮系数。本文还研究了垂向渗透率测试的测试工艺并进行现场试验,这在国内尚属首例。
     在研究注水井流量调配过程中的流体流动规律时,将注水井中的流动分为井筒管流、配水器节流和地层渗流三个过程,分别研究了它们的流动规律和三者的耦合流动,并考虑了周围井网的影响。在井筒管流的研究中,通过伯努利方程,建立了井口压力和各层配水器嘴前压力的关系式;在配水器节流的研究中,使用数值方法模拟了配水器中的流动,发现水嘴的总压损失和注入量的平方成正比;在地层渗流的研究中,计算了定流量注入的无限大地层中不考虑井筒半径的直井、考虑井筒半径的直井及垂直裂缝井的井底压力表达式。最后综合考虑三种流动,得出了各层注入量与井口压力及各层水嘴直径的关系式。在理论分析的基础上,给出了具体的流量调配方法——升压法。通过改变井口压力,分别测量改变前后的各层配水器嘴前压力和注入量就能计算出各层的吸水指数,根据吸水指数和各层计划注入量计算出合适的井口压力和各层水嘴直径。从节约成本的角度考虑,应使井口压力在满足计划注入量误差要求的情况下尽可能的小。
     气井井筒中的温度并不是常数,由于压力计一般不下到产气层,所以压力计处和产气层有温差,在进行试井分析时必须考虑由温差引起的附加压力。本文在建立气井热量传递模型时根据热力学参数和物理性质的不同,将地层分为多层,并忽略地层中的垂向热传导,认为只有水平方向的热传导,同时忽略井筒中的垂向热传导,认为只有垂向的热对流。将气井中的热量传递分为三个部分,分别为井筒内的一维热对流,热表皮区的热量传递(包括环空的对流和辐射,水泥环的热传导)和地层中的水平方向热传导。分别建立井筒中的对流方程和地层中的热传导方程并用综合热传导系数联系地层温度和井筒温度,最后求解出井筒中的温度分布表达式和地层温度分布表达式。在建立模型时认为产气层厚度很小,与其它层相比厚度可以忽略,从而产气层内的温度为常数。使用拟压力法得出产气层的井底拟压力,并考虑温度产生的附加拟压力最终得到压力计处的拟压力表达式。根据此表达式画出考虑温度的气井井底压力理论曲线并进行了分析。
A series of new problems are essentially needed to be solved at fine development of oil field, such as measurements of vertical permeability and other formation parameters at different depths of a thick oil layer, the method of separate layer water injection and the pressure interpretation method of gas well considering temperature effect. These problems are all related to the law of fluid flow in multi-layer reservoirs. The heterogeneous reservoir is divided into layers with different formation parameters and thermodynamic parameters in this paper, and the law of fluid flow in these layers is studied. Lots of tests are carried out at oil fields, and physical and mathematical models are built up. The results have been applied to fine development of oil field after the problems are solved.
     The analytical pressure formula of a single-layer reservoir considering vertical flow is first given to solve the problem of measurements of vertical permeability of a thick oil layer on the basis of basic equation of fluid mechanics in porous media. The corresponding log-log type curves are drawn and the pressure interpretation method is built up. The law of fluid flow in multi-layer reservoir has some extent similarity with that in single-layer reservoir. Cross flow between neighboring layers, horizontal and vertical flow in layers are considered on the assumption of that pressure and vertical flow of the neighboring layers are equal, and fluids only flows through perforations of top layer in wellbore,which means fluid is not permitted to flow into other layers. Seepage equations and corresponding definite conditions are transformed to dimensionless forms by defining some dimensionless parameters. They are solved by using the method of separation of variables in the Laplace space and then solutions in the real space are given by Laplace inversion. Log-log type curves are drawn for pressure interpretations and the profiles of the curves are controlled by the dimensionless parameters. The test technology of vertical permeability is studied and some field tests are carried out, that is the first try at China.
     The fluid flow at separate layer water injection can be considered as three parts, which are the pipe flow in the well bore, throttle flow in the water distributor and the seepage in the reservoir. In the study of the pipe flow, the relationship between the wellhead pressure and the wellbore pressures of the layers is built up through the Bernoulli equation. In the study of throttle flow, the flow in the water distributor is simulated by numerical methods and it is found that the total pressure loss is proportional to the square of the flow rate into the water distributor. In the study of the seepage in the reservoir, the wellbore pressure formulas of the vertical well and the vertically fractured well are derived with infinite boundary and constant flow conditions. Considering all the three types of flows, the relationship between wellhead pressure and tap diameters of water distributors of different layers is proposed. Finally an effective method named pressure rise method is given to adjust flow rates of the layers. When changing the wellhead pressure, flow rates and pressures of the layers can be measured. On the basis of the measurement the water injection indexes are calculated. Then proper wellhead pressure and tap diameters will be calculated through water injection indexes and flow rates of the layers. The wellhead pressure should be as small as possible when the flow rate error limits are satisfied in order to reduce the costs.
     The temperature in gas well bore is not constant and the position of the pressure gauge is usually higher than the one of the gas production layer. As a result temperature difference between them causes additional pressure. This effect should be considered in pressure interpretation. The formation is divided into many layers according to thermodynamic parameters and single layer has uniform thermodynamic parameters. The vertical heat conductivity in the layers is ignored and only the horizontal heat conductivity is considered. The vertical heat conductivity in the well bore is also ignored and only the vertical heat convection is taken into account. The heat transfer of gas well can be considered as three parts, the vertical heat convection in the well bore, the horizontal heat conductivity between the well bore and the formation and the horizontal heat conductivity in the formation. The temperature distribution can be calculated on the basis of the heat convection equation in the well bore, the heat conductivity equation in the formation and the integrated heat conductivity coefficient. The temperature of the gas producing layer is considered as constant because the thickness is too small compared with other layers. Pseudo pressure is used to obtain the well bore pressure formula of the gas well, and the final result is corrected by the additional pressure. Finally the log-log type curves are drawn and the pressure data is interpreted.
引文
[1] Azari M., Wooden W. O., Coble L. E. 1990. A complete set of laplace transforms for finite conductivity vertical fractures under bilinear and trilinear flows[J]. SPE 20556.
    
