用户名: 密码: 验证码:
Nd-Mg-Ni-Co储氢合金的磁场热处理改性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面综述La-Mg-Ni储氢合金的国内外研究基础上,确定Nd-Mg-Ni-Co系储氢合金作为研究对象。采用了XRD、TEM、SEM、PCT、EIS、VSM、MSTAT等材料的结构表征和性能测试方法,分别研究了非化学计量、磁场热处理、退火热处理和快速凝固对合金结构和性能的影响,发现了通过磁场热处理大幅改善储氢合金电极倍率性能的新方法,并探索相关机理。
     通过改变化学计量比优化确定Nd0.75Mg0.25(Ni0.8Co0.2)3.8合金具有较好的综合电化学性能。采用透射电子显微镜确定合金中的Ce2Ni7型超结构,根据Van’t Hoff方程拟合得到了Nd0.75Mg0.25(Ni0.8 Co0.2)3.8合金吸放氢过程的热力学参数。
     系统研究了温度(100℃~ 650℃)和磁场强度(2 T~10 T)对磁场热处理后Nd0.75Mg0.25(Ni0.8Co0.2)3.8储氢合金组织结构、吸放氢动力学性能和磁性能的影响。结果表明,磁场热处理可以大幅改善合金电极的倍率性能和气态吸氢速率。发现在场强为10 T和650℃下磁场热处理3 h,合金的动力学性能最好。对铸态、退火热处理和磁场热处理三种状态储氢合金的进行对比分析,XRD图谱全谱拟合和TEM组织观察发现磁场热处理没有改变合金中的相组成,但使得Ce2Ni7型(Nd,Mg)2(Ni,Co)7相单胞沿c轴方向被拉长,a轴不变,从而导致四面体间隙尺寸增大。电化学阻抗谱和线性极化曲线实验结果表明磁场热处理后合金的反应阻抗减小,而极化电流增大,从而导致氢在合金中的扩散所需克服的阻力减小,动力学性能大幅增加。c轴被拉长是由于磁场热处理作用导致合金中的(Nd,Mg)2(Ni,Co)7相发生单轴取向,通过第一性原理计算也表明磁场热处理使得(Nd,Mg)2(Ni,Co)7相磁矩增加,合金磁化强度也增强。
     退火热处理可以改善Nd0.75Mg0.25(Ni0.8Co0.2)3.5储氢合金电极的循环稳定性。研究了电化学循环过程中的晶体结构稳定性、颗粒粉化情况和表面腐蚀行为,系统分析了循环衰退机理。退火热处理降低合金在氢化过程中的体积膨胀、减小合金颗粒粉化和晶格内应力,同时增加合金成份的均匀性,提高合金的晶体结构稳定性,减缓了合金放电容量的衰减。
     快淬可以改善Nd0.75Mg0.25(Ni0.8Co0.2)3.8储氢合金电极的循环稳定性。由于淬速越高,晶粒尺寸变小或出现部分非晶,成分均匀性得到提高,晶格内应力增加。在带速为20 m/s时合金电极具有较好的综合电化学性能。
In this thesis, based on a comprehensive review of the research and development of the La-Mg-Ni hydrogen storage alloys, the Nd-Mg-Ni-Co system hydrogen storage alloys have been selected and studied in order to optimize the overall electrochemical properties and to explore new method and mechanism to modify the rate properties. The effect of non-stoichiometry, magnetic annealing, annealing treatment and rapid solidification on the structural, electrochemical and magnetic properties of Nd-Mg-Ni-Co system alloys have been investigated by means of XRD, TEM, SEM, PCT, EIS and VSM analyses.
     The Nd0.75Mg0.25(Ni0.8Co0.2)3.8 hydrogen storage alloy has better overall electrochemical properties by non-stoichiometric optimization. The Ce2Ni7 type superstructure of alloys was characterized by TEM. The thermal dynamic parameters of hydrogen absorption and desorption have been obtained by modeling according to Van’t Hoff equations for the Nd0.75Mg0.25(Ni0.8Co0.2)3.8 hydrogen storage alloys.
