用户名: 密码: 验证码:
铁钴镍系过渡金属氧化物纳米结构的制备、表征及磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁钴镍系过渡金属氧化物纳米材料由于具有一系列良好的磁学、光学、电学等性能,被广泛的应用在磁存储器件、核磁共振成像、催化剂、敏感器件、吸波材料、光电器件等领域。纳米材料的物理和化学性质很大程度上与其形貌、尺寸和结构有着密切的关系。因此,发展能够有效控制合成具有特定尺寸和形貌、结构良好、性能优越的铁钴镍系金属氧化物纳米结构的新方法具有重要意义。
     由于单一组分的纳米粒子表面极不稳定,容易产生团聚,且暴露在外部环境中容易被氧化或腐蚀,导致其性能大大降低。为了有效的阻止纳米金属氧化物颗粒的团聚,避免其被氧化或腐蚀,找到一种步骤简单、合成周期短、成本低廉、无污染的合成方法制备出具有核壳结构的铁钴镍系金属氧化物纳米复合材料,对进一步的研究有着重要的理论和实际应用价值。
     近年来,人们在非磁性和反铁磁性物质中发现了室温铁磁性后,随着化学合成方法的发展和测试手段的进步,有关NiO和CoO纳米颗粒室温铁磁性的研究引起了许多科研工作者的关注。然而,目前的工作中大多是有关NiO及CoO纳米颗粒的研究,很少有对具有各向异性形状的NiO及CoO纳米材料的室温铁磁性的报道。
     本论文以FexOy、NiO和CoO为研究对象,在FexOy核壳结构的合成新方法,NiO和CoO各向异性结构的合成及形成机制和所获得的铁钴镍系新型纳米结构的磁学性能等方面进行了研究。主要的工作如下:
     1.以Fe(NO3)3·9H2O为铁源,PVA为软模板,首次在不需要添加任何催化剂和表面活性剂的条件下,采用简单的水热法制备了FeOOH@PVA纳米棒,研究了PVA、反应温度及反应时间对样品结构及形貌的影响。分析表明,在FeOOH@PVA纳米棒的形成过程中,PVA起到阻止FeOOH向α-Fe2O3转变和生长导向的作用。反应温度对样品的结构及形貌有重要影响,随着反应温度的升高,样品逐渐由棒状变为球状。反应时间对样品的形貌也有一定影响,随着反应时间增加样品由棒状变为无规则形貌。因此,温度为160℃,反应12h为合成FeOOH@PVA纳米棒的最佳反应条件。
     采用水热法制备了Fe3O4@PVA纳米颗粒,研究了反应温度、不同铁源对产物结构和形貌的影响。分析了不同形貌样品的生长机理,并研究了样品的室温磁性。结果表明,以FeCl2为Fe2+源,反应温度为160℃时,样品为非晶态;随着反应温度升高,样品向八面体形状转化,温度升高至200℃时,样品完全转化为八面体结构Fe3O4@PVA纳米颗粒。实验中其它条件不变时,使用FeSO4代替FeCl2,得到的产物为立方体形状Fe3O4@PVA纳米颗粒。使用振动样品磁强计(VSM)测量了八面体结构和立方体结构Fe3O4@PVA样品的室温磁学性质,研究了样品形貌对磁性的影响。
     2.首次采用高温高压方法,以FeOOH@PVA纳米棒为前驱体,合成了γ-Fe2O3@C纳米棒。研究了HPHT过程中,合成温度对样品的物相和形貌的影响,得到了最佳制备条件。实验结果表明:反应温度为400℃,压强为1Gpa条件下制备的γ-Fe2O3@C纳米棒具有较高的长径比(直径约为20nm,长度约为150nm),室温矫顽力可达到330Oe。反应温度过高,会导致γ-Fe2O3@C纳米棒的核壳结构被破坏。HPHT方法与传统合成方法相比,反应环境密闭,不易引入杂质,反应时间短,该方法为制备具有核壳结构的一维纳米材料提供了新思路。
     3.以FeOOH@PVA纳米棒为前驱物,在H2环境中,400℃下热处理1h得到了具有较高矫顽力的Fe3O4@C纳米粒子,研究了反应温度及反应气体环境不同对样品的物相及形貌的影响。随着反应温度的升高,产物结晶度提高,但反应温度过高时,Fe3O4@C纳米颗粒的内核与壳层之间形成狭小缝隙。在室温下,Fe3O4@C纳米粒子的饱和磁化强度约为38emu g-1,矫顽力约为521Oe,大矫顽力的来源可能是由于核壳结构所引起的粒子表面磁各向异性导致。
     4.以硝酸镍、PVA水溶液为反应前驱物,通过水热法在高温高压条件下一步合成了具有花状结构的NiO样品。研究了反应温度和反应时间对其物相和形貌的影响,发现合成花状NiO结构的最佳条件为在300℃条件下,反应24h。利用振动样品磁强计对样品进行了磁学性质研究,发现其具有铁磁性质,来源可能是由于样品表面具有大量未抵消的净自旋磁矩,从而表现出铁磁性质。
     5.以PVA水溶液为反应介质,硝酸钴为原料,通过高压水热法一步合成了具有一维结构的CoO纳米线。通过研究反应温度和反应时间对其物相和形貌的影响,发现反应温度升高会导致CoO由纳米线生长为片状;相同反应温度下,随反应时间延长,氧化钴由最初的颗粒状生长为棒状,再由棒状组装成纳米线状。合成CoO纳米线的最佳条件为300℃条件下,反应24h。通过研究样品的磁学性能发现其具有铁磁性质,样品表现出较大的矫顽力(1100Oe),这可能是由于CoO纳米线的形状各向异性所导致。
Due to the wide rang of magnetic, optical and electronic properties, Iron, cobaltand nickel transition metal oxides have been widely used in the field of high densitymagnetic storage, magnetic resonance imaging, catalysis, sensors, electronic andoptical devices. Since the morphology, structure, and size of nanostructures are vitalparameters for their properties. It is of great significance to develop methods toeffectively synthesize iron, cobalt and nikel metal oxide nanostructures with specificsize, morphology and superior performance.
     However, there are major drawbacks in the application of iron, cobalt and nickelmetal oxide nanostructures, which originate from the magnetically-inducedaggregation, surface oxidation, and instability under physiological conditions andacidic environments. In order to solve these problems, it has important theoretical andpractical value for further research to design simple, economic, green and effectivemethods of preparation of core-shell nanostructures.
     With the development of chemical synthesis methods and the progress of testmeans, antiferromagnetic oxides have attracted much attention. Since researchersfound that small particles of an antiferromagnetic material might exhibit magneticproperties such as superparamagnetism or weak ferromagnetism. In the present work,however, most studies are about NiO and CoO nanoparticles, and few papers reportthe room-temperature ferromagnetism about the NiO and CoO nanomaterials withother anisotropic morphology.
