用户名: 密码: 验证码:
辽东湾顶自净能力季节变化与排污调控策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海严重污染面积总体的上升趋势和年度之间的增减表明:渤海的自净能力每年尚可消解部分严重污染区域、渤海现实污染负担逐步加重。辽东湾是渤海严重污染海区之一,主要污染物为无机氮、活性磷酸盐和石油类。本文研究辽东湾顶部严重污染区域的海域自净能力季节变化与排污调控策略,以促使经济与环境的和谐。辽东湾北部随季节变化显著的海洋环境因子为风、海冰、海域水温。
     本文以计算渤海二维流场为基础,在辽东湾顶部的严重污染海域布设示踪粒子,通过对比经历一个季度后有风条件(冬季另加海冰条件)和无风条件的高潮时刻示踪粒子的轨迹,研究季风(和海冰)对海域水交换(物理自净)能力的影响。同时调查水质随海水温度的变化,并确定以海洋异养菌总数随水温的变化来描述海域微生物自净能力的季节变化。
     示踪粒子轨迹分析表明,辽东湾顶部存在反时针的潮致余流,但季风导致的风海流是海域水交换的主要动力。夏季南风在辽东湾顶导致的反时针风海流与潮致余流同向,使湾顶严重污染区域内水体在两个月内可以进入辽东湾北部中央清洁水域实现净化。冬季北风导致的在辽东湾顶部的顺时针风海流在东岸形成较强的南向沿岸流,使聚集在仙人岛与长兴岛之间近岸海域的严重污染水体进入辽东湾口清洁水域而净化;海冰对海域水交换起迟滞作用。春季秋季的风海流和潮致余流方向相反且强度不足,不利于严重污染区域内的水交换。调查实验表明湾顶海洋异养菌数水温16℃时激增,水温20℃时的数值是水温-1.8℃时的32倍。
     综合考虑水动力和微生物条件,每年5月-9月辽东湾顶严重污染区域内被污染水体最容易被净化;一年中辽东湾顶严重污染面积从大到小依次为秋季>冬季>春季>夏季。离岸排放区域应选择在风海流的流路上(避开岸边混乱的余流)且距离海岸最近(经济性),夏季选在辽河口西侧离岸6km-15km的一个近似圆形区域;离岸排放区域四季不同,但是上述区域的南部可以基本满足其它季节的要求。
1. The heavily polluted waters in Bohai Sea overall increase and it can rise and fall in different years. Two facts can be indicated, the first is that the Bohai sea has enough self-purification ability to make some heavily polluted waters clean. The second is that the pollution becomes more and more serious in Bohai Sea. Liaodong Bay is one of the most heavily polluted waters in Bohai Sea. Main pollutants are the inorganic nitrogen, active phosphate and oils. The seasonal variations of waters self-purification capacity and the regulation of the pollution discharge at the top of Liaodong Bay are studied in this dissertation. The research is helpful to economy development in harmony with the environment, as it is difficult to control the pollution sources and pollutants. The monsoon and water temperature as well as sea ice are the marine environmental conditions obviously changing with seasonal variations in the north of Liaodong Bay.
     2. Based on the Numerical simulations on two-dimensional current field of the Bohai Sea, the tracer particles are set up at the heavily polluted waters at the top of Liaodong Bay in the numerical model. The impact of the monsoon (and sea ice) on the sea water exchanges is researched by the method that the trajectories of the tracer particles at high tide are contrasted and analyzed during three-month calculation period under the action of the monsoon (and sea ice in winter) and without the action of the monsoon at the top of Liaodong Bay. The impact of water temperature on water quality indexes at the top of Liaodong Bay is researched by field surveys and laboratory tests. The change of the count of marine heterotrophic bacteria with the water temperature is regarded as the indicator that the microbiological condition is changing with seasons at the top of Liaodong Bay.