     The effect of temperature and magnetic field strength on the structural, electrochemical and magnetic properties have been studied systemically for Nd0.75Mg0.25(Ni0.8Co0.2)3.8 hydrogen storage alloys. The results show that magnetic annealing can improve the rate properties and hydrogen absorption rate largely. It is better to do magetic annealing for 3 hours at 10 T and 650 oC. The as-cast, magnetic annealing and annealing Nd0.75Mg0.25(Ni0.8Co0.2)3.8 hydrogen storage alloys have been studied for comparison. Rietveld analyses results show that magnetic annealing has little effect on the phase composition for the Nd0.75Mg0.25 (Ni0.8Co0.2)3.8 hydrogen storage alloys, the lattice parameter c of Ce2Ni7 type (Nd,Mg)2(Ni,Co)7 phase increases, but the lattice parameter a has little change, the size of tetrahedral interstitial increase accordingly, the results are identical with TEM characterization. The decrease of reaction resistance and the increases of polar current for the alloys have been obtained by the test of EIS and polar curves respectively. So the resistance of hydrogen diffusion in the alloys decreases. The dynamic property increases largely. The c-axis was elongated by uniaxial anisotropy along the c-axis in magnetic annealing. In addition, the results which magnetic moments is increased for (Nd,Mg)2(Ni,Co)7 phase by magnetic annealing are confirmed by the first principle calculation.
     The cycle stability has been improved by annealing for Nd0.75Mg0.25(Ni0.8 Co0.2)3.5 hydrogen storage alloys. The three elements which include stability of crystal structure, grain pulverization, and surface corrosion have been analyzed systemically during the electrochemical cycle. After annealing treatment, the rate of volume expansion during of hydrogenation, the grain pulverization and the inter stress of grain decreases, the element composition is more uniformly, the structural stability is improved, the corrosion of alloy element is restrained, so the cycle stability properties is improved.
     The cycle stability of Nd0.75Mg0.25(Ni0.8 Co0.2)3.8 hydrogen storage alloy electrode has been modified by rapid solidification. The speed of melt-spun is higher, the grain size is smaller or some amorphous grain is produced, the element composition is more uniformly, the inter grain stress increases. It exhibits good overall electrochemical properties when the speed of melt-spun is 20 m/s.
引文
[1] BérubéV, Radtke G, Dresselhaus M, et al. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Inter J Energy Res, 2007, 31:637-663.
    [2] Van Vucht J H N, Kuijpers F A, Bruning H. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Research Reports, 1970, 25:133-140.
    [3] Justi E W, Ewe H H, Kalberlan A W, et al. Electrocatalysis in the nickel-titanium system. Energy Conversion, 1970, 10:183-187.
    [4] Willems J J G, Metal hydride electrodes stability of LaNi5-related compounds. Philips J Res, 1984, 39:1-94.
    [5]张忠.稀土贮氢合金现状及市场分析预测.稀土信息, 2006, 264:19-20.
    [6] Schlapbach L, Zuttel A. Hydrogen storage materials for mobile applications. Nature, 2001, 414:353-358.
    [7]胡子龙.贮氢材料.北京:化学工业出版社, 2002:49.
    [8]雷永泉,李洲鹏,陈长聘,等.贮氢电极材料与氢化物-镍电池的研究进展.材料科学与工程, 1990, 8:1-8.
    [9]陈长聘,王春生.高性能贮氢电极合金.物理, 1998, 27:156-163.
    [10]周作祥,何春红,王正平,等.吸氢电极.电池, 1991, 21(3):26-30.
    [11] Earl M W, Dunlop J D. Chemical storage of hydrogen in Ni/H2 cells. Proceedings of the 26th Power Sources Symposium, Atlantic City, USA, 1974, 24-27.
    [12] Suzuki K, Yanagihara N, Kawano H, et al. Effect of rare earth composition on the electrochemical properties of Ml(NiMnAlCo)5 alloys. J Alloys compd, 1993, 192:173-175.
    [13] Chen Z H, Lu M Q, Wang X L, et al. Effect of Pr content in Ml on the electrochemical properties of Ml(NiCoMnAl)5 alloys. J Alloys compd, 1995, 231: 550-552.
    [14] Lei Y Q, Jiang J J, Sun D L, et al. Effect of rare earth composition on the electrochemical properties of multi-component RENi5-xMx(M=Co, Mn, Ti)5 alloys. J Alloys Compd, 1995, 231:553-557.
    [15] Iwakura C, Fukuda K, Senoh H, et al. Electrochemical characterization of MmNi4.0-xMn0.75 Al0.25Cox electrodes as a function of cobalt content. Electrochimica Acta, 1998, 43(14-15):2041 -2046.
    [16] Mungole M N, Balasubramaniam R, Rai K N. Correlation between microstructure and hydrogen storage capacity in MmNi5 alloys with Al, Mn and Sn substitutions. Inter J Hydrogen Energy, 1999, 24:467-471.
    [17] Zhang Y H, Chen M Y, Wang X L, et al. Effect of boron additive on the cycle life of low-Co AB5-type electrode consisