用户名: 密码: 验证码:
科尔沁沙地地表环境演变及其与水文气象因子间的响应关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,全球很多地区地表环境呈现不断恶化的趋势,地表环境如何演变,其与水文气象因子间的响应关系是什么,越来越多的受到国内外无论是科学界还是各国政府的广泛关注,已成为全球变化研究中国际地圈生物圈计划(IGBP)中的研究热点。
     科尔沁沙地在历史上曾为水草丰美、植被茂盛的大草原,经过近百年的草场退化、沙化及土地荒漠化,目前已成为我国四大沙地之一,其地表环境的演变不论在全球还是我国都具有典型性和代表性。而其变化趋势和特点是如何的,与水文气象因子间存在如何的响应关系,是目前科学界迫切想获知的。
     本文以科尔沁沙地为区域研究区,在该研究区进行了地表环境因子-植被生态型、榆树生长演变及其与水文气象因子间的响应关系研究。在科尔沁沙地腹地选择了可以代表科尔沁沙地坨甸相间地貌、地形、植被、水文气象等条件的两个研究区,即一般研究区(阿古拉苏木)和重点研究区(阿古拉试验区),以1987~2006年20年间的17张遥感影像数据和在两个研究区实地收集、调查、测试的植被及水文气象数据为基础,通过对遥感影像的解译和水文气象数据的整理,对一般研究区和重点研究区分别进行了地表环境变化及其与水文气象因子间的年际和年内响应关系研究。通过分析,主要得出以下结论:
     区域研究区:(1)湿生、中生、中旱生和旱生植物对应响应的地下水位埋深范围分别为0.45~1.66m、0.95~2.20m、2.20~4.59m和3.45~7.45m;植物根系土壤表层含水率范围分别为2.70~25.54%、0.80~13.32%、0.41~2.25%和0.28~0.44%;植物根系层含水率范围分别为5.59~54.80%、3.59~9.19%、0.71~3.59%和0.16~0.78%。同时湿生植物与中生植物、中旱生植物与旱生植物有一个地下水位埋深过渡响应范围,其值分别为0.95~1.66m和3.45~4.59m;有一个植物根系土壤表层含水率过渡响应范围,其值分别为2.70~13.32%和0.41~0.44%;有一个根系层土壤含水率过渡响应范围,其值分别为5.59~9.19%和0.71~0.78%。
     (2)年轮指数与7月份降水量、年降水量、8月和9月蒸发量之和的相关系数最大,分别为+0.605、+0.595和-0.459,即榆树生长演变随降水量的增大而增大,随蒸发量的增大而减小。由此,建立榆树标准年表,并通过其重建了该地区1906~1951年46a的降水量和蒸发量序列,经验证,重建序列具有较好的可靠性,可用于指导生产实践。
     一般研究区:(1)在1987~2006年间,耕地、其它林地、居民和道路用地、盐碱地、低覆盖度草地、半固定沙地面积分别从26.65、1.02、1.88、38.71、120.30、104.84km2变化到74.79、2.83、4.59、94.91、201.79、203.21km2,呈逐渐增加趋势。灌木林地、水域、高覆盖度草地、固定沙地、流动沙丘、中覆盖度草地面积分别从53.26、30.80、49.38、321.24、59.70、116.94km2变化到42.63、16.50、32.88、103.86、18.48、128.36km2,呈逐渐减少趋势。表明,近20年来研究区地表环境呈现不断恶化的趋势,在近2年稍有好转。
     (2)年际NDVI均值变化中,1987~1994年为上升阶段;1994~2002年为下降阶段,之后呈上升趋势。总体上,年际NDVI均值变化呈下降趋势,即地表环境变化呈现恶化趋势,但近2年有所好转。
     (3)各类水文气象因子不同程度的影响着各地表环境类型面积的变化,并按相关系数大小具有一定的排序,随着这些因子的起伏变化,各类型地表环境面积变化表现出不同的响应方式。并且这种影响贯穿了植被生长的前、初和高峰期。
     (4)水文气象因子对地表环境面积变化影响最大的是相对湿度,HFII值为0.16;其次为降水量和蒸发量,HFII值分别为0.15和0.13。表明在干旱半干旱地区,水分条件是制约地表环境变化的关键因素,其相反的因子-蒸发量是又一大制约因素,地表环境的多年恶化主要还是由多年来气候持续干旱造成的。
     (5)NDVI均值变化的主要推动因子是降水和蒸发。其在2007~2012年之间呈逐渐降低趋势,说明在该时段地表环境将进一步恶化;在2013~2020年之间呈逐渐增大趋势,说明该时段地表环境将逐步趋于好转。
     (6)在植被生长初期,由于降水量较少,植被生长更多的需要通过根系吸收地下水,所以地下水位埋深越小,NDVI值就越大。5月份的地下水位埋深小范围的波动就会导致8月份NDVI的较大变化。同时,随着5月份和7月份地下水位埋深不同范围的变化,NDVI表现出0.145~0.3、0.3~0.5和0.5~0.582三个区间的响应范围,并且其中有个别的地下水位埋深过渡范围。
     重点研究区:(1)耕地、灌木林地、盐碱地、高覆盖度草地、固定沙地年内面积变化呈抛物线趋势;水域、低覆盖度草地、半固定沙地和流动沙丘则呈微弱倒抛物线趋势;其它林地无变化;中覆盖度草地呈逐渐增加趋势。年内NDVI最大值和均值变化呈现抛物线趋势。
     (2)在5月22日至8月24日这个阶段,随着各类水文气象因子的变化,各类型地表环境面积随之响应变化,互相转化;而在8月24日至10月27日这个阶段,则表现出相反的响应趋势。
     (3)各地表环境类型代表点在年内NDVI值均呈抛物线趋势。高覆盖度草地NDVI均值最大,达到0.30;盐碱地与高覆盖度草地混和地居第二位,为0.19;流动沙丘位于最后一位,为0.07。
     (4)随着降水量的增大,蒸发量的减少,日照时数的增加,空间不同高处相对湿度的增大,风速的减小,前一月和8月份地温的降低,10月份地温的升高(这其中影响较大的为20cm处的地温),空间各层位平均气温的降低,不同深度土壤蒸发量的降低(特别是20cm高土壤蒸发),NDVI值随之增大。同样,在年内5月份的地下水位埋深小范围的波动就会导致8月份NDVI的较大变化,对植被生长起着关键作用。而在6~8月期间,植被长势已很好,基数基本稳定,此时植被的生长对地下水位埋深的依赖程度有所降低。同时,NDVI为0.125~0.3、0.3~0.5和0.5~0.612时,在5月份、6月份和7月份分别有各自对应的地下水位埋深范围,并且其间有部分过渡范围。上述结论表明在空间各个位置的水热条件都伴随着植被生长的全过程。
     研究区地表环境不论是年际,还是年内变化,主要是响应了各类水文气象因子的变化,特别是降水、相对湿度、蒸发和气温等的变化。近20年地表环境处于不断的恶化中,其间有部分波动,近2年稍有好转,但未来6年仍将继续恶化,之后将会持续好转,这是气候的持续干旱及未来转湿所致,当然,这其中也含有部分人类活动影响的因素。
Present, the surface environment present an ever-worsening trend in many areas of the world. How will the surface environment change? What are the relationships between the surface environment changes and hydrological-weather factors? All above problems have been paied close attention from scientific communities and governments, already become a hot topic for International Geosphere Biosphere Program (IGBP) in the research of global changes.