    [2] Crump K. S. 1976. Numerical inversion of laplace transforms, using a fourier series approximation[J]. J.ACM., 23(1).
    
    [3] Dubner H., Alate J. 1968. Numerical inversion of laplace transforms by relating them to the finite fourier cosine transform[J]. J. ACM., 15(1).
    
    [4] Standing M. B. 1947. A pressure-volume-temperature correlation for mixtures of Californiaoils and gases[Jj. API Drill Prod Pract(5): 275-287.
    
    [5] Stehfest H. 1970. Numerical inversion of laplace transforms[J]. Communications of the ACM., 13(1): 47-49.
    
    [6] Wooden B., Azari M., Soliman L. E. 1992. Well test analysis benefits from new method of laplace space inversion[J]. Oil and Gas J., 90(29): 108-110.
    
    [7] Alves I. N. 1992. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPEPF(11): 363.
    
    [8] Barenblatt G. I., Entor V. M., Ryzhik V. M. 1991. Theory of fluid flow through natural rocks[M]. Dordrecht: Kluwer.
    
    [9] Bear J., Buchlin J. M. 1991. Modelling and application of transport phenomena in porous mdia[M]. Dordrecht: Kluwer.
    
    [10] Bourdet D. 1985. Pressure behavior of layered reservior with crossflow[J]. SPE13628.
    
    [11] Cazarez-Candia O., Vasquez-Cruz M. A. 2005. Prediction of pressure, temperature, and velocity distribution of two-phase flow in oil wells[J]. Journal of Petroleum Science and Engineering, 46(3): 195-208.
    
    [12] Curtis M. R., Witterholt E. J. 1973. Use of the temperature log for determining flow rates in producting wells[J]. SPE4637.
    
    [13] Dullien F. A. 1992. Porous media, fluid transport and pore structure[M]. San Diego:Academic Press.
    
    [14] Ehlig-Economides C. A., Joseph J. A. 1985. A new test for determination of individual layer properties in a multilayered reservoir[J]. SPE14167.
    
    [15] Ene H. I., Poliserski D. 1987. Thermal flow in porous media[M]. Dordrecht: Reidel.
    
    [16] Fan L ., Lee W. J. Semi-analytical model for thermal effect on gas well pressure buildup tests[J]. SPE56612.
    
    [17] Gao Chengtai. 1984. Single-phase fluid flow in a stratified porous medium with crossflow[J].Society of Petroleum Engineers Journal, 24(1): 97-106.
    
    [18] Greenkorn R. A. 1983. Flow phenomena in porous medai[M]. New York: Marcel Dekker.
    [19] Grinagarten A. C. 1972. Pressure anulysis for fractured wells[J]. Paper SPE,4051.
    [20] Grinagarten A. C., Ramey H. J. 1974. Unsteady-state pressure distributions created by a well with a single horizontal fracture[J]. SPEJ(8): 413-426.
    