     3. Analysis of tracer particles trajectories show that there is a counterclockwise tide-induced lagrangian residual current at the top of Liaodong Bay, but the monsoon-induced current plays a more prominent role in water exchange in this sea area. The south wind-induced current is counterclockwise at the top of Liaodong Bay, being same as the direction of the tide-induced residual current in this sea area. The comprehensive result of the two currents can purify the heavily polluted water at the top of Liaodong Bay, by making the water enter the clean waters area at the center of the north of Liaodong Bay within two months. In winter, the wind-induced current resulted from strong north wind is clockwise at the top of Liaodong Bay, being opposite as the direction of the tide-induced lagrangian residual current in this sea area. The comprehensive result of the two currents can form the strong southward coast current along the east shore of Liaodong Bay. The coast current can purify the heavily polluted water along the east shore between the Xianren Island and the Changxing Island within three months, by making the water enter the clean waters area at the mouth of Liaodong Bay. The sea ice affects sluggishly the water exchange at the north of Liaodong Bay. The wind-induced current is clockwise at the top of Liaodong Bay, being opposite as the direction of the tide-induced lagrangian residual current in this sea area in spring and winter, and the wind-induced current is not very strong. The comprehensive result of the two currents is not conducive to water exchange at heavily polluted area at the top of Liaodong Bay. The surveys and laboratory tests show that the count of marine heterotrophic bacteria increases dramatically when the water temperature is over16℃. The count of marine heterotrophic bacteria in the water with a temperature of20℃is as32times as that in the water with a temperature of-1.8℃.
     4. Above all, the water in the heavily polluted area at the top of Liaodong Bay is most easily purified from May to September during a year from the comprehensive effect of the water exchange and the microbial degradation. The size of the heavily polluted area at the north of Liaodong Bay is the largest in autumn, the order of successively decreasing size being in winter, spring and summer. Offshore pollution discharge area should be in the wind-induced currents path in order to keep away from the disordered residual current field nearly to the shore. Meanwhile, offshore pollution discharge area should be close to the shore in order to save the investment. The area is not same in different seasons. In summer, it is a nearly circular area with a9km-diameter, the top of which is about6km away from the shore at the west of Liaohe river mouth. The southern part of the sea area is also suitable for spring and autumn.
引文
[1]Roger Perman等著,自然资源与环境经济学[第二版][M],侯元兆等译,北京:中国经济出版社,2002.
    [2]王修林,李克强,“晓勇.胶州湾主要化学污染物海洋环境容量[M].北京:科学出版社,2006.
    [3]GESAMP (joint Group of Experts on the Scientific Aspects of Marine Pollution). Environmental capacity:An approach to marine pollution prevention [J]. UNEP REG. SEAS REP. STUD.1986, (80):62.
    [4]Margeta J, Baric A, Gacic M. Environmental capacity of kastela Bay[C]. EIGHTH INTERNATIONAL OCEAN DISPOSAL SYMPOSIUM,1989:9-13.
    [5]Krom M D, Hornung H, Cohen Y. Determination of the environmental capacity of Haifa Bay with respect to the input of mercury[J]. Marine pollution bulletin,1990,21: 349-354.
    [6]Tedeschi S. Assessment of the environmental capacity of enclosed coastal sea[J]. Marine pollution bulletin,1991,23:449-455.
    [7]Duka G G, Goryacheva N V, Romanchuk L S. Investigation of natural water self-purification capacity under simulated conditions[J]. Water Resource,1996, 23(6):619-622.
    [8]Yoon Y Y, Martin J M, Cotte M H. Dissolved trace metals in the western Mediterranean Sea:total concentration and fraction isolated by C18 Sep-Pak technique[J]. Marine Chemistry,1999,66:129-148.
    [9]Nordvarg L, Hakanson L. Predicting the environmental response of fish farming in coastal areas of the Aland archipelago using management models for coastal water planning[J]. Aquaculture,2002,206:217-243.
    [10]吴俊,王振基.大连湾海水交换及自净能力的研究[J].海洋科学,1983,6(3):32-35.
    [11]匡国瑞,杨殿荣,喻祖祥,潘若琰,张玉林,方胜民,周德坚.海湾水交换的研究—乳山东湾环境容量初步探讨[J].海洋环境科学,1987,(1):13-23.
    [12]张永良,刘培哲主编.水环境容量综合手册[M].北京:清华大学出版社,1991.
    [13]姜太良.莱州湾西南部的物理自净能力[J].海洋通报,1991,2:73-79.
    [14]陈慈美,林月玲.厦门西海域磷的生物地球化学行为和环境容量[J].海洋学报,1993,15:43-48.
    [15]叶德赞,倪纯治,周宗澄,林燕顺,姚瑞梅,曾活水,梁子原,顾静瑜.厦门西海域水体的细菌动力学研究和环境容量评估[J].海洋学报,1994,16(4):102-112.
    [16]郑庆华,何悦强,张银英,温伟英,张慕贞,梁雪仪.珠江口咸淡水交汇区营养盐的化学自净研究[J].热带海洋,1995,14(2):68-75.
    [17]陈朝华,詹兴旺.厦门东侧海域表层海水质量现状与评价[J].台湾海峡,2001,20:157-160.
    [18]Wang X L, Yu A, Jun Z. Contribution of biological processes to self-purification of water with respect to petroleum hydrocarbon associated with No.0 diesel in Changjiang estuary and Jiaozhou Bay[J]. Hydrobiologia,2002,469:179-191.
    [19]葛明,王修林,阎菊,石晓勇,祝陈坚,蒋凤华.胶州湾营养盐环境容量计算[J].海洋科学,2003,27(3):36-42.
    [20]王修林,邓宁宁,李克强,石晓勇,祝陈坚,韩秀荣,张传松,王磊.渤海海域夏季石油烃污染状况及其环境容量估算[J].海洋环境科学,2004,23(4):14-18.
    [21]刘浩,尹宝树.辽东湾氮、磷和COD环境容量的数值计算[J].海洋通报,2006,25(2):46-54.
    [22]王修林,崔正国,李克强,韩秀荣,李雁宾,祝陈坚.环渤海三省一市溶解态无机氮容量总量控制[J].中国海洋大学学报,2008,38(4):619-622.
    [23]崔江瑞,张珞平.厦门湾环境容量研究中污染物迁移转化模式的确定及其应用.环境科
    学与管理[J],2009,34(11):10-14.
    [24]张静.深圳湾水环境综合评价及环境容量研究[D].大连:大连海事大学,2010.
    [25]张东生,徐静琦,王震.环境工程(港口航道及海洋工程专业用)[M].北京.人民交通出版社,1998.
    [26]Bolin B, Rodhe H, A note on theconcepts of age distribution and transit time in natural reservoirs, Tellus,1973,25:58-63.
    [27]Zimmerman J T F, Estuarine residence time, Hydrodynamics of Estuaries, CRC Press,1988,1:75-84.
    [28]Takeoka H, Fundamental concepts of exchange and transport time scales in a coastal sea,Continental Shelf Research,1984,3(3):311-326.
    [29]Luff R, Pohlmann T. Calculation of water exchange times in the ICES-boxes with a eulerian dispersion model using a half-life time approach:Dtsch Hydrogr Zeits, 1996,47(4):287-299.
    [30]何磊.海湾水交换数值模拟方法研究[D],天津:天津大学,2004.
    [31]孙英兰,陈时俊,俞光耀.海湾物理自净能力分析和水质预测-胶州湾[J],山东海洋学院学报,1988,18(2):60-65.
    [32]Signell R P, Butman B. Modeling tidal exchange and dispersion in Boston Harbor[J], Journal of GeoPhysical Research,1992,97:15591-16606.
    [33]Yamanaka R, Nakatsuji K. Tide and wind-induced currents in Bohai Sea [C].Second International Workshop on Coastal Eutrophication, Tianjin China,2002,142-150.
    [34]Nakatsuji K, Yamanaka R, Liang S etc. Seasonal changes of baroclinic circulation and water exchanges in the Bohai Sea[C].8th International Conference on Estuarine and Coastal Modeling, Monterey, CA., November 3,2003,852-870.
    [35]赵亮,魏皓,赵建中.胶州湾水交换的数值研究[J],海洋与湖沼,2002,33(1):23-29.
    [36]管卫兵,王丽娅,潘建明,董礼先.POM模式在河口湾污染物质输运过程模拟中的应用[J],海洋学报,2002,24(3):9-17.
    [37]董礼先,苏纪兰.象山港水交换数值研究Ⅰ,对流扩散型的水交换模式[J],海洋与湖沼,1999(a),30(4):410-415.
    [38]董礼先,苏纪兰.象山港水交换数值研究Ⅱ,模型应用和水交换研究[J],海洋与湖沼,1999(b),30(5):467-470.
    [39]魏皓,田恬,周峰等.渤海水交换的数值研究-水质模型对、半交换时间的模拟[J],青岛海洋大学学报,2002,32(4):519-525.
    [40]孙英兰,张越美.丁字湾物质输运及水交换能力研究[J],青岛海洋大学学报,2003,33(1):001-006.
    [41]Liu Z.Wei H, Liu G S etc. Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuarine[J], Coastal and Shelf Science,2004,61:25-35.
    [42]Delhez E J M, CamPin J M, Hirst A C etc, Toward a general theory of the age in ocean modelling[J], Ocean Modelling,1999,1:17-27.
    [43]Deleersni jder E, CamPin J M, Delhez E J M. The conception of age in marine modelling I:Theory and preliminary model results[J]. Journal of Marine Systems,2001,28:22-267.
    [44]雷晓燕.风暴作用下渤海中污染物(COD)输运的研究[D],青岛,青岛海洋大学,2005.
    [45]Mercier Ch, Delhez E J M. Consistent computation of the age of water parcels using CART[J], Ocean Modelling,2010,35:67-76.
    [46]Gong W,Shen J. Amodel diagnostic study of age of river-borne sediment transport in the tidal York River Estuary [J],Environ Fluid Mech,2010,10:177-196.
    [47]Roger L, Rohlmann T. Calculation of water exchange and times in the ICES-Boxes with a Eulerian Model using a half-life time approach[J], Dtsch Hydrogr Zeits,1995,47(4):287-299.
    [48]Sun J, Tao J H. Relation Matrix of Water Exchange for Sea Baysand Its Application[J], China Ocean Engineering,2006,20(4):529-544.
    [49]杨维荣,于岚,张晓瑞.环境化学[M].北京.高等教育出版社,1991,60-78.
    [50]Zaika V E. environmental capacity - the content of the concept and its application in ecology[J]. Can. Transl. Fish. Aquat. Sci.1992:5557:7.
    [51]唐森铭,陈孝麟,庄栋法等. 多毛类环节动物对柴油污染效应的模拟生态研究[J],海洋学报,1993,15(4):85-89.
    [52]郑庆华,何悦强,张银英等.珠江口咸淡水交汇区营养盐的化学自净研究[J],热带海洋,1995,14(2):68-74.
    [53]陈春华.海口湾海域重金属自净能力研究[J],海洋学报,1997,19(6):77-83.
    [54]李克强.胶州湾石油烃污染物环境容量模型研究及其应用[D].青岛:中国海洋大学,2004.
    [55]何本茂,韦蔓新.防城湾的环境特征及其水体自净特点分析[J],海洋环境科学,2006,25(1)64-68.
    [56]郭良波,江文胜,李凤岐等.渤海COD与石油烃环境容量计算[J],中国海洋大学学报,2007,37(2):310-316.
    [57]何本茂,韦蔓新.广西北海珍珠养殖海域水体自净能力的表现特点[J].海洋环境科学,2011,30(4):559-564.
    [58]HAGSTROM A, AZAM F, ANDERSSON A. Microbial loop in an ohgotrophic pelagic marine ecosystem:possible roles of cyanobacteria and nanotlagellates in the organic fluxes[J].Marine Ecology Progress Series,1988,49 (122):171-178.
    [59]Kirchman D L, Rich J, Barber T., Biomass and biomass production of heterotrophic bacterioplankton along 140W in the equatorial pacific:effects of temperature on the microbial loop[J]. Deep-Sea Research Ⅱ 1995.42 (2-3):603-619.
    [60]GONZALEZ N, ANADON R, VIESCA L. Carbon flux through the microbial com unity in a temperate sea during summer:role of bacterial metabolism[J]. Aquatic Microbial Ecology,2003,33 (2003):117-126.
    [61]赵三军.黄、东海海洋浮游细菌(Picoplankton)的生态学研究[D],青岛,中国科学院海洋研究所,2007.
    [62]蓝文陆,黄邦钦,黄凌风等.珠江口冬季小型原生动物的分布及其影响因素的初步研究[J],海洋科学,2009,33(5):11-16.
    [63]Matusiak K, Pryztocka-Jusiak M, Leszczynska-Gerula K, and Horoch M. Studies on the purification of wastewater from nitrogen fertilizer industry by intensive algal cultures. Ⅱ. Removal of nitrogen from wastewater [J]. Acta Microbiol Pol,1976,25: 361-374.
    [64]Przytocka-Jusiak M, Duszota M, Matusiak K, et al. Intensive culture of Chlorella vulgaris/AA AS the second stage of biological purification of nitrogen industy wastewater [J]. Wat Res,1984,18:1-7.
    [65]Maestrini S Y, Robert J M, Lefley J W, and Collos Y. Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae [J]. J Exp Mar Biol Ecol,1986,102:75-98.
    [66]Kunikane S, Kaneko M, and Maehara R. Growth and nutrient uptake of green alga, Scenedesmus dimorphus, under a wide range of nitrogen-phosphorus ratio (I). Experimental study [J]. Wat Res,1984,18(10):1299-1311.
    [67]黄玉瑶,高玉荣.氮对藻类生长与污水净化的影响[J].生态学报,1990,10(4):299-304.
    [68]Warshawsky D, Radike M, Jayasimhulu K et al. Metabolism of benzo [a] pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricorrutum [J]. Biochem Biophy Res Commun,1988,152:540-544.
    [69]Klekner V and Kosaric N. Degradation of Phenols by Algae [J]. Environ Technol, 1992,13:493-501.
    [70]YanH, Yie CM, and Yin CQ. Kinetics of phthalate ester biodegradation by Chlorella pyrenoidosa [J]. Environ Toxicol Chem,1995,14:931-938.
    [71]王维.藻类在污水净化中的应用及机理简介[J].重庆环境科学,2002,24(6):41-49.
    [72]邓利萍.藻体对水环境中N、P及重金属Cu2、Pb2、Cd2、Cr6的吸附特征研究[D],青岛, 中国科学院海洋研究所,2009.
    [73]刘娟.渤海化学污染物入海通量研究[D],青岛,中国海洋大学,2006.
    [74]崔正国.环渤海13城市主要化学污染物排海总量控制方案研究[D],青岛,中国海洋大学,2008.
    [75]赵仕兰,赵骞,袁秀堂等.2009年辽东湾北部海域Pb和Cd的时空分布特征及其污染风险评价[J],海洋环境科学,2011,30(6):780-788.
    [76]赵亮,魏皓,冯士笮.渤海氮磷营养盐的循环和收支[J],环境科学,2002,23(1):78-81.
    [77]宋伦,周遵春,王年斌等.辽东湾浮游植物多样性及与海洋环境因子的关系[J],海洋环境科学,2007,26(4):365-368.