     Horqin sandy land was a beautiful and exuberant grassland in history, after hundred years grassland degeneration and desertification has already become one of four big sandy land in our country, whatever in the whole world or our country, the variation of the surface environment had many typical and representative natures. How will the surface environment changing trend and characteristics go on? What are the relationships between the changes of the surface environment and hydrological-weather factors? These are scientific communities want to learn urgently at present.
     The paper take Horqin sandy land as regional study area, in this study area have carried out researches about the changes of vegetation ecotype, elm growth and the relationships between the surface environment changes and hydrological-weather factors, and chosen two areas which can represent the landform, terrain, vegetation and hydrological-weather conditions in Horqin sandy land, namely general study area (Agula town) and principal study area (Agula testing-station). The paper based on 17 remote sensing image data from 1987 to 2006 and lots of vegetation and hydrological-weather data which by collecting, surveying and testing in two study areas, with translating the remote sensing image and arranging the hydrological-weather data, have carried out researches about the inter- and inner-annual changes of the surface environment and the relationships between the surface environment changes and hydrological-weather factors in general and principal study areas. From analysis, gained four main conclusions as follows:
     Regional study area:(1) For hygrophytes, mesophytes, mesoxerophytes and xerophytes, the buried depth of groundwater table were respectively from 0.45m to 1.66m, from 0.95m to 2.20m, from 2.20m to 4.59m and from 3.45m to 7.45m; the water content of surface soil of root structure were respectively from 2.70% to 25.54%, from 0.80% to 13.32%, from 0.41% to 2.25% and from 0.28% to 0.44%; the water content of root structure were respectively from 5.59% to 54.80%, from 3.59% to 9.19%, from 0.71% to 3.59% and from 0.16% to 0.78%. At the same time, for hygrophytes and mesophytes, mesoxerophytes and xerophytes, there were two transition response ranges of buried depth of groundwater table respectively from 0.95m to 1.66m and from 3.45m to 4.59m; there were two transition response ranges of water content of surface soil of root structure respectively from 2.70% to 13.32% and from 0.41% to 0.44%; there were two transition response ranges of water content of root structure were respectively from 5.59% to 9.19% and 0.71% to 0.78%.
     (2)The annual ring index had three biggest correlation coefficients with rainfall of July, the annual precipitation and the total evaporation of August and September are respectively +0.605, +0.595 and -0.459, namely the elm growth changes present an increasing trend with the increase of precipitation and present a decreasing trend with the increase of evaporation. From these ruslts, established elm standard annual table and rebuilded the sequence of precipitation and evaporation from 1906 to 1951, from certification, the sequence had fairly good reliability for actual practices.
     General study area:(1)During 1987~2006 the area of farmland, forest, the land of resident and road, alkaline-saline land, low-covered degree grassland and the fixed and partly fixed sandy land respectively increased from 26.65, 1.02, 1.878, 38.71, 120.30 and 104.84km2 to 74.79, 2.832, 4.585, 94.91, 201.79 and 203.21km2. The six types of surface environment in inter-annual presented a gradually increasing trend. The area of bush forest, water surface, high-covered degree grassland, fixed sandy land,bare sand dunes and middle cover degree grassland respectively increased from 53.26, 30.80, 49.38, 321.24, 59.70 and 116.94km2 to 42.63, 16.50, 32.88, 103.86, 18.48 and 128.36km2. The six types of surface environment in inter-annual presented a gradually decreasing trend. All types of surface environment in the course of mutual transformation. It indicated that the surface environment presented an ever-worsening trend for a long time, but changed for the better condition close to recent two years.
     (2)In the course of inter-annual changes of average value of NDVI, from 1987 to 1994 was a rising stage and from 1994 to 2002 was decreasing stage, afterwards presented a rising trend. As a whole, the inter-annual changes of the average value of NDVI presented a decreasing trend, namely the changes of surface environment presented a worsening trend, but changed for the better close to recent two years.
     (3)All types of area changes of the surface environment had different degrees correlations with 9 major kinds of hydrological-weather factors, about 2~28 hydrological-weather factors influenced the changes of surface environment and had certain orders according to the size of correlation coefficients, with the fluctuation of these factors, all types of area changes of the surface environment presented different response modes. As a whole, the influences of rainfall, relative humidity, maximum temperature, minimum temperature and average wind speed went throughout the whole course of early, initial and flush period of vegetation growth.
     (4)Relative humidity was the most influential factor to the area changes of surface environment, the HFII(Hydrological-Weather Factors Influential Index) was 0.161; rainfall occupied the second place, the HFII was 0.150; the third one was evaporation, the HFII was 0.131. That show clearly, in arid area, water condition was the key restrictive factor to the changes of surface environment, it’s contrary factor-evaporation was another key restrictive factor, these phenomenon accorded with the characteristics of arid area, the worsening conditions of the surface environment mainly bringed about by the multi-years dry climate.
     (5)Rainfall and evaporation was the impetus factors to the changes of average value of NDVI, which will present a decreasing trend from 2007 to 2012, it indicates that the surface environment will increasingly worsen during this period; and it will present an increasing trend from 2013 to 2020, it indicates that the surface environment will change for the better.
     (6)In the initial stage of vegetation growth, because of rainfall was comparatively rare, the growth of vegetation mainly depended on absorbing groundwater by root system, accordingly the buried depth of groundwater table was increasingly shallow and the average value of NDVI was more bigger. A little fluctuation of buried depth of groundwater table on May will make the average value of NDVI occur greater changes. Meanwhile, with the different ranges of buried depth of groundwater table on May and July, NDVI presented three response ranges were respectively from 0.145 to 0.3, from 0.3 to 0.5 and from 0.5 to 0.582, there were transient ranges of buried depth of groundwater table in these response ranges.
     Principal study area:(1) The inner-annual variation of farmland, bush forest land, alkaline-saline land, high-covered degree grassland and fixed sandy land presented a parabola trend. The inner-annual variation of water surface, low-covered degree grassland, fixed and partly fixed sandy land, bare sand dunes presented a little inverted parabola trend. The other forest land nearly had no changes in 2006, the inner-annual changes of middle -cover degree grassland presented an increasing trend.
     (2)The inner-annual changes of maximum and average value of NDVI presented a parabola trend, on August 24 the NDVI was maximum of 0.707, on October 27 the NDVI was minimum of 0.302.
     (3)In the stage of May 22 to August 24, all types area of surface environment changed and transformated each other with the changes of hydrological-weather factors and had close response relationships. From August 24 to November 27 presented inverted response relationships.
     (4)The average value of NDVI of all types of surface environment presented a parabola trend, the average value of NDVI of high-covered degree grassland was maximum of 0.3006; the mixed land of alkaline-saline and high-covered degree grassland occuied the second place, the value was 0.1098; bare sand dunes was the last factor, the value was 0.0682.
     (5)The inner-annual changes of rainfall and the value of NDVI had the same trend, it was the most influential factors and influenced the whole course of vegetation growth. The value of NDVI decreased with the increase of evaporation and increased with the increase of sunshine hours. The value of NDVI correspondingly increased with the increase of relative humidity of 0m, 2m and 3.5m, it indicated that the different height of water condition influenced the whole course of vegetation growth. Samely, a little fluctuation of buried depth of groundwater table on May will make the average value of NDVI occur greater changes, it played a key role for vegetation growth. However during June to August, the state of vegetation growth was in good condition, the cardinal number was stable, so the growth of vegetation was less dependent on the buried depth of groundwater table. Meanwhile, when the value of NDVI were respectively from 0.125 to 0.3, from 0.3 to 0.5 and from 0.5 to 0.612, which had respectively corresponding ranges of buried depth of groundwater table from May to July, and had a part of transition ranges. The value of NDVI gradually decreased with the wind speed increase. If the ground temperature was higher, it would suppress the vegetation growth and reduce good vegetation cardinal number, if the ground temperature increased on August, the vegetation growth would be suppressed and the value of NDVI also reduced. To October, the temperature gradually deduced, so vegetation growth need higher soil temperature environment, from analysis, if various layers of ground temperature were higher, the value of NDVI were more bigger, the most influential layer of ground temperature located at 5cm. In the flush period of vegetation growth, the average temperature in various spatial layers should be not too high, otherwise was disadvantageous to vegetation growth. On August the value of NDVI was influenced by soil evaporation, especially 0~20cm soil evaporation, with the increase of soil evaporation, the soil moisture was insufficient, the root system of vegetation could not receive supplement of moisture content, the NDVI would be reduced.
     Whatever inter-annual or inner-annual changes of surface environment mainly responded to changes of hydrological-weather factors, especially the changes of rainfall, relative humidity, evaporation and temperature et al. As a whole, the surface environment presented an ever-worsening trend for a long time, has a part of undulation, especially has changed for the better close to recent two years, but will still continue to worsen in next 6 years, afterwards it will lasting better, all above phenomenon result from the continuous drought and future wet of climate, certainly, in which include partial influence from the human beings.
引文
1秦大河 ,丁一汇 ,苏纪兰等 .中国气候与环境演变 -上卷 -气候与环境的演变及预测 . [M]北京:科学出版社, 2005.2-5.
    2蒋德明 ,刘志明 ,曹有成等 .科尔沁沙地荒漠化过程与生态恢复 . [M]北京 :中国环境科学出版社, 2003.43-44.
    3《孟子》卷五 ,《腠文公》上 .
    4《白虎通》卷一 .
    5《帝王世纪》 .
    6《南齐书》卷十六《百家》 .
    7《清朝文献通卷》卷 1,2,3,4,田赋 ,卷 19,户口 1.
    8 吴传钧 .1: 40000 南京市土地利用图 .[M]中国科学院地理研究所出版 .1950.
    9 邓静中 .中国土地利用现状区划 . [M]农业出版社 .1964.
    10吴传钧 . 1: 100万中国土地利用图 .[M]科学出版社 .1990.
    11徐冠华 ,孙枢 ,陈运泰等 .迎接 “数字地球 ”的挑战 . [J]遥感学报 ,1999,28(1) :637-641.
    12李军 ,林宗坚 .基于特征的遥感影像数据融合方法 . [J]中国图形图像学报 ,1997,2 (23) :103-107.
    13李德仁 .信息高速公路、空间数据基础设施与数字地球 . [J]测绘学报 ,1999,28 (1) :103-107.
    14任维春 ,王建卫 ,王歧岭等 .综合利用 3S技术监测土地利用变化 . [J]遥感信息,2000,3 :103-107.
    15宫鹏等 .对地观测系统与地球系统科学 .[M]科学出版社 ,1996.
    16刘慧平 ,朱启疆 .应用高分辨率遥感数据进行土地利用与覆盖变化监测的方法及其研究进展.[J]资源科学,1999,21(3):23-27.
    17史培军 ,宫鹏 ,李晓兵等 .土地利用 / 覆盖变化研究的方法与实践 . [M]北京 :科学出版社,2000,1-2.
    18王建 ,鲁安新 ,郭庭天等 .Brovey 图像融合在引大灌区土地覆盖调查中的应用 . [J] 遥感技术与应用,2001,16 (3) :173-177.
    19王建 ,潘竟虎 ,王丽红 .基于遥感卫星图像的 ATCOR2快速大气纠正模型及应用 .[J] 遥感技术与应用,2002,17 (4) :193-197.
    20徐文婷 ,吴炳方 ,颜长珍等 .用 SPOT-VGT数据制作中国 2000年度土地覆盖数据 [J]遥感学报,2005,9(2) :204-214.
    21美国第四届国情普查 . [M],1920,6(2).
    22Pierce L.E,et al.Multiemporal land_cover classification using SIR-C/X-SAR imagery.[J]Remote Sensing of Environment,1998,64:20-33.
    23Vogelmon J.et al.Regional characrerization of lead cover using multiple source of data. [J]PE&RS,1998,64(1):45-57.
    24吴传钧 ,郭焕成 .中国土地利用 . [M]北京 :科学出版社 ,1994.
    25Anderson J.R,et al.A land use and land cover classification System for use with remote sensing data.[M]USGS Professional Paper 964.1976.
    26刘纪远 .中国资源环境遥感宏观调查与动态研究 . [M]北京 :科学出版社 ,1996.
    27DIS Working paper, No. 13. The IGBP-DIS Global l km Land Cover Data Set Propos and Implementation plans, Report of the Land Cover Working Group of IGBP-DIS.
    28林桂兰 ,孙飒梅 ,陈志浩 .沿海丘陵地区土地覆盖及其动态变化的多源遥感研究 .[J]遥感信息,1999,4:103-107.
    29刘鹰 .应用高分辨率遥感数据进行土地利用与覆盖变化监测的方法及其研究进展 . [J]资源科学 ,1999,21(3):23-27.
    30陈志军 .用遥感图像提取土地利用变化信息的特征变异增强方法 . [J]国土资源遥感,1999,3:49-52.
    31李四海 ,恽才兴 .土地覆盖遥感专题信息的分层提取方法及其应用 . [J]遥感技术及应用,1999,14(4):23-28.
    32孙丹峰 ,林培 .自适应模糊规则分类方法及在 TM土地覆盖分类中的应用研究 .[J]国土资源遥感,2000,1:44-50.
    33席学强 ,王润生 .一个针对遥感图像特定目标的自动识别系统 .[J]遥感技术与应用,2000,15(3):179-183.
    34许君 .应用光谱综合分析法从 SPOT影像提取槟榔树专题信息 .[J]遥感技术与应用,2000,15(1):55-59.
    35Goodchild,M.F.Future direction for geographical information Sience. [M]In proceedings of Geoinfmaties’95, Hong Kong, 1995.
    36United states department of Agriculture. [M]Agriculture Handbook No.664,1994.
    37郭铌 .植被指数及其研究进展 . [J]干旱气象 ,2003,21(4):71-75.
    38Kaufman YJ , Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS - MODIS . [J]IEEE Trans Geosci Remote Sensing ,1992 , (30) :261 - 270.
    39Huete A R. A soil adjusted vegetation index (SAVI) . [J] Remote Sens Environ. 1988 , (25) :295-309.
    40Qi J . A modified soil adjusted vegetation index . [J]Remote Sens Environ ,1994 , (48):119-126.
    41Liu H Q , Huete. A Feedback Based Modification of the NDVI to Minimize CanopyBackground and Atmospheric Noise . [J]IEEE Trans Geosci Remote Sensing , (33) :457 -465.
    42陈述彭 .遥感信息机理研究 .[M]北京 :科学出版社 ,1998.
    43王长耀 .对地观测技术与精细农业 .[M]北京 :科学出版社 ,2001.
    44陈维英 .距平植被指数在 1992年特大干旱监测中的应用 .[J]环境遥感 ,1986 ,1 (4) :106-112.
    45郭铌 ,李栋梁 ,蔡晓军等 .1995 年中国西北东部特大干旱的气候诊断与卫星监测 .[J]干旱区地理,1997,9 (3) :69-74.
    46郭铌 ,陈添宇 ,雷建勤等 .用 NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度. [J]应用气象学报,1997,8(2) :212-218.
    47王鹏新 ,龚健雅 ,李小文等 .基于植被指数和土地表面温度的干旱监测模型 . [J]地球科学进展,2003,18(8) :527-533.
    48盛永伟 ,陈维英 ,肖乾广等 .利用气象卫星植被指数进行我国植被的宏观分类 . [J]科学通报,1995,40 (1) :68-71.
    49郭铌 ,杨兰芳 ,王涓力 .黑河流域生态环境气象卫星遥感监测研究 . [J]高原气象,2002 ,21(3):267-273.
    50Dajima T , Kajiwara K , Tateishi R. Global land cover classification by NOAA AVHRR data [A].In:Proceedings 11th ACRS .[C]Guangzhou:[s.n] ,1990. S-3-1-S -3-6.
    51郭铌 ,陈添宇 ,陈乾 .用 NOAA气象卫星资料对甘肃省河东地区土地覆盖分类 . [J]高原气象,1995,14 (4) :467-475.
    52肖乾广 ,陈维英 ,盛永伟等 .用 NOAA气象卫星的 AVHRR 遥感资料估算中国的净第一性生产力. [J]植物学报,1996,38(1) :35-39.
    53孙睿 ,朱启疆 .中国陆地植被净第一性生产力及季节变化研究 .[J]地理学报 ,2000 ,55 (1) :36-45.
    54肖乾广 ,周嗣松 ,陈维英等 .用气象卫星数据对冬小麦进行估产的试验 . [J]环境遥感,1986 ,1 (4) :37-43.
    55牛志春 ,倪绍祥 .青海湖环湖地区草地植被生物量遥感监测模型 . [J]地理学报,2003,5.
    56姚春生 ,张增祥 ,汪潇 .使用温度植被干旱指数法 (TVDI)反演新疆土壤湿度 .[J]遥感技术与应用,2004,19(6) :473-478.
    57焦险峰 ,杨邦杰 ,裴志远等 .基于植被指数的作物产量监测方法研究 .[J]农业工程学报,2005,21(4) :104-108.
    58田翠玲 ,李秉柏 ,郑有飞 .基于植被指数与叶面积指数的水稻生长状况监测 . [J]江苏农业科学,2005,6:13-15.
    59王正兴 ,刘闯 ,赵冰茹等 .利用 MODIS增强型植被指数反演草地地上生物量 . [J]兰州大学学报(自然科学版),2005,41(2) :10-16.
    60冉琼 ,张增祥 ,张国平等 .温度植被干旱指数反演全国土壤湿度的 DEM订正 . [J]中国水土保持科学,2005,3(2) :32-36.
    61Koppen W. Das geographisches system derklimate . [A]In : Koppen wm ( eds ) . Handbuch der Klimatologie [C].Berli n : Gebruder Bornt raeger. 1936.
    62HoldridgeLR . DeterminationOfworldplantformationfromsimpleclimateData.Science,1947,105:367-368.
    63Woodward F I. Climate and Plant Distribution.[M] Cambridge :Cambridge University Press.1987.
    64Zhang X Index of Potential evapotranspirafion of vegetation-classification of climate(1),introduction of several main meUlod sand computer programs. ActaPhytoecologicaSinica,1989,13(1):1-9.
    65Zhang X . Index of Potential evapotranspiration of vegetation-classification of climate(2) , introduction of several main method sand computerprograms. ActaPhytoecologicaSinica,1989,13(4):l-9.
    66Sun Chengyong , Feoli F. A numerical phytoclimatic classification of China [M]. Annual Report of Laboratory of Quantitative vegetation Ecology, Institute Botamy, CAS. 1991.
    67ulme M, Wigley T, Jiang T et al. A Climate Change due to the greenhouse effect and its implication for China.WWF Report, Gland. 1992.
    68Melillo J M , et al . Global climate change and terrestrial netprimary production[J]. Nat ure , 1993,363 :234-240.
    69Schimel D S , et al.Climatic ,edephic ,and biotic controlsover carbon and turnover of carbon in soils [J].Global Biogeochemical Cycles,1994,8:279-293.
    70Neilson R P, D Marks. A global perspective of regional vegetation and hydrological sensitivities and risks fi.om climate change. Journal of Vegetation Science.1994,27: 715-730.
    71Neilson R P. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications.1995,5(2):362-385.
    72L i u G , et al. A process - based boreal ecosystem productivity simulator usi ng remote i nputs [J].Remote Sensing of Environment,1997,62:158-175.
    73Ni J, M T Sykes,I C Prentice et al. Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3.Global Ecology and biogeography. 2000, 9. 463-479
    74李博 .内蒙古自治区资源系列地图 . 北京 :科学出版社 . 1991.
    75李博 ,雍世鹏 ,曾泗弟等 .生态分区原则、方法与应用内蒙古自治区生态分区图说明 . 植物生态学与地植物学学报, 1990,14 (1) :55-62.
    76李博 .内蒙古地带性植被的基本类型及其生态地理规律 .内蒙古大学学报 , 1962, 4 (2) :41-71.
    77申云霞 . 气候、地形、植被与西部环境重建 .[J]西北植物学报 .2000,20(2):317-320.
    78范广洲 . 青藏高原植被胜利过程对气候变化的影响和响应 -( 1)气候变化对植物生理过程的影响.[J]2000年中国博士后学术大会论文集-农林与西部发展分册.2002, 290-293.
    79李月臣 ,宫鹏 ,刘春霞等 .北方 13省 1982 年~ 1999 年植被变化及其与气候因子的关系.[J]资源科学.2006,28(2):109-117.
    80牛建明 .内蒙古主要植被类型与气候因子关系的研究 .[J]应用生态学报.2000,11(1):47-52.
    81牛建明 .基于气候的植被空间分布的数字模拟 -以内蒙古为例 .[J]生态学报.2001,21(7):1064-1071.
    82徐建春 ,赵英时 ,刘振华 .利用遥感和 GIS 研究内蒙古中西部地区环境变化 .[J]遥感学报.2002,6(2):142-149.
    83马安 ,青高峰 ,贾永刚等 .基于遥感的贺兰山两侧沙漠边缘带植被覆盖演变及对气候响应.[J]干旱区地理.2006,29(2):170-177.
    84朝伦巴根 ,刘廷玺 ,马龙等 .通辽地区地表环境演变及其与水资源的关系 .[J]内蒙古农业大学学报.2002,23(2):71-75.
    85李静 ,赵庚星 ,范瑞彬 .黄河三角洲土地利用及土地覆盖变化驱动力分析 .[J]西北农林科技大学学报(自然科学版).2003,31(3):117-122.
    86张勃 ,张华 .河西地区土地利用 /覆盖变化驱动力研究 .[J]干旱区地理.2004,27(2):334-238.
    87赵茂盛 ,Ronald P.Neilson,延晓冬等 .气候变化对中国植被可能影响的模拟 .[J]地理学报.2002,57(1):28-38.
    88吴正方 ,靳英华 ,刘吉平等 .东北地区植被分布全球气候变化区域响应 .[J]地理科学.2003,23(5):564-570.
    89张华 .张掖市土地利用 /覆盖变化模拟 .[J]遥感技术与应用 .2004,19(5):359-363.
    90李谢 ,辉塔西甫拉提 ·特依拜 ,黄镇 .基于 MODIS数据的土地覆盖变化与气候因子敏感性分析研究.[J]资源科学.2006,28(3):102-107.
    91孙艳玲 ,延晓冬 ,谢德体 .基于布迪科指标的中国植被 -气候关系研究 .[J]资源科学.2006,28(3):23-29.
    92Tucker J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of the Environment, 1979, 8:127-150.
    93TUCKER CJ,TOWNSHEND J R G. African land - cover classification using satellite data[J].Science ,1985,227:369-375.
    94Melillo J M, Kicklighter D W, McGuire A D, et al. Global climate change and terrestrial net primary production. Nature,1993, 363:234-240
    95 Lcehle C, Leblanc D. Model-based assessments of climate changeeffects on forest: a critical review. Ecological Modeling, 1996,90:1-31
    96Turner B L, David Skole. Land use and land cover change (LUCC): Science/Research Plan [M].IGBP Report No.35.1995.
    97Field C B, Randerson J T, Malmstrom C M. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 1995,51: 74-88
    98Paruelo J M, Epstein H E, Lauenroth W K, et al. ANPP Estimates from NDVI for the Central grassland region of the United States.Ecology,1997,78(3): 953-958.
    99CENR, SGCR. The FY1996 U. S. Global Change Research Program EA- A Report by the Subcommittee on Global Change Research.[C]CENR and SGCR,1996.
    100Ddfnies RS ,Townshend ,JRG. 1994. NDVI2derived land cover classification at a global scales. Int J Remote Sens , 15(17):3675-3586.
    101Albert J. Peters, Elizabeth A. Walter-Shea, Lei Ji, Andr6s Vista, Michael Hayes, and Mark D. Svobeda. Drought Monitoring with NDVI-Based Standardized Vegetation Index. Photogrammetric Engineering & Remote Sensing, 2002,68(1).
    102Kogan F.N. Remote Sensing of weather impacts on vegetation, International Jounal of Remote Sensing, 1990,11:1405-1419.
    103Kazuhito Iehii, Akira Kawabata and Yasushi Yamaguchi. Global decadal changes in NDVI and its relationships to climate variables, IGARSS 2001, IEEE.
    104Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker, Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. Journal of Geophysical Research,2002,108(D1):4004.
    105B rasw ellB H, Sch imelD S, L inder E, et al1 The response of global terrestrial eco system s to interannual temperature variability[J]S cience, 1997,278:870-872.
    106Moulin S, L Kergoat, N V iovy, GDedieu1 Global-scale assessment of vegetation pheno logy usingNOAA?AVHRR satellitemeasure ments[J]1 Journal of C lim ate1 1997, 10:1154-1170.
    107R ichard Y, I Poccard1 A statistical study of NDVI sensitivity to seasonal and interannaul rainfall variations in Southern A frica [J]Int.J .R em ote sensing ,1998,19 (15):2907-2920.
    108Potter C S , Brooks V. Global analysis of empirical relations between annual climate and seasonality of NDVI [J].International Journal of Remote Sensing ,1998,19 (15):2 921-2948.
    109Richard Y, Poccard I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa [J] .International Journal of Remote Sensing ,1998 , 19 (15) :2907-2920.
    110Eklundh L. Estimating relation between AVHRR NDV1 and rainfall in East Africa at
    10-day and monthly time scales [J].Intemational Journal of Remote Sensing,1998,19(3): 563-568.
    111Bitter P. Analysis of Vegetation Index Time Series of 8 Study Areas in Tibet and Nepal [R]. Katmandu, Nepal: ICIMOD,2000.
    112Wang J , Price KP , Rich PM. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing, 2001,22,3827-3844.
    113Jobbagy EG,Sala OE,Paruelo JM. Patterns and controls of primary production in the Patagonian steppe:a remote sensing approach.Ecology,2002,83,307-319.
    114Li XB, Shi PJ.Sensitivity analysis of variation in NDVI , temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica, 2000,24,379-382.(in Chinese with English abstract)
    115Piao SL , Fang JY, Zhou LM, Guo QH , Henderson M, Ji W,Li Y,Tao S.Interannual variations of monthly and seasonal normalized difference vegetation index ( NDVI ) in China from 1982 to 1999. Journal of Geophysical Research ,2003,108,doi:10.1029/ 2002JD002848.
    116Piao SL , Fang JY, Ji W, Guo QH , Ke JH ,Tao S.Variation in a satellite- based vegetation index in relation to climate in China. Journal of Vegetation Science, 2004,15, 219-226.
    117Wang J,Rich PM, Price KP. Temporal responses of NDVI to precipitation and temperature in the central Great Plains ,USA. International Journal of Remote Sensing, 2003,24,2345-2364.
    118张新时 .研究全球变化的植被 -气候分类系统 .第四纪研究 , [J]1993, 2: 157-169.
    119周广胜 .气候 -植被关系的研究 I-气候 -植被分类 .见 :林金安主编 , 植物科学综论 . [M]哈尔滨 : 东北林业大学出版社 ,1993, 246-254.
    120周广胜 ,王玉辉 .全球变化与气候 -植被分类研究和展望 .科学通报 , [J]1999, 24( 44) : 2587-2593.
    121倪建 .植被气候分类系统 .见 :方精云主编全球生态学 -气候变化与生态响应 .高等教育出版社, [M]施普林格出版社, 2000, 158-176.
    122李晓兵 ,王瑛 ,李克让 . NDVI对降水季节性和年际变化的敏感性 . [J]地理学报 , 2000,55 (增刊 ): 82- 89.
    123陈云浩 ,李晓兵 ,史培军 .1983~ 1992年中国陆地 NDVI变化的气候因子驱动分析 . [J]植物生态学报 ,2001,25(6):716-720.
    124孙睿 ,刘昌明 ,朱启疆 .黄河流域植被覆盖度动态变化与降水的关系 .[J]地理学报 , 2001,56(6):667-672.
    125赵茂盛 ,符淙斌 ,延晓冬等 .应用遥感数据研究中国植被生态系统与气候的关系 .[J]地理学报. 2001 ,56(3) 287-295.
    126张军 ,葛剑平 ,国庆喜 .中国东北地区主要植被类型 NDVI变化与气候因子的关系 .[J]生态学报. 2001 ,21 (4) ∶ 522-527.
    127龚道溢 ,史培军 ,何学兆 .北半球春季植被 NDVI对温度变化响应的区域差异 . [J]地理学报, 2002 , 57 (5) : 505-514.
    128李晓兵 ,陈云浩 ,张云霞等 .气候变化对中国北方荒漠草原植被的影响 .[J]地球科学进展. 2002,17(2):254-261.
    129唐海萍 ,陈玉福 .中国东北样带 NDVI的季节变化及其与气候因子的关系 . [J]第四纪研究, 2003 , 23 (3) : 318-325.
    130除多 .基于 NOAA /AVHRR NDVI的西藏拉萨地区植被季节变化 . [J]高原气象 , 2003 , 22 (增刊 ) :145-51.
    131陈海 ,康慕谊 ,范一大 .北方农牧交错带植被覆盖的动态变化及其与气候因子关系.[J]地理与地理信息科学.2004, 20 (5):54-57.