     In this paper, FexOy、NiO and CoO nanomaterial have been selected as the research objects. New synthetic strategies to synthesize FexOycore-shellnanostructures have been expored. The synthesis of NiO and CoO anisotropicnanostructures as well as their formation mechanism and the magnetic properties ofthe as-obtained nanostructures have been studied. The main contents are as follows:
     1. FeOOH@PVA nanorods were fabricated using Fe(NO3)3·9H2O as iron sourceand PVA as soft-template without any hydrolysis-controlling agent and surfactant. Theeffects of PVA, reaction temperature, reaction time on the products are studied. Theresults show that PVA play an important role in formation of FeOOH nanorods. Theeffects of recation temperature and time on the structures and morphology of thesamples are important. With the increase of reaction temperature, the nanorods aretransformed to sphere-like nanoparticles. With the extension of reaction time, theshapes of samples are converted form rod to granular. The best conditions for thepreparation of FeOOH@PVA nanorods are that the reaction temperature is160℃andthe reaction time is12h.
     Fe3O4@PVA nanoparticles were prepared by a simple hydrothermal method.The effects of reaction temperature and different iron source on the nanostructureswere systematically studied. The growth mechanism and the room temperaturemagnetic properties of samples with different morphologies were also discussed. Theresults show that the sample is amorphous with FeCl2as Fe2+source when thereaction temperature is160℃. With the increasing of reaction temperature, the smallnanoctystal has been converted to octahedral structure. When the reaction temperatureis200℃, the transformation finished completely. When other experiment conditionsare constant, the shape of obtained products is cube with the FeSO4as Fe2+source.The reason is that different anion in the solution lead to the different growthorientation of crystal nucleus. VSM was used to measure the magnetic properties ofmaterials as a function of magnetic field at room temperature. The effects ofmorphology on the magnetic properties are mainly investigated.
     2. γ-Fe2O3@C core-shell nanorods with average diameter of20nm and length of150nm are synthesized by transforming FeOOH@PVA nanorods under the conditionof high pressure and high temperature (HPHT). The best synthesis condition for transforming FeOOH@PVA core-shell nanorods into γ-Fe2O3@C nanorods is400℃under1GPa. Owing to high aspect ratios, the γ-Fe2O3@C nanorods present a highcoercivity of330Oe. Compared with the traditional synthesis method, HPHT reactionprocess has a unique advantage in the preparation process which has a short reactiontime and is not easy to introduce impurities. The HTHP method can provide a newway for preparing of one-dimensional core-shell nanostructures.
     3. Fe3O4@C nanoparticles with high coercive force were obtained usingFeOOH@PVA nanorods as precursors under400℃in H2environment. The effectsof reaction temperature and gas environment on the structures and morphology werestudied. The crystallinity of products increases as the reaction temperature increases.When the reaction temperature is too high, there is a narrow gap between the core andshell. The magnetic property of samples were studied, it proves that these samples areferromagnetic at room temperature. The coercive force and saturation magnetizationof Fe3O4@C nanoparticles are about521Oe and38emu g-1, respectively, the highvalue of coercive force may be caused by surface magnetic anisotropy of core-shellstructure particles.
     4. Flower-like NiO was obtained by a one step hydrothermal process withNi(NO3)2and PVA aqueous solution as precursor under high temperature highpressure. The morphology and microstructure of as-synthesized NiO werecharacterized. The results demonstrated that the best synthesis condition is that thereaction temperature and time are300℃and24h, respectively. The flower-like NiOnanostructures exhibit ferromagnetic at room temperature, which may be due toexchange coupling of the uncompensated spins on NiO surface.
     5. CoO nanowires were prepared by a one step hydrothermal process withCo(NO3)2and PVA aqueous solution as precursor under high temperature highpressure. Magnetic measurements reveal the presence of ferromagnetic at roomtemperature in the CoO nanowires. The morphology of samples are relate to thereaction temperature and reaction time. As increasing the reaction temperature, CoOnanowires are transformed into nanoflakes. When the hydrothermal time is prolonged,CoO nanoparticles are transformed into nanowires finally. The CoO nanowire exhibits a high coercive force(1100Oe), the reason for this may be due to the shapeanisotropy of CoO nanowires.
引文
[1] Appenzeller T. The Man Who Dared to Think Small[J]. Science,1991,254(5036):1300.
    [2]陈改荣.纳米材料的特性及进展[J].平原大学学报,2000,17(4):41.
    [3]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [4]李景新,黄因慧.纳米材料及其技术研究进展[J].材料导报,2001,15(8):29.
    [5] Gleiter H. Nanostructured materials[J]. Journal of Metals,1997,33(2):165.
    [6]卢柯,周飞.纳米晶体材料的研究现状.金属学报,1997,23(1):99.
    [7]彭申懿.纳米科学技术的发展和未来[J].今日科技,2005,8:47.
    [8]裘晓辉,白春礼.中国纳米科技研究的进展[J].前沿科学,2007,1:6.
    [9]吴希俊,赵明文,汪良主,张鸿飞.纳米固体材料的性能与界面围观结构[J].原子与分子物理学报,1997,14(2),148.
    [10]周建夫,任凯,庄保东.纳米材料的研究进展[J].周口师范学院学报,2011,28(2),71.
    [11]刘欢,翟锦,江雷.纳米材料的自组装研究进展[J].无机化学学报,2006,22(4):585.
    [12]裘式纶,翟庆洲,肖丰收,张宗涛,朱广山.纳米材料研究进展Ⅱ—纳米材料的制备、表征与应用[J].化学研究与应用,1998,10(4):331.
    [13]高银浩,张文庆.纳米磁性材料的制备及应用的新进展[J].广州化工,2009,37(5):6.
    [14]易学华,卜寿亮,温建平,杨伟志,曾辉.纳米磁性材料的特性、制备、应用及其发展[J].中国粉体工业,2012,3:13.
    [15]都有为.纳米磁性材料[J].功能材料,2001,10:45.
    [16]李国栋.当代磁性材料和磁学的研究和应用[J].生物磁学,2004,4(3):26.
    [17]王宗才,何文平.纳米磁性液体材料在光整加工中的应用[J].工艺与检测,2009,1:86.
    [18]袁淑霞,樊玉光,成秀梅.纳米磁性流体的制备及应用技术[J].西安石油学院学报,2002,17(6):75.
    [19]张存瑞,李巧玲.纳米磁性复合材料在隐身技术和医学上的研究进展[J].中国粉体工业,2008,3:20.
    [20]张晓冬,王晓文,高福平,赵凌云,唐劲天.微纳米磁性材料在肿瘤磁感应热疗中的应用[J].磁性材料及器件,2009,8:1.
    [21]江强,周细应.磁性纳米材料的制备及其在军事上的应用[J].材料科学与工程学报,2012,30(3):489.
    [22]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [23]钟明龙.金属氧化物纳米结构的热氧化法制备、生长机制及功能特性[D].广州:华南理工大学,2012.
    [24]潘路.铁钴镍纳米氧化物复合氧化物的制备及其光电催化性能[D].合肥:中国科学技术大学,2010.
    [25]石士考.纳米材料的特性及其应用[J].大学化学,2001,16(2):39.
    [26]王苏新,张玉珍.纳米材料的特性及作用[J].江苏陶瓷,2001,34(2):5.
    [27]冯异,赵军武,齐晓霞,高芬.纳米材料及其应用研究进展[J].工具技术,2006,40(10):10.
    [28]赵晓明.纳米材料的特性及应用[J].电大理工,2005,225:35.
    [29]吴烈善,王瑛辉,薛柳.纳米材料及其应用前景[J].矿产与地质,2001,15(87):688.
    [30]高新,李稳宏,王锋,杨清翠.纳米材料的性能及其应用领域[J].石化技术与应用,2002,20(3):199.
    [31]王焕英.纳米材料的制备及应用研究[J].衡水师专学报,2002,4(2):44.
    [32]毛克祥,程海斌,官建国.纳米材料在航天领域的应用与发展[J].中国粉体技术,6:39.
    [33] Jeong U,Teng X W,Wang Y,Yang H,Xia Y N. Superparamagnetic Colloids:Controlled Synthesis and Niche Applications[J]. Adv. Mater.,2007,19:33.
    [34]颜峰.四氧化三铁磁性复合粒子的制备及应用研究[D].长春:吉林大学化学学院,2008.
    [35]王力霞.铁磁性金属、铁氧体及其复合物的合成与应用研究[D].长春:吉林大学材料科学与工程学院,2013.
    [36]张修华,王升.氮化铁的制备及其在磁记录和磁流体中的应用进展[J].湖北大学学报,2003,25(3):229-231.
    [37]黎汉生,张东翔.磁性催化剂研究进展[J].材料导报,2005,19(8):5.
    [38]王传宝,孔继周,张仕玉,杨小艳,周飞,黄小华.锂离子电池过渡金属氧化物负极材料改性技术的研究进展[J].材料导报,2012,26(4):36.
    [39]宋晓岚,闫程印,张颖,蒋雯娟,谢宏姜.材料导报,2012,26(6):36.
    [40]赵强,庞小峰.纳米磁性生物材料研究进展及其应用[J].原子与分子物理学报,2005,22(2):222.
    [41]胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004.
    [42]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术的最新进展[J].现代机械,2003,4:80.
    [43]都有为.纳米磁性材料及其应用[J].材料导报,2001,15(17):6.
    [44]邢定钰.自旋输运和巨磁电阻—自旋电子学的物理基础之Ⅰ[J].物理,34(5):348.
    [45] Awschalom D D,Divincenzo D P. Compex Dynamics of Mesoscopic Magnets[J]. Physics Today,1995,4:43.
    [46] Yamaguchi K,Matsumoto K,Fujii T. Magnetic anisotropy by ferromagneticparticles alignment in a magnetic field[J]. J. Appl. Phys.,1990,67:4493.
    [47] Hyeon T. Chemical synthesis of magnetic nanoparticles[J]. Chem. Commun.,2003:927.
    [48] Raj K,Moskowitz B,Casciari R. Advances in ferrofluid technology[J]. Journalof Magnetism and Magnetic Materials,1995,149:174.
    [49] Berkovsky B M,Medvedev V F,Krakov M S. Magnetic Fluids:EngineeringApplications[M]. Oxford:Oxford University Press,1993.
    [50] Uddin M A,Tsuda H,Wu S J,Sasaoka E. Catalytic decomposition of biomasstars with iron oxide catalysts[J]. Fuel,2008,87:451.
    [51] Zhang R J,Huang J J,Zhao J T,Sun Z Q,Wang Y. Sol-Gel Auto-CombustionSynthesis of Zinc Ferrite for Moderate Temperature Desulfurization[J]. Energ.Fuel.,2008,21:2682.
    [52] Al-Sayari S,Carley A F,Taylor S H,Hutchings G J. Au/ZnO and Au/Fe2O3catalysts for CO oxidation at ambient temperature:comments on the effect ofsynthesis conditions on the preparation of high activity catalysts prepared bycoprecipitation[J]. Topics in Catalysis,2007,44(1-2):123.
    [53]李凤生,宋洪昌,刘宏英.超细粉体技术[M].北京:国防工业出版社:2000.
    [54]高冬梅,黄妍,童志权,张俊丰,罗河. Co3O4/MPS催化氧化NO性能[J].化工进展,2009,28:805.
    [55]刘先红,李德炳,范文青,张庆红,王野,万惠霖.纳米Co3O4的制备及其在富氢气氛下CO选择氧化反应中的催化性能[J].厦门大学学报,2009,48(6):773.
    [56]王彬,秦张峰,王辉,朱华清,王建国. Pd/Co3O4催化剂上低浓度甲烷催化燃烧[J].天然气化工,2010,35:32.
    [57]吴瑛,陈铜,操小栋,瓮维正,张晋芬,万惠霖.乙烷在纳米氧化镍上温和氧化脱氢制乙烯[J].化学学报,2004,62(18),1678.
    [58]操小栋,陈铜,吴瑛,张晋芬,瓮维正,万惠霖.锆促进纳米氧化镍催化剂的制备及其对乙烷氧化脱氢制乙烯的催化性能[J].催化学报,2005,26(2):148.
    [59]李娟,任保平.锂离子电池负极材料α-Fe2O3的水热合成与性能研究[J].电源技术,2010,34:881.
    [60]张颖,高学平,胡恒,周震,阎杰,曲金秋,吴峰. Fe2O3填充碳纳米管作为锂离子电池负极材料的电化学性能[J].无机化学学报,2004,20(9):1013.
    [61]梁英,范晶,贾志杰.负极材料NiO的制备及电化学性能[J].无机化学学报,2007,23(1):97.
    [62]黄可龙,刘人生,杨幼平,刘素琴,龚本利.单分散性纳米Co3O4的制备及电化学性能研究[J].电源技术,2007,31(9):679.
    [63]王兴磊,何晓燕,欧阳燕. Co3O4电化学电容电极材料的制备及性能研究[J].功能材料与器件学报,2012,18(2):142.
    [64]赵义芬、赵鹤云、吴兴惠.金属氧化物半导体气敏材料的研究进展[J].传感器世界,2009,1:6.
    [65]魏少红,张友娟,牛新书,蒋凯. Fe2O3气敏材料研究进展[J].电子元件与材料,2008,27(2):1
    [66] Chen J,Xu L N,Li W Y,Gou X L. α-Fe2O3Nanotubes in Gas Sensor andLithium-Ion Battery Applications[J]. Adv. Mater.,2005,17(5):582.
    [67]董晓雯,陈海华,潘庆谊,程知萱.纳米NiO的合成及其气敏特性研究[J].郑州轻工业学院学报,2004,19(4):17.
    [68] Gupta A K,Naregalkar R R,Vaidya D V,Gupta M. Recent advances onsurface engineering of magnetic iron oxide nanoparticles and their biomedicalapplications[J]. Nanomedicine,2007,2(1):23.
    [69] Sun C,Lee J S H,Zhang M Q. Magnetic nanoparticles in MR imaging anddrug delivery[J]. Advanced Drug Delivery Reviews,2008,60:1252.
    [70] Pankhurst Q A,Connolly J,Jones S K,Dobson J. Applications of magneticnanoparticles in biomedicine[J]. Journal of Physics D:Applied Physics,2003,36:R167.
    [71]赵紫来,卞征云,陈朗星,何锡文,王彦芬.氧化铁磁性纳米粒子的制备、表面修饰及在分离和分析中的应用[J].化学进展,2006,18(10):1288.
    [72] Gupta A K,Gupta M. Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications[J]. Biomaterials,2005,26:3995.
    [73]温惠云,侠文娟,吴畏,马俊平.生物医用磁性纳米粒子的研究进展[J].金属功能材料,2012,19(3):46.
    [74]顾晗,李澄.磁性纳米粒子在干细胞癌共振成像及靶向治疗发面的研究进展[J].临床肝胆病,2013,29(10):740.
    [75]刘祥萱,陈鑫,王煊军,刘渊.磁性吸波材料的研究进展[J].表面技术,2013,42(4):104.
    [76]陈雪刚,叶瑛,程继鹏.电磁波吸收材料的研究进展[J].无机材料学报,2011,26(5):449.
    [77]王磊,朱保华.磁性吸波材料的研究进展及展望[J].电工材料,2011,2:37.
    [78] Wang G Q,Chang Y F,Wang L F,Liu L D,Liu C. Facilely preparation andmicrowave absorption properties of Fe3O4nanoparticles[J]. Materials ResearchBulletin,2013,48:1007.
    [79] Firooz A A,Mahjoub A R,Khodadadi A A. Highly sensitive CO and ethanolnanoflower-like SnO2sensor among various morphologies obtained by usingsingle and mixed ionic surfactant templates[J]. Sensors and Actuators B:Chemical,2009,141:89.
    [80]陈昱,罗凌虹,吴也凡,程亮,石纪军,邵由俊.纳米花状材料的合成方法及应用[J].中国陶瓷,2013,49(5):1.
    [81]李刚,陈莹.纳米材料制备方法的研究初探[J].广东化工,2011,38(9):97.
    [82]汪芳,黄寅生,赵宇.固相法合成纳米MgO和NiO的实验探究[J].材料导报,2013,27(21):17.
    [83]熊德胜,秦枫,徐华龙,沈伟.固相法制备纳米Co3O4催化剂及其催化甲苯完全氧化性能[J].化学学报,2012,70(1):39.
    [84]李洁.金属氧化物纳米结构的合成及物性分析[D].金华:浙江师范大学,2008.
    [85] Mathur S,Barth S,Werner U,Francisco H R,Albert R R. Chemical VaporGrowth of One-dimensional Magnetite Nanostructures[J]. Adv. Mater.,2008,20:1550.
    [86] Rao P M,Zheng X L. Unique Magnetic Properties of Single Crystal γ-Fe2O3Nanowires Sythesized by Flame Vapor Deposition[J]. Nano Lett.,2011,11:2390.
    [87]郝晓亮.磁控溅射镀膜的原理与故障分析[J].电子工业专业设备,2003,220:57.
    [88]王怀义,刁训刚,王武育,郝维昌,王聪,王天民.基于磁控溅射制备纳米微晶NiOx薄膜的方法[J].材料研究学报,2009,23(4):426.
    [89]郭丽琴,冯静,亓淑艳,张密林.纳米氧化镍的制备及其应用[J].化学工程师,2006,7:28.
    [90]施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展[J].无机材料学报,1996,11(2):193.
    [91]王辰光.几种金属氧化物和空心纳米结构的形貌控制合成[D].杭州:浙江大学理学院,2009.
    [92] Jia C J,Sun L D,Yan Z G,You L P,Luo F,Han X D,Pang Y C,ZhangZ,Yan C H. Single-Crystalline Iron Oxide Nanotubes[J]. Angew. Chem. Int.Ed.,2005,44:4328.
    [93] Zhu L P,Liao G H,Yang Y,Xiao H M,Wang J F,Fu S Y. Self-Assembled3D Flower-Like Hierarchical β-Ni(OH)2Hollow Architectures and their In SituThermal Conversion to NiO[J]. Nanoscale Res. Lett.,2009,4:550.
    [94]李立.聚碳酸酯/无机纳米复合材料的制备及性能研究[D].上海:上海大学材料科学与工程学院,2008.
    [95] He K, Xu C Y, Zhen L, Shao W Z. Hydrothermal synthesis andcharacterization of single-ctystalline Fe3O4nanowires with high aspect ratioand uniformity[J]. Materials Letters,2007,61:3159.
    [96] Li X Y,Si Z J,Lei Y Q,Tang J K,Wang S,Su S Q,Song S Y,Zhao L J,Zhang H J. Direct hydrothermal synthesis of single-crystalline triangular Fe3O4nanoprisms[J]. CrystEngComm,2010,12:2060.
    [97] Wang L,Zhao Y,Lai Q Y,Hao Y J. Preparation of3D rose-like NiO complexstructure and its electrochemical property[J]. Journal of Alloys andCompounds,2010,495:82.
    [98] Zheng J,Liu J,Lv D P,Kuang Q,Jiang Z Y,Xie Z X,Huang R B,ZhengL S. A Facile synthesis of flower-like Co3O4porous spheres for thelithium-ion battery electrode[J]. Journal of Solid State Chemistry,2010,183:600.
    [99]张万忠,乔学亮,陈建国.微乳液法合成纳米材料的进展[J].石油化工,2005,34(1):84.
    [100] Xu H,Cui L L,Tong N H,Gu H C. Development of High MagnetizationFe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/EmulsionPolymerization[J]. J. Am. Chem. Soc.,2006,128:15582.
    [101]王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用[J].化学工业与工程,2009,26(3):273.
    [102] Yang Q,Sha J,Ma X Y,Yang D R. Synthesis of NiO nanowires by a sol-gelprocess[J]. Materials Letters,2005,59:1967.
    [103] Woo K,Lee H J,Ahn J P,Park Y S. Sol-Gel Mediated Synthesis of Fe2O3Nanorods[J]. Adv. Mater.,2003,15(20):1761
    [104]汤国虎.液相沉淀法合成纳米粉体[J].山西化工,2005,25(3):8.
    [105] Chen K F,Lv Z,Chen X J,Ai N,Huang X Q,Wei B,Hu J Y,Su W H.Characteristics of NiO-YSZ anode based on NiO particles synthesized by theprecipitation method[J]. Journal of Alloys and Compounds,2008,454:447.
    [106]常中春,李代禧,刘宝林.磁性纳米粒的表面有机改性研究进展[J].材料导报,2010,24(15):114.
    [107]王京,杨坤,熊隆荣,彭华备,文玉华,李宁.磁性颗粒表面改性过程中包覆结构和过程的分析[J].金属功能材料,2008,15(6):14.
    [108]肖勇,吴孟强,袁颖,庞翔,陈黎.无机微/纳米粒子表面包覆改性技术[J].电子元件与材料,2011,30(9):66.
    [109]陈磊,景宜.硅烷偶联剂KH-550表面改性纳米γ-Fe2O3[J].造纸化学品,2013,25(2):19.
    [110]刘波,庄志强,刘勇,王悦辉.粉体的表面修饰与表面包覆方法的研究[J].中国陶瓷工业,2004,11(1):50.
    [111]崔升,徐娜,沈晓冬.表面接枝聚合法制备纳米Fe3O4/PMMA微球[J].材料导报,2008,22:156.
    [112]孙举涛. Co3O4纳米粒子的表面接枝改性研究[J].中国粉体技术,2007,6:23.
    [113]黄远红,胡文军,袁仲国,郭静.纳米粒子的包覆技术[J].材料导报,2002,16(7):55.
    [114]杜雪岩,马芬,李芳,徐凯. Fe3O4@SiO2磁性纳米粒子的制备及表征[J].兰州理工大学学报,2011,37(2):22.
    [115] Zhu T,Chen J S,Lou X W. Glucose-Assisted One-pot Synthesis of FeOOHNanorods and Their Transformation to Fe3O4@Carbon Nanorods forApplication in Lithium Ion Batteries[J]. J. Phys. Chem. C,2011,115:9814.
    [116] Zhu S Y,Zhang L L,Yu Q,Wang T Z,Chen J,Huo M X. Facile synthesisof a novel dendritic nanostructure of Fe3O4-Au nanorods[J]. Materials Scienceand Engineering B,2010,175:172.
    [117]孙涛,王光辉,陆安慧,李文翠.磁性氧化铁纳米颗粒的研究进展[J].化工进展,2010,29(7):1241.
    [118]张俊,孙杰,孟锦宏,曹晓晖.针状α-FeOOH的液相制备研究[J].沈阳理工大学学报,2007,26(1):83.
    [119] Kang Y S,Risbud S,Rabolt J F,Stroeve P. Syntheses and Characterization ofNanometer-Size Fe3O4and γ-Fe2O3Particles[J]. Chem. Mater.,1996,8:2209.
    [120] Han L H,Chen Y C,Wei Y. Hierarchical flower-like Fe3O4and γ-Fe2O3nanostructures:Synthesis,growth mechanism and photocatalytic properties[J].CtystEngComm,2012,14:4692.
    [121] Hibino M,Terashima J,Yao T. Reversible and Rapid Discharge-ChargePerformance of γ-Fe2O3Prepared by Aqueous Solution Method as the Cathodefor Lithium-Ion Battery[J]. Journal of The Electrochemical Society,2007,154(12):A1007.
    [122] Cao S W,Zhu Y J,Ma M Y,Li L,Zhang L. Hierarchically NanostructuredMagnetic Hollow Spheres of Fe3O4and γ-Fe2O3:Preparation and PotentialApplication in Drug Delivery[J]. J. Phys. Chem.,2008,112:1851.
    [123]景志红,吴世华.室温研磨固相反应法制备γ-Fe2O3纳米粉体及其气敏性能研究[J].无机化学学报,2006,22(3):483.
    [124] Kishimoto M,Yanagihara H,Kita E. Dependences of Specific Loss Power onMagnetic Field and Frequency in Elongated Platelet γ-Fe2O3Particles UsingHysteresis-Loss Heating[J]. Transations on Magnetics,2013,49(8):4756.
    [125]刘冰,王德平,姚爱华,黄文,上高原理畅,井奥洪二.反相微乳液法制备核壳SiO2/Fe3O4复合纳米粒子[J].硅酸盐学报,2008,36(4):569.
    [126]陈令允,李凤生,王英会,周建.强磁性纳米Fe3O4/SiO2复合粒子的制备及其性能研究[J].材料科学与工程学报,2005,23(5):556.
    [127]吴之传,张宇东,陈培根,周凯,陶庭先. PVA-Fe(Ⅲ)、Zn(Ⅱ)、Hg(Ⅱ)配合物的合成、表征及抗菌性能[J].应用化学,2008,25(6):669.
    [128]罗红梅,曾桓兴.纺锤形γ-FeOOH的合成及其热分析研究[J].中国科学技术大学学报,1995,25(3):363.
    [129]任福民,曾桓兴,张庶元,扬晓君.均匀纺锤形α-FeOOH微粒脱水过程的研究[J].磁记录材料,1991,1:6.
    [130]步明升. α-FeOOH与α-LiFeO2的水热合成研究[D].青岛市:中国海洋大学化学化工学院,2010.
    [131] Furukawa T,Sato H,Murakami R,Zhang J M,Duan Y X,Noda I,OchiaiS, Ozaki Y. Structure, Dispersibility, and Crystallinity ofPoly(hydroxybutyrate)/Poly(L-lactic acid) Blends Studied by FT-IRMicrospectroscopy and Differential Scanning Calorimetry[J]. Macromolecules,2005,38:6445.
    [132] Kim D S,Park H B,Rhim J W,Lee Y M. Preparation and characterization ofcrosslinked PVA/SiO2hybrid menbranes containing sulfonic acid groups fordirect methanol fuel cell applications[J]. Journal of Membrane Science,2004,240:37.
    [133] Chang Y W,Wang E D,Shin G,Han J E,Mather P T. Poly(vinyl alcohol)(PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid menbranesfor direct methanol fuel cell applications[J]. Polym. Adv. Technol.,2007,18:535.
    [134] Madsen D E,Cervera-Gontard L,Kasama T,Dunin-Borkowski R E,Koch CB,Hansen M F,Frandsen C,M rup. Magnetic fluctuations in nanosizedgoehite (α-FeOOH) grains[J]. J. Phys.:Condens. Matter,2009,21,16007.
    [135] Schuele W J,Deetscreek V D. Appearance of a Weak Ferromagnetism in FineParticles of Antiferromagnetic Materials[J]. Journal of Applied Physics,1962,33(3):1136.
    [136]祁琰媛,陈文,麦立强,胡彬,戴英.水热合成MoO3纳米带的生长机理研究[J].无机化学学报,2007,23(11):1895.
    [137] Xuan S H, Wang Y X J, Leung K C F, Shu K Y. Synthesis ofFe3O4@Polyaniline Core/Shell Microspheres with Well-DefinedBlackberry-Like Morphology[J]. J. Phys. Chem. C,2008,112(48):18804
    [138] Gong J Y, Luo L B, Yu S H, Qian H S, Fei L F. Synthesis ofcopper/cross-linked poly(vinyl alcohol)(PVA) nanocables via a simplehydrothermal route[J]. J. Mater. Chem.,2006,16:101.
    [139] Khanna P K,Singh N,Charan S,Subbarao V V V S,Gokhale R,Mulik UP. Synthesis and characterization of Ag/PVA nanocomposite by chemicalreduction method[J]. Materials Chemistry and Physics,2005,93:117.
    [140] Raju C H L,Rao J L,Reddy B C V,Brahmam K V. Thermal and IR studies oncopper doped polyvinyl alcohol[J]. Bull. Mater. Sci.,2007,30(3):215.
    [141]焦华,杨合情,宋玉哲,武小燕,陈迪春,王明珍. Fe3O4八面体微晶的水热法制备与表征[J].化学学报,2007,65(20):2336.
    [142] Zhang L,He R,Gu H C. Synthesis and kinetic shape and size evolution ofmagnetite namoparticles[J]. Materials Research Bulletin:2006,41:260.
    [143]于文广,张同来,乔小晶,张建国,杨利.不同形貌Fe3O4纳米粒子的氧化沉淀法制备与表征[J].无机化学学报,2006,22(7):1263.
    [144]符秀丽,王懿,李培刚,陈雷明,张海英,涂青云,Li L H,唐为华.大规模制备Ni80Fe20纳米线阵列及其磁学特性研究[J].物理学报,2005,54(4):1693.
    [145]李发伸,王涛,王颖. H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较[J].物理学报,2005,54(7):3100.
    [146]付乌有,曹静,李伊荇,杨海滨.类花状ZnO-CoFe2O4复合纳米管束的制备及其电磁波吸收特性[J].物理学报,2011,60(6):67505.
    [147] Yin J H,Pan L Q. First-order reversal curves of magnetic recording tapes[J].2010Chin. Phys. B,2010,19(5):57502.
    [148]陈文兵,韩满贵,邓龙江.具有横向磁晶各向异性的钴纳米线的微波吸收性能[J].物理学报,2011,60(1):17507.
    [149] Wu W,Xiao X H,Zhang S F,Zhou J,Fan L X,Ren F,Jiang C Z. Large-Scaleand Controlled Synthesis of Iron Oxide Magnetic Short Nanotubes:ShapeEvolution,Grorwth Mechanism,and magnetic Properties[J]. J. Phys. Chem. C,2010,114(39):16092.
    [150] Liu F,Zhu J H, Hou Y L,Gao S. Chemical synthesis of magneticnamocrystals:Recent progress[J]. Chin. Phys. B,2013,22(10):107503.
    [151]姜国华,姜继森.棒状γ-Fe2O3纳米粒子的制备及表征[J].无机材料学报,2005,20(5):1066.
    [152] Han Q,Liu Z H,Xu Y Y,Chen Z Y,Wang T M,Zhang H. Growth andProperties of Single-Crystalline γ-Fe2O3Nanowires[J]. J. Phys. Chem.,2007,111(13):5034.
    [153] Wang J H,Ma Y W,Watanabe K. Magnetic-Field-Induced Synthesis ofMagneticγ-Fe2O3Nanotubes[J]. Chem. Mater.,2008,20(1):20.
    [154] Zhou S M,Zhang X T, Gong H C,Zhang B,Wu Z S,Du Z L,Wu S X.Magnetic enhancement of pure gamma Fe2O3nanochains by chemical vapordeposition[J]. J. Phys.:Condens. Matter,2008,20:75217.
    [155] Santra S,Tapec R,Theodoropoulou N,Dobson J,Hebard A,Tan W H.Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles inMicroemulsion:The Effect of nonionic Surfactants[J]. Langmuir,2001,17:2900.
    [156] Kong H, Song J, Jang J. One-step fabrication of magneticγ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidationpolymerization and their antibacterial properties[J]. Chem. Commun.,2010,46:6735.
    [157] Sun S N,Wei C,Zhu Z Z,Hou Y L,Venkatraman S S,Xu Z C. Magnetic ironoxide nanoparticles:Synthesis and surface coating techniques for biomedicalapplcations[J]. Chin. Phys. B,2007,23(3):37503.
    [158] Yang X T,Xu L G,Choon N S,Chan S O H. Magnetic and electrical propertiesof polypyrrole-coated γ-Fe2O3nanocomposite particles[J]. Nanotechnology,2003,14:624.
    [159] Li D,Teoh W Y,Woodward R C,Cashion J D,Selomulya C,Amal R.Evolution of Morphology and Magnetic Properties in Sillica/MaghemiteNanocomposites[J]. J. Phys. Chem. C,2009,113(28):12040.
    [160] Gonsalves K E,Li H,Santiago P. Synthesis of acicular iron oxide nanoparticlesand their dispersion in a polymer matrix[J]. J. Mater. Sci.,2001,36:2461.
    [161]陈晋阳,郑海飞,曾贻善.高压—现代科学的一门新技术[J].科技导报,2000,6:13.
    [162]范印波.二氧化铬基复合氧化物的高温高压合成及其输运性质研究[D].长春:吉林大学原子与分子物理研究所,2013.
    [163] Zhao Q,Fan Y B,Wen G H,Liu Z G,Ma H A,Jia X P,Zou G T,Mao HK. Shape-controlled synthesis of high-purity CrO2under HTHP[J]. MaterialsLetters,2010,64:592.
    [164] Hou Y Y,Liu B B,Ma H A,Wang L,Zhao Q,Cui T,Hu Q,Chen A,Liu D D,Yu S D,Jia X P,Zou G T,Sundqvist B. Pressure-inducedpolymerization of nano-and submicrometer C60rods into a rhombohedralphase[J]. Chemical Physics Letters,2006,423:215.
    [165] Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2composite polymer membrane for alkaline DMFC[J]. Journal of MenbraceScience,2007,288:51.
    [166] Chaudhari N S,Warule S S,Muduli S,Kale B B,Jouen S,Lefez B,HannoyerB,Ogale S B. Maghemite (hematite) core (shell) namorods via thermolysis of amolecular solid of Fe-complex[J]. Dalton Trans.,2011,40:8003.
    [167] Wu P,Du N,Zhang H,Yu J X,Yang D R. Carbon namocapsules asNanoreactors for Controllable Synthesis of Encapsulated Iron and Iron Oxides:Magnetic Properties and Reversible Lithium Storage[J]. J. Phys. Chem. C,2011,115:3612.
    [168] Kim J H,Min B R,Lee K B,Won J,Kang Y S. Coordination structure ofvarious ligands in crosslinked PVA to silver ions for facilitated olefintransport[J]. Chem. Commun.,2002,2732.
    [169] Wang Y,Teng X W,Wang J S,Yang H. Solvent-Free Atom Transfer RadicalPolymerization in the Synthesis of Fe2O3@Polystyrene Core-ShellNanoparticles[J]. Nano Lett.,2003,3(6):789.