    [78]宋伦,周遵春,王年斌等.辽东湾浮游动物多样性及与海洋环境因子的关系[J],海洋科学,2010,34(3):35-39.
    [79]刘菲菲.渤海浮游植物生态系统动力学遥感与模型研究[D],青岛,中国海洋大学,2012.
    [80]Feng S, Cheng R T, Xi P. On Tide-Induced Lagrangian Residual Current and Residual Transport,1. Lagrangian Residual Current[J]. Water Resources Research,1986a.22(12): 1623-1634.
    [81]Feng S. A three-dimensional weakly nonlinear model of tide-induced Lagrangian residual current and mass-transport, with an application to the Bohai Sea. In:Nihoul JCJ, Jamart BM (eds) Three-dimensional models of marine and estuarine dynamics, Elsevier Oceanography Series,45. Elsevier, Amsterdam.1987. pp 471-488
    [82]冯士笮.近海环流动力学的一个新框架[A],清华大学工程力学数学热物理学术会议论文集[C],北京,清华大学出版社,1998b,12-16.
    [83]Feng S. Circulation in the Bohai Sea-A dynamics numerical study, Computational Mechanics, In:Cheung, Lee&Leung, eds.,1991 Balkema, Rotterdam. p.34-38.
    [84]赵保仁,曹德明.渤海冬季环流形成机制动力学分析及数值研究[J],海洋与湖沼,1998,29(1):86-95.
    [85]黄大吉,苏纪兰,张立人.渤海冬夏季环流的数值研究[J],空气动力学学报,1998,16(1):115-120.
    [86]W ei H, Zhao L, Feng S. Comparison of the tide-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. [J] Ch inese L im in & Oceanogra,2001,19 (2): 121-132.
    [87]WEI Hao, WU Jian-ping, POHLMANN Thomas. A Simulation on the Seasonal Variation of the Circulation and Transport in the Bohai Sea[J], Journal of Oceanography of HUANGHAI&BOHAI Seas,2001,19 (2):01-09.
    [88]魏皓,田恬,周锋等.渤海水交换的数值研究-水质模型对半交换时间的模拟[J],青岛海洋大学学报,2002,32(4):519-525.
    [89]Grossman G M, Krueger A B. Environmental Impacts of a North American Free Trade Agreement [R]. National Bureau of Economic Research Working Paper 3914, NBER, Cambridge MA.1991.
    [90]Panayotou T. Empirical tests and policy analysis of environmental degradation at different stages of economic development[R]. ILO Technology and Employment Programme Working Paper WP238,1993.
    [91]Selden T M, Song D. Neoclassical growth, The curve for abatement and the inverted U curve for pollution[J]. Journal of EnvironmentalEconomics and management,1995, 29(2):161-168.
    [92]王志华,温宗国,闫芳,陈吉宁.北京环境库兹涅茨曲线假设的验证[J],中国人口资源与环境,2007,17(2):40-47.
    [93]于峰.环境库兹涅茨曲线研究同顾与评析[J].经济问题探索.2006,(8):4-10.
    [94]Stokey. Are There Limits to Growth? [J]. International Economic Review.1998,39 (1):1-31.
    [95]Selden. Environmental Quality and Development:Is There a Kuznets Curve for Air Pollution Estimates? [J]. Journal of Environmental Economics and Management.1994,27: 147-162.
    [96]佘群芝.环境库兹涅茨曲线的理论批评综论[J].中南财经政法 大学学报,2008,(1):20-25.
    [97]王辉.辽宁省社会经济活动影响环境污染的压力机制研究[D].大连,大连海事大学,2012.
    [98]林凤翱,卢兴旺,洛吴,马明辉.渤海赤潮的历史、现状及其特点[J],海洋环境科学,2008,27增刊(2):2-5.
    [99]金尚柱,马宏,窦振兴等.辽河油田浅海油气区海洋环境[M],大连,大连海事大学出版社,1996.
    [100]丁德文等.工程海冰学概论(M),海洋出版社,1999(84).
    [101]段梦兰等.海冰环境中海洋石油钢结构的破坏分析[J],石油学报,1999,20(3):71-76.
    [102]罗丽芬等.冰区海洋平台静态冰载荷概率特性分析[J],石油大学学报(自然科学版本),2002,26(2):57-62.
    [103]方华灿等.冰区海洋平台构件的模糊疲劳可靠性分析[J],石油大学学报(自然科学版本),2003,27(4):94-97.
    [104]Li zhijun, Kong xiangpeng, Zhang liming, et al. A New Concept of Attached Ice-breaking Structure in Shallow Water Area. [C] The Proceedings of the Seventh ISOPE Pacific/Asia Offshore Mechanics Symposium. Dalian:2006:114-118.
    [105]孔祥鹏,张波,张勇.浅水区斜坡人工岛海冰危害及减灾措施[J],大连海事大学学报,2007,33(4):101-105.
    [106]孔祥鹏等.海冰爬坡和堆积行为的试验研究[J],海洋学报,2010,32(3):163-165.
    [107]李志军等.冰区溢油行为的初步数值模拟研究[J],2003,25(2):334-338.
    [108]蒋岳文等.辽东湾近岸冰区营养要素含量及分布特征初探[J],海洋环境科学,1998,17(1): 54-56.
    [109]国家海洋局海洋环境预报中心.渤海航空遥感冰情图集[M],海洋出版社,1990.
    [110]卢鹏等.基于遥感影像的北极海冰厚度和密集度分析方法[J],极地研究,2004,16(2):317-322.
    [111]Kong xiangpeng, Chen naxin. Impact of the slope angle of hummocks on the ride-up of finger ice in the Liaohe Estuary[J],Acta Oceanol. Sin.,2013, Vol.32, No.8, P. 12-15.
    [112]鞠霞,熊学军.渤、黄、东海水温季节变化特征分析[J],海洋科学进展,2013,31(1):55-61.
    [113]Kong xiangpeng. A numerical study on the impact of tidal waves on the storm surge in the north of Liaodong Bay[J],Acta Oceanol. Sin.,2014,33 (1) 35-41.
    [114]石明珠.大辽河口盐淡水混合与水交换特性数值研究[D],青岛,中国海洋大学,2012.
    [115]APHA. Standard methods for the examination of water and wastewater.8thed. American Public Health Association, Washington, DC.1992.
    [116]Ikumapayi Fatai Kolawole, Jan-Eric Sundkvist, Nils- Johan Boli. Treatment of process water from molybdenum flotation (C). Lulea:Lulea tekniska universitet,2009. ISBN (print) 978-91-86233-69-3.
    [117]Clair N. Sawyer, Perry L. McCarty, Gene F. Parkin. Chemistry for Environmental Engineering and Science (5thed) [M]. New York:McGraw-Hill.2003, 626-629 ISBN 0-07-248066-1.
    [118]J Howell, M S Coyne, P Cornelius. Effect of sediment particle size and temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci ratio[J]. Journal of Environmental Quality.1996,25(6):1216-1220.
    [119]Wizder F H, York GK et al. Quick counting method for estimating the number of viable microbes on food and processing equipment[J]. Appl Microbiol,1971,22 (1): 89-92.
    [120]KONG Xiangpeng, YE Shuhong. The Impact of Water Temperature on Water Quality Indexes in the North of Liaodong Bay[J]. Marine Pollution Bulletin.2014,80(1-2) 245-249.
    [l21]Thomas D N, Dieckmann G. S. Antarctic sea ice-a habit for extremophiles[J]. Science.2002,295:641-644.
    [122]关道明.我国近岸典型海域环境质量评价和环境容量研究[M]. 北京:海洋出版社,2011.
    [123]宋有强.辽东湾北部岸带温、盐分布基本特征[J]海洋通报,1990,9(3):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700