    132李震 ,阎福礼 ,范湘涛 .中国西北地区 NDVI变化及其与温度和降水的关系 . [J]遥感学报, 2005 ,9 (3):308-313.
    133杨兰芳 ,李宗义 .陇东地区近 5 年植被变化与降水的关系 .[J]高原气象 . 2005, 24 (4): 629-634.
    134陈晓光 ,李剑萍 ,李志军等 .宁夏盐池近年来植被与气候变化分析 .[J]生态学报 . 2006, 26(5):1516-1522.
    135杨元合 ,朴世龙 .青藏高原草地植被覆盖变化及其与气候因子的关系 .[J]植物生态学报. 2006 ,30(1)1-8.
    136唐红玉 .天山巴音布鲁克草原植被变化及其与气候因子的关系 .[J]气候变化研究进展. 2006 ,2(4)173-176.
    137付新峰 ,杨胜天 ,刘昌明 .雅鲁藏布江流域 NDVI时空分布及与站点气候因子的关系.[J]水土保持研究.2006 ,13(3)229-232.
    138黄玫 ,李克让 ,李晓兵等 .土地覆被的气候预测模型 .[J]地理学报 .2000,55:64-70.
    139 香 宝 , 刘 纪 远 . 东 亚 土 地 覆 盖 动 态 与 季 风 气 候 年 季 变 化 的 关 系 .[J] 地 理 学报.2002,57(1):39-46.
    140向波 ,缪启龙 ,高庆先 .青藏高原气候变化与植被指数的关系研究 .[J]四川气象.2001,21(1):29-36.
    141毛学森 ,张永强 ,沈彦俊 .冬小麦植被指数变化及其影响因子初探 .[J]中国生态农业学报.2003,11(2):35-36.
    142毛学森 ,张永强 ,沈彦俊 .水分胁迫对冬小麦植被指数 NDV I影响及其动态变化特征.[J]干旱地区农业研究.2002,20(1):69-71.
    143张强 ,肖风劲 ,牛海山等 .我国北方植被指数对土壤湿度的敏感性分析 .[J]生态学杂志. 2005,24 (7) :715-718.
    144李春晖 ,杨志峰 .黄河流域 NDVI时空变化及其与降水 /径流关系 . [J]地理研究 , 2004,23 (6) : 753-759.
    145陈曦 ,罗格平 ,夏军等 .新疆天山北坡气候变化的生态响应研究 .[J]中国科学 D辑 . 2004, 34 (12): 1166-1175.
    146徐兴奎 ,林朝晖 ,薛峰等 .气象因子与地表植被生长相关性分析 .[J]生态学报.2003,23(2):221-230.
    147 张文江 ,高志强 .青藏高原中东部植被覆盖对水热条件的响应研究 .[J]地理科学进展.2005,24(5):13-21.
    148王宏 ,李霞 ,李晓兵等 .中国东北森林气象因子与 NDVI的相关关系 .[J]北京师范大学学报(自然科学版).2005,41(4):425-430.
    149毕晓丽 ,王辉 ,葛剑平 .植被归一化指数 (NDVI)及气候因子相关起伏型时间序列变化分析.[J] 应用生态学报. 2005 ,16 (2) ∶ 284-288.
    150唐红玉 ,肖风劲 ,张强等 .三江源区植被变化及其对气候变化的响应 .[J]气候变化研究进展. 2006 ,2(4) 177-180.
    151 王涛 ,吴薇 ,赵哈林等 .科尔沁地区现代沙漠化过程的驱动因素分析 [J].中国沙漠,2004,24(5):519-528.
    152 王涛 .我国沙漠化研究的若干问题 -3.沙漠化研究和防治的重点区域 [J].中国沙漠,2004,24(1):1-9.
    153 王涛 ,朱震达 ,赵哈林 .我国沙漠化研究的若干问题 -4.沙漠化的防治战略与途径 [J].中国沙漠,2004,24(2):115-123.
    154 陈荷生 ,康跃虎 ,冯金朝 .腾格里沙漠沙坡头地区植物生长与水分平衡的初步研究[J].中国沙漠 ,1991,11(2):1-10.
    155Pinaka E R. The structure pf lizard communities[J].Ann.Rev.Ecol.,1973,( 4):35-74.
    156Grubb P J. The maintenance of species-richness in plant communities:the importance of the regeneration niche[J].Biol.Rev.1977,(52):107-145.
    157 宋郁东 ,樊自立 ,雷诗栋等 .中国塔里木河流域水资源与生态问题研究 [M].乌鲁木齐:新疆人民出版社,2000.
    158 张天曾 .中国干旱区水资源利用和生态环境 [J].自然资源 ,1981,(1):62-67.
    159 袁长极 .地下水临界深度的确定 [J].水利学报 ,1964,(3):50-53.
    160 李自珍 ,施维林 ,唐海萍等 .干旱区植物水分生态位适宜度的数学模型及其过程数值模拟试验研究[J].中国沙漠,2001,21(3):281-285.
    161 张丽 ,董增川 ,黄晓玲 .干旱区典型植物生长与地下水位关系的模型研究 [J].中国沙漠,2004,24(1):110-113.
    162Cook E , Bird T , Peterson M , et al.Climate change in Tasmania inferred from a 1089-year tree-ring chronology of Huon Pine[J].Science,1991, 253:1266-1268.
    163Briffa K R, Jones P D,Bart holin T S ,et al.Fennoscandian summers f rom AD 500: temperature changes on short and long timescales[J].Climate Dynamics ,1992,7: 111-119.
    164Lara A , Villalba R. A 3620-year temperature record from Fitz roya cupressoi des tree rings in sourthern South America [J]. Science ,1993,260:1104-1106.
    165Briffa K R , Jones P D,Schweinguber F H, et al.Unusual twentiet h-century summer warmt hin a 1000-year temperature record f rom Siberia [J]. Nature , 1995, 76:156-59.
    166Gunnarson B E , Linderholm H W. Low-f requency summer temperature variation in central Sweden since t he tent h century inferred from t ree rings [J].The Holocene, 2002,12(6):667-671.
    167Esper J , Cook E D , Schweingruber F H , et al. Test of the RCS met hod for preserving low-frequency variability in long tree-ring chronologies [J]. Tree-Ring Research , 2003, 59(2): 81-98.
    168Wilson J S , Esper J, Luckman B H. Utilising historical t ree-ring data for dendroclimatology: a case study f rom the Bavarian Forest , Germany [J]. Dendrochronologia, 2004, 21 (2):53-68.
    169Luckman B H. Glacier fluctuation and tree-ring records for the last millennium in the Cadian Rockies [J] . Quaternary Science Reviews,1993,12:441-450.
    170Van Arsdale R B , Stahle D W, Cleaveland M K. Earthquake signals in tree-ring data from the New Madrid Seismic zone and implications for paleoseimicity [J].Geology , 1998,26(6):515-518.
    171Briffa K R , Jones P D,Schweingruber F H,et al.Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600years[J].Nature ,1998,393: 450-454.
    172卓正大 ,张先恭 ,赵溱等 .祁连山地区树木年轮与我国近千年 (1059-1975)的气候变化[J] .兰州大学学报,1979, 2:145-157.
    173刘光远 ,王玉玺 ,张先恭等 . 祁连山近千年的年轮气候及其在冰川上的反映 [A] . 中国科学院兰州冰川冻土研究所集刊,第五号[C] .北京:科学出版社,1985. 97-108.
    174吴祥定 ,孙力 ,湛绪志 .利用树木年轮资料重建西藏中部过去气候的初步尝试 [J] . 地理学报,1989 ,44 (3) :334-341.
    175康兴成 .祁连山区历史时期气候变化探讨 [A] .中国科学院兰州冰川冻土研究所集刊,第七号[C] .北京:科学出版社,1992. 54-63.
    176邵雪梅 ,吴祥定 .利用树轮资料重建长白山过去气候变化 [J] .第四纪研究 ,1997 , 1 :76-83.
    177王绍武 ,叶瑾林 ,龚道溢等 . 近百年中国年气温序列的建立 [J] .应用气象学报 , 1998,9 (4) :392-401.
    178袁玉江 ,李江风 .天山乌鲁木齐河源 450 a冬季温度序列的重建与分析 [J].冰川冻土,1999, 21(1):64-70.
    179袁玉江 ,叶玮 ,董光荣 .天山西部伊犁地区 314a降水的重建与分析 [J].冰川冻土,2000 ,22 (2):121-127.
    180勾晓华 ,陈发虎 ,王亚军等 .利用树轮宽度重建 280 a来祁连山东部地区的春季降水[J].冰川冻土 ,2001,23 (3) :292-296.
    181康兴成 ,程国栋 ,康尔泗等 .利用树轮资料重建黑河近千年来出山口径流量 [J] .中国科学(D辑),2002,32 (8) : 675-685.
    182康兴成 ,程国栋 ,陈发虎等 .祁连山中部公元 904年以来树木年轮记录的旱涝变化 [J].冰川冻土, 2003,25 (5):518-525.
    183王亚军 ,陈发虎 ,勾晓华 .黑河 230 a以来 3~ 6月径流的变化 [J].冰川冻土 , 2004 , 26 (2) : 202-206.
    184喻树龙 ,袁玉江 ,金海龙等 .用树木年轮重建天山北坡中西部 7~ 8月 379a的降水量[J] .冰川冻土 , 2005 ,27 (3):404-410 .
    185易亮 ,刘禹 ,宋惠明等 .山西芦芽山地区树木年轮记录的 1676 AD以来 5~ 7月温度变化[J].冰川冻土,2006, 28 (3):330-336.
    186刘禹 ,吴祥定 ,邵雪梅等 .树轮密度、稳定同位素对过去 100年陕西黄陵的季节性温度和降水的恢复[J].中国科学(D),1997,27(3):271-277.
    187刘禹 ,马利民 .树轮宽度对近 376年呼和浩特季节降水重建 [J].科学通报 , 1999 ,44 (18) :1986-1991.
    188刘禹 ,蔡秋芳 ,Won - Kyu Park,等 .内蒙古锡林浩特白音敖包 1838年以来树轮降水记录[J].科学通报,2003 ,48(9) :952 -957.
    189刘禹 ,蔡秋芳 ,马利民等 .树轮降水记录及东亚夏季风强弱变化 -以内蒙古包头地区为例[J].地学前缘,2001,8(1) :91-96.
    190李钢 ,王乃昂 ,程弘毅等 .利用 10a 尺度上的虫旱灾异年频数 (LUD) 重建陕西过去450a气候干湿变化初步研究 [J].干旱区地理 ,2004 ,27(2):154-160.
    191 蒋德明 ,刘志明 ,曹有成等 .科尔沁沙地荒漠化过程与生态恢复 .[M]北京 :中国环境科学出版社,2003, 33-34.
    192 蒋德明 ,刘志明 ,曹有成等 .科尔沁沙地荒漠化过程与生态恢复 .[M]北京 :中国环境科学出版社,2003, 37-38.
    193 蒋德明 ,刘志明 ,曹有成等 .科尔沁沙地荒漠化过程与生态恢复 .[M]北京 :中国环境科学出版社,2003, 39-41.
    194Fritts H C.Tree Ring and Climate [M] . London : Academic Press ,1976.3-500.
    195Data source:Dedrochronology Program Library , Dedrochronology Program Library , http :/ / www. lt rr . arizona. edu/pub/ dpl/ [ CP].
    196 党安荣 ,王晓栋 ,陈晓峰等 .ERDAS IMAGINE 遥感图像处理方法 .[M]北京 :清华大学出版社,2003, 6.
    197梅安新 .遥感导论 . [M]北京 :高等教育出版社 ,2001.
    198袁金国 .遥感图像数字处理 . [M]北京 :中国环境科学出版社 ,2006,25.
    199赵英时 .遥感应用分析原理与方法 .[M]北京 :科学出版社 ,2003.
    200内蒙古植物志编辑委员会 .内蒙古植物志 [M].呼和浩特:内蒙古出版社 ,1980.
    201 竺可桢 .中国五千年来气候变迁初步研究 .北京 :中国科学 ,1973, 123.
    202 刘廷玺 .中国科尔沁沙地地表环境变化与气候干湿波动的关系 .日本 :日本沙丘学会志,2003,50(2):46-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700