    [170]黄婉霞,陈家钊,毛健,涂铭旌.纳米级Fe3O4对电磁波的吸收效能研究[J].功能材料,1999,30(1):105.
    [171]刘献明,吉保明.纳米结构铁氧体磁性材料的制备和应用[J].应用化工,2008,37(6):685.
    [172] Yuan S M,Li J X,Yang L T,Su L W,Liu L,Zhou Z. Preparation and LithiumStorage Performances of Mesoporous Fe3O4@C Microcapsules[J]. Appl. Mater.Interfaces,2011,3:705.
    [173] Chen J Y,Xiao G,Wang T S,Ouyang Q Y,Qi L H,Ma Y,Gao P,Zhu CL,Cao M S,Jin H B. Porous Fe3O4/Carbon Core/Shell Nanorod:Synthesisand Electromagnetic Properties[J]. J. Phys. Chem. C,2011,115:13603.
    [174] Gao G,Huang P,Zhang Y X,Wang K,Qin W,Cui D X. Gram scale synthesisof superparamagnetic Fe3O4nanoparticles and fluid via a facile solvothermalroute[J]. CtystEngComm,2011,13:1782.
    [175]刘国杰.水热法合成超顺磁性Fe3O4及Fe3O4@C纳米粒子[D].大连:大连理工大学,2011.
    [176]宣守虎. Fe3O4及其结构型复合粒子[D].合肥:中国科学技术大学,2008.
    [177]熊隆荣,文玉华,易成,李宁.聚乙二醇-4000包覆Fe3O4磁流体的制备及稳定性研究[J].材料导报,2007,21:195.
    [178]付伯承.碳包覆纳米Fe3O4颗粒的合成与结构研究[D].北京:北京化工大学,2010.
    [179]胡迎花,罗志聪,陈克正.纳米Fe3O4粒子的制备及表面包覆[J].青岛科技大学学报,2007,28(6):477.
    [180]刘春丽,韩兆让,崔琳琳,余娜,李玉. Fe3O4/聚苯乙烯磁性微球的合成与表征[J].高分子材料科学与工程,2008,24(3):137.
    [181]卓娇娥,贲向东.碳包覆Fe3O4纳米颗粒的制备[J].安庆师范学院学报,2013,19(3):91.
    [182] Park J B,Jeong S H,Jeong M S,Kim J Y,Cho B K. Synthesis ofcarbon-encapsulated magnetic nanoparticles by pulsed laser irradiation ofsolution[J]. Carbon,2008,46:1369.
    [183] Wu W Z,Zhu Z P,Liu Z Y. A study of the explosion of Fe-C hybrid xerogelsand the solid products[J]. Carbon,2003,41:309.
    [184] Lu Y,Zhu Z P,Liu Z Y. Carbon-encapsulated Fe nanoparticles fromdetonation-induced pyrolysis of ferrocene[J]. Carbon,2005,43:369.
    [185] Ye E Y,Liu B H,Fan W Y. Preparation of Graphie-Coated Iron NanoparticlesUsing Pulsed Laser Decomposition of Fe3(CO)12and PPh3in Hexane[J]. Chem.Mater.,2007,19:3845.
    [186] Zhang S X,Niu H Y,Hu Z J,Cai Y Q,Shi Y L. Preparation of carbon coatedFe3O4nanoparticles and their applicaton for solid-phase extraction ofpolycyclic aromatic hydrocarbons from environmental water sample[J]. J.Chromatogr. A,2010,1217:4757.
    [187] Xuan S H,Hao L Y,Jiang W Q,Gong X L,Hu Y,Chen Z Y. A facile methodto fabricate carbon-encapsulated Fe3O4core/shell composites[J].Nanotechnology,2007,18:35602.
    [188] Liu J,Zhou Y C,Liu F,Liu C P,Wang J B,Pan Y,Xue D F. One-pot synthesisof mesoporous interconnected carbon-encapsulated Fe3O4nanospheres assuperior anodes for Li-ion batteries[J]. RSC Advances,2012,2:2262.
    [189] Zheng J,Liu Z Q,Zhao X S,Liu M,Liu X,Chu W. One-step solvothermalsynthesis of Fe3O4@C core-shell namoparticles with tunable sizes[J].Nanotechnology,2012,23:165601.
    [190] Bai L Y,Yuan F L,Hu Peng,Yan S K,Wang X,Li S H. A facile route to seaurchin-like NiO architectures[J]. Letters Materials,2007,61:1698.
    [191] Li X,Hu A Z,Jiang J,Ding R M,Liu J P,Huang X T. Preraration of nickeloxide and carbon nanosheet array and its application in gloucose sensing[J].Journal of Solid of State Chemistry,2011,184:2738.
    [192] Chen W F,Wu S Y,Ferng Y F. The electrochromic properties of nickel oxideby chemical deposition and oxidization[J]. Materials Letters,2006,60:790.
    [193] Hotovy I,Rehacek V,Siciliano P,Capone S,Spiess L. Sensing characteristicsof NiO thin films as NO2gas sensor[J]. Thin Solid Films,2002,418:9.
    [194] Saghatforoush L A,Hasaanzadeh M,Sanati S,Mehdizadeh R. Ni(OH)2andNiO nanostructure: Synthesis, Characterization and ElectrochemicalPerformance[J]. Bull. Korean Chem. Soc.,2012,33(8):2613.
    [195] Yuan C Z,Zhang X G,Su L H,Gao B,Shen L F. Facile synthesis andself-assembly of hierarchical porous NiO nano/micro spherical wuprstructuresfor high performance supercapacitors[J]. J. Mater. Chem.,2009,19:5772.
    [196] Chai Hui,Chen X,Jia D Z,Bao S J,Zhou W Y. Flower-like NiO structures:Controlled hydrothermal synthesis and electrochemical characteristic[J].Materials Research Bulletin,2012,47:3947.
    [197] Ni X M,Zhao Q B,Zhou F,Zheng H G,Cheng J,Li B B. Synthesis andcharacterization of NiO strips from a single source[J]. Journal of CrystalGrowth,2006,289:299.
    [198] Coey J M D,Venkatesan M,Stamenov P,Fitzgerald C B,Dorneles L S.Magnetism in hafnium dioxide[J]. Physical Review B,2005,72:24450.
    [199] Makhlouf S A,Parker F T,Spada F E,Berkowitz A E. Magnetic anomalies inNiO nanoparticles[J]. J. Appl. Phys.,1997,81(8):5561.
    [200] Tiwari S D,Rajeev K P. Effect of distributed particle magnetic moments on themagnetization of NiO nanoparticles[J]. Solid State Communications,2012,15:1080.
    [201] Ichiyanagi Y,Wakabayashi N,Yamazaki J. Magnetic Properties of NiONanoparticles[J]. Physica B,2003,329-333:862.
    [202]张乐观,贺茂云,成功,肖波.超声化学沉淀法制备纳米NiO[J].功能材料,2011,42(1):88.
    [203]魏志强,汪宝珍,闫晓燕,朱林,杨晓红,闫鹏勋.直流电弧等离子体制备NiO包覆Ni纳米颗粒[J].中国有色金属学报,2009,19(11):2038.
    [204] Shang S Q,Xue K Y,Chen D R,Jiao X L. Prepatation and characterization ofrose-like NiO nanostructures[J]. CrystEngComm,2011,13:5094.
    [205]韦斐,吴也凡,罗凌虹,石纪军,程亮,苗立峰.花状NiO纳米片自组装体的制备与表征[J].硅酸盐学报,2009,37(12):1975.
    [206] Zhu L P,Liao G H,Yang Y,Xiao H M,Wang J F,Fu S Y. Self-Assembled3D Flower-Like Hierarchial β-Ni(OH)2Hollow Architectures and their In SituThermal Conversion to NiO[J]. Nanoscale Res. Lett.,2009,4:550.
    [207] Zhou D S,Yan A F,Wu Y,Wu T H. A facile synthetic route to flower-like NiOand its catalytic properties[J]. Indian Journal of Chemistry,2013,52A:51.
    [208]冯治华.磁性NiO纳米环的气泡模板法制备及气泡多级破裂机制的研究
    [D].天津:天津理工大学材料科学与工程学院,2008.
    [209]柳雷,李晓东,李延春,唐玲云,刘景,毕延. NiO的高压结构和等温状态方程研究[J].高压物理学报,2009,23(3):209.
    [210]张建英,杨合情,宋玉哲,陈迪春,李丽. NiO纳米片和多孔纳米片自组装的空心微球的无模板水热法制备与磁学性质[J].化学学报,2007,65(18):2069.
    [211] Tiwar S D,Rajeev K P. Magnetic properties of NiO nanoparticles[J]. ThinSolid Films,2006,505:113.
    [212] Kojima Y,Suzuki K I,Fukumoto K,Sasaki M,Yamamoto T. Hydrogengeneration using sodium borohydride solution and metal catalyst coated onmetal oxide[J]. Interational Journal of Hydrogen Energy,2002,27(10):1029.
    [213] Lin H K,Chiu H C,Tsai H C,Chien S H,Wang C B. Synthesis,characterization and catalytic oxidation of carbon monoxide over cabaltoxide[J]. Catalysis Letters,2003,88(3-4):169.
    [214] Yamaura H,Moriya K,Miura N,Yamazoe N. Mechanism of sensitivitypromotion in CO sensor using indium oxide and cobalt oxide[J]. Sensors andActutors B,2000,65:39.
    [215] W llenstein J,Burgmair M,Plescher G,Sulima T,Hildenbrand J,B ttnerH,Eisele I. Cobalt oxide based gas sensors on silicon substrate for operation atlow temperatures[J]. Sensors and Actuators B,2003,93;442.
    [216]谢朋,翟玉春,翟秀静,田彦文.蓄电池添加剂Co CoO Co(OH)2的研究现状[J].电源技术,1998,22(5):222.
    [217] Choi H C, Lee S Y, Kim S B. Local Structural Characterization forElectrochemical Insertion-Extraction of Lithium into CoO with X-rayAbsorption Spectroscopy[J]. J. Phys. Chem. B,2002,106:9252.
    [218] Feldmann C. Preparation of Nanoscale Pigment Particles[J]. Adv. Mater.,2001,13(17):1301.
    [219] Co sson M,Celegato F,Vecchia E D,Sethi R,Tiberto P,Vinai F. Temperaturedependence of magnetic properties in Fe/Fe-O nanoparticles dispersed inwater[J]. Journal of Magnetism and Magnetic Materials,2009,321:2276.
    [220] Makhlouf S A,Attar H A,Kodama R H. Particle size and temperaturedependence of exchange bias in NiO nanoparticles[J]. Solid StateCommunications,2008,145:1.
    [221] Liu J F,He Y,Chen W,Zhang G Q,Zeng Y W,Kikegawa T,Jiang J Z. BulkModulus and Structural Phase Transitions of Wurtzite CoO Nanoctystals[J]. J.Phys. Chem. C,2007,111(1):2.
    [222] Liu J F,Wu H P,Zeng Y W,Hu X R,Wang Y W,Lv G L,Jiang J Z.Wurtzite-to-Rocksalt Structural Transformation in Nanocrystalline CoO[J]. J.Phys. Chem. B,2006,110(43):21588.
    [223] Zhang Y L,Zhu J,Song X,Zhong X H. Controlling the Synthesis of CoONanoctystals with Various Morphologies[J]. J. Phys. Chem. C,2008,112(14):5322.
    [224] Chen C H,Abbas S F,Morey A,Sithambaram S,Xu L P,Garces H F,Hines W A H,Suib S L. Controlled Synthesis of Self-Assembled Metal OxideHollow Spheres Via Tuning Redox Potentials:Verastile Nanostructured CobaltOxides[J]. Adv. Mater.,2008,20:1205.
    [225]张丽英,薛德胜. CoO纳米颗粒的制备及磁性研究[J].稀有金属,2003,27(5):547.
    [226]关荐伊,赵元,候士法. CoO纳米粒子的制备及催化性能初探[J].河北师范大学学报,1999,23(1):90.
    [227] Ghosh M,Sampathkumaran E V,Rao C N R. Synthesis and MagneticProperties of CoO Nanoparticles[J]. Chem. Mater.,2005,17(9):2348.
    [228] Glaspell G P,Jagodzinski P W,Manivannan A. J. Phys. Chem. B,2004,108(28):9604.
    [229] Reddy E P,Rojas T C,López J C S,Domínguez M,Roldán E,Cámpora J,Palma P,Fernández A. Preparation and Characterization of Cobalt OxideNanosized Particles Obtained by An Electrochemical Method[J].Nanostructured Materials,1999,12:61.
    [230] An K,Lee N,Park J,Kim S C,Hwang Y,Park J G,Kim J Y,Park J H,Han M J,Yu J,Hyeon T. Synthesis,Characterization,and Self-Assembly ofPencil-Shaped CoO Nanorods[J]. J. Am. Chem. Soc.,2006,128(30):9753.
    [231] Barakat N A M,Khil M S,Sheikh F A,Kim H Y. Synthesis and OpticalProperties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced byElectrospining Process[J]. J. Phys. Chem. C,2008,112(23):12225.
    [232] Yang H M,Ouyang J,Tang A D. Single Step Sythesis of High-Purity CoONanocrystals[J]. J. Phys. Chem. B,2007,111(28):8006.
    [233] Dutta D P,Sharma G,Manna P K,Tyagi A K,Yusuf S M. Room temperatureferromagnetism in CoO nanoparticles obtained from sonochemicallysynthesized precursors[J]. Nanotechnology,2008,19:245609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700