    [21] Grinagarten A. C., Ramey H. J., Raghavan R. 1974. Unsteady-state pressure distributions created with a single infinite-conductivity vertical fracture[J]. SPEJ(8): 347-360.
    [22] Hasan A. R. 1991. Heat transfer druing two-phase flow in wellbores:part ii-wellbore fluid temperatue[J]. SPE22948.
    
    [23] Herrera J. O., Blrdwell B. F., Hanzllk E. J. 1978. Wellbore heat losses in deep steam injection wells[J]. SPE7117.
    
    [24] Hugh D. M. 1977. Fluid injection profiles-modern analysis of wellbore temperature survey[J].SPE6783.
    
    [25] Kamal M., Brigham W. E. 1975. Pulse testing response for unequal pluse and shut-in periods[J]. Trans. AIME, 15(5): 399-410.
    
    [26] Khalifah A. A., Hashim H. S. Pulse testing correlation charts[J]. SPE14253.
    [27] Lee A. L., Gonzalez M H., Eakin B. E. 1966. The viscosity of natural gases[J]. Journal of Petroleum Technology.
    
    [28] Lefkovits H. C., FhzebroekP., Allen E. E. 1961. A study of the behavior of bounded reservoirs composed of stratified layer[J]. Society of Petroleum Engineers Journal(3): 45-58.
    [29] Matheron G. 1966. Les cahiers de centre de morphologie mathematique[J]. Rev. Inst. Franc.Petrole, 21(4): 564.
    
    [30] Muskat M. 1937. The flow of homogeneous fluids through porous media[M]. New York:McGrawHill.
    
    [31] Nield D. A., Bejan A. 1992. Converction in porous media[M]. New York: Springer-Verlag.
    [32] Olarewaju J. S. 1989. A studyof pressure behavior of layered and dual-porosity reservoirs in the presence of skin[J]. Wellbore Storage, and Phase Segregation,SPEFE(9): 397-405.
    [33] Phillips O. M. 1991. Flow and reaction in permeable rocks[M]. Cambridge: Cambridge University Press.
    
    [34] Ramey H. J. 1962. Wellbore heat transmission[J]. JPT(4): 427-435.
    
    [35] Sagar R. K., Doty D. R., Schidt Z. 1989. Predicting temperature profiles in a flowing well[J].SPEPE:441.
    [36]Satter A.1965.Heat losses of steam down a wellbore[J].JPT(7):845-851.
    [37]Shi H.,Holmes J.A.2003.Drift-flux modeling ofmultiphase flow in wellbores[J].SPE84228.
    [38]Shi H.,Holmes J.A.2005.Drift-flux modeling of two-phase flow in wellbores[J].SPE Journal,10(1):24-33.
    [39]Shi H.,Holmes J.A.2005.Drift-flux parameters for three-phase steady-state flow in wellbores[J].SPE Journal,10(2):130-137.
    [40]Shiu K.C.,Beggs H.D.1980.Predicting temperature in flowing oil wells[J].Journal of Energy Resources Technology(3):1-11.
    [41]Smith R.C.,Steffensen R.J.1975.Interpretation of temperature profiles in water-injection wells[J].JPT(6):777-784.
    [42]Tian S.,Finger J.T.2000.Advanced geothermal wellbore hydraulics model[J].Journal of Energy Resources Technology,122(3):142-147.
    [43]Willhite G.P.1967.Over-all heat transfer coefficients in steam and hot water injection wells[J].JPT(5):607-615.
    [44]安耀清,祁传国.2001.地面温差与稠油产能关系特例分析[J].油气井测试,10(6):26-27.
    [45]楚泽涵,谢京.1994.用测井方法估算渗透率的评述[J].石油勘探与开发,21(1):46-52.
    [46]戴榕菁,孔祥言,钟钊新.1989.无限大多层油藏渗流问题的解析解及其应用[J].应用数学和力学,10(9):825-832.
    [47]单学军,张士诚,王文雄等.2004.稠油开采中井筒温度影响因素分析[J].石油勘探与开发,31(3):136-139.
    [48]邓刚,王琦.2002.桥式偏心分层注水及测试新技术[J].油气井测试,11(3):45-48.
    [49]高美娟,田景文,赵启蒙.2003.用序贯指示随机模拟法结合地震数据研究渗透率空间分布[J].行油地球物理勘探,38(s1):98-103.
    [50]谷建伟,翟世奎.2005.水平井挖掘正韵律厚油层潜力影响因素分析[J].石油大学学报:自然科学版,29(2):61-64.
    [51]郭永存,曾亿山,卢德唐.2005.地层静温预测的非牛顿流体数学模型[J].物理学报,54(02):802-806.
    [52]贺莉丽,王培虎.2007.Mdt结合nmr进行储层渗透率评价[J].石油天然气学报,29(3):229-230.
    [53]侯鹏倩.2005.自力式调节阀及其应用[J].行油化工自动化(1):83-85.
    [54]黄乔松,赵文杰,杨济泉等.2004.核磁共振渗透率模型研究与应用[J].青岛大学学报(自然科学版),17(4):37-40.
    [55]加拿大国家能源保护委员会著,童宪章等译.1988.气井试井理论与实践[M].北京:石 油工业出版社.
    [56]姜晓燕,卢德唐.2000.温度试井解释方法的研究及应用[J].油气井测试,9(3):32-36.
    [57]科斯林著,陈忠祥、吴望一译.1984.流体通过多孔材料的流动[M].北京:石油工业出版社.
    [58]孔宪辉,卢德唐,林春阳.2007.配水器流场的数值模拟[J].水动力学研究与进展:A 辑,22(1):1-8.
    [59]孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学出版社.
    [60]孔祥言,徐献芝,卢德唐.1996.各向异性气藏中分支水平井的压力分析[J].天然气工业,16(6):25-30.
    [61]李干佐,崔利民,郑立强.1999.我国三次采油进展[J].日用化学品科学(s1):1-9.
    [62]李卫彬,王丽英,孙庆萍.2005.特高含水期厚油层细分挖潜方法研究[J].大庆石油地质与开发,24(1):58-60.
    [63]李学丰,丁建国.1998.差压式定量配水器的研制与应用[J].石油钻采工艺,20(5):102-104.
    [64]李增仁.2003.高压注水井分注技术研究[J].钻采工艺,26(3):109-111.
    [65]梁金国,张硅祥.1996.利用微差井温测试资料确原始油藏导热系数[J].石油大学学报,20(2):59-64.
    [66]梁卫东,姜贵璞,王丽敏等.2004.砂岩油田合理注水压力的确定[J].大庆石油学院学报,28(4):42-44.
    [67]林梁.1994.电缆地层测试器资料解释理论与地质应用[M].北京:石油工业出版社:25-60.
    [68]刘淑芬,梁继德.2004.试井技术识别无效注采水循环通道方法探讨[J].油气井测试,13(1):27-30.
    [69]刘玉石,黄克累.1997.控制井眼温度维持井壁稳定[J].力学与实践,19(1):30-31.
    [70]卢德唐,郭冀义,郑新权.1998.试井分析理论及方法[M].北京:石油工业出版社.
    [71]卢德唐,孔祥言,束方军.1998.各种边界条件下复合双孔油藏的井底压力[J].水动力学研究与进展A辑,13(2):152-161.
    [72]卢德唐,曾亿山,郭永存.2002.多层地层中的井筒及地层温度解析解[J].水动力学研究与进展A辑,17(03):382-390.
    [73]卢文东,肖立志,李伟等.2007.核磁共振测井在低孔低渗储层渗透率计算中的应用[J].中国海上油气,19(2):103-106.
    [74]卢祥国,李文甫.1993.空心抽油杆掺热水时杆及井筒温度分布研究[J].大庆石油学院学报,17(1):36-43.
    [75]马伟.2006.油田分层注水恒流堵塞器的研究[D]:[硕士].哈尔滨:哈尔滨工业大学.
    [76]毛莜菲,汤苏林.2005.边界层对喷水推进器进水管内流场影响[J].水动力学研究与进展,A辑,20(4):479-485.
    [77]庞铁力,徐德奎.2003.偏心集成细分注水管柱的研究与应用[J].石油矿场机械,32(2):53-55.
    [78]曲昌学,袁伯利,等.2002.油田注水井智能双流调节阀装置的研制[J].石油机械,30(6):24-26.
    [79]佘梅卿,申秀丽,等.1995.分层采油技术的研究与应用[J].石油机械,23(12):43-49.
    [80]宋辉.1994.井筒瞬态温度场研究与应用[J].石油钻采工艺,16(2):67-72.
    [81]孙桂玲,盖旭波,刘彬等.2002.细分注水工艺技术[J].石油钻采工艺,24(S1):79-81.
    [82]汪泓.2003.电加热井的井筒温度场数学模型[J].油气井测试,12(3):1-3.
    [83]王建平,王晓冬,马世东.2007.各向异性部分射开直井不稳定渗流理论研究[J].大庆石油地质与开发,26(3):65-67.
    [84]王磊,卢德唐,郭冀义等.2007.地下岩体的垂向渗透率测试及分析[J].实验力学,22(1):69-74.
    [85]王瑞和,白玉湖.2003.井底受限射流流场的数值模拟[J].石油大学学报:自然科学版,27(5):36-38.
    [36]王亚.2008.泌238断块提高水驱开发效果对策研究及应用[J].中外能源,13(4):53-57
    [87]王志军,刘秀航,谭志安等.2004.水井增注措施优化设计方法[J].大庆石油学院学报,28(4):39-41.
    [88]王尊策,吴梅.2001.定量注水堵塞器的性能研究[J].石油机械,29(3):19-21.
    [89]魏海宝.2008.大孔道地层吸水剖面组合测井技术[J]_石油天然气学报,30(2):477-478.
    [90]谢华,王凤.2007.细分注水方法的研究[J].油气田地面工程,26(2):8-9.
    [91]谢梅波.1989.温度对渤海采油井的影响[J].中国海上油气,1(5):47-52.
    [92]徐艳.2007.定量配产器结构及特性研究[D]:[硕士].大庆:大庆石油学院.
    [93]薛定谔著,王鸿勋等译.1982.多孔介质中的渗流物理[M].北京:石油工业出版社.
    [94]杨勤生.2002.一种新型偏心分层注水工艺管柱[J].石油钻采工艺,24(2):74-75.
    [95]尹中民,武强,刘建军等.2004.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学与工程学报,23(14):2390-2395.
    [96]袁铁燕,王修利.1998.大庆油田高含水后期细分注水工艺技术[J].石油钻采工艺,20(5):85-88.
    [971曾昭英,张大为.1994.利刚脉冲试井确定油层垂向渗透率的数学模型及分析[J].水动力学研究与进展:A辑,9(3):257-261.
    [98]曾昭英,张大为.2002.夹层对低渗透油层开发效果的影响[J].水动力学研究与进展:A 辑,17(1):108-115.
    [99]翟云芳,张大为.1989.脉冲试井理论图版及其应用分析[J].大庆石油学院学报,13(1):1-9.
    [100]张柏年,廖锐全.1991.同时预测油井中压力和温度剖面方法的改进[J].江汉石油学院学报,13(4):32-39.
    [101]张大为,曾昭英.2000.夹层垂向渗透率对低渗透油层含油饱和度的影响[J].大庆石油学院学报,24(1):22-24.
    [102]张健.2007.新型细分注水技术研究[D]:[硕士].东营:中国石油大学.
    [103]张健,丛洪良.2001.免投堵塞器恒流量偏心配水器的研制[J].石油机械,29(11):17-18.
    [104]张金国,张光焰,王海英等.2008.无机颗粒堵剂对砂岩地层适应性研究[J].油田化学(2):148-150.
    [105]张庆华,康宣华.2002.新型分层采油管柱与工具的研制[J].石油机械,30(3):29-31.
    [106]张文昌,朱新明.2002.Rft和tint压力测试对比与分析[J].油气井测试,11(5):41-44.
    [107]张迎进,刘刚,朱忠喜等.2004.注水井配水工具智能排布软件开发[J].断块油气田,11(2):67-69.
    [108]郑超,刘建军,薛强.2007.储层渗流与大孔道管流耦合分析[J].科学技术与工程,7(24):6411-6412.
    [109]钟火康,朱筱敏,吴胜和等.2007.注水开发油藏高含水期大孔道发育特征及控制因素--以胡伏集油田胡12断块油藏为例[J].石油勘探与开发,34(2):207-211.
    [110]周灿灿,程相志.2002.核磁共振自旋回波串确定渗透率方法探讨[J].测井技术,.26(2):123-125.
    [111]周望.1998.大庆油田分层开采技术的发展与应用[J].大庆石油地质与开发,17(1):36-39.
    [112]周晓东,檀朝东.1997.新型kpx型偏心自调配水器的研制[J].石油钻采工艺,19(1):88-92.
    [113]周晓君.2000.偏心定量水嘴及其流量调节特性[J].断块油气田,7(5):50-52.
    [114]庄礼贤,尹协远,马晖扬.1991.流体力学[M].合肥:中国科学技术大学出版社.
    [115]邹艳华,李远,那贺忠.2003.注水井分层流量调配方法研究[J].油气井测试,12(03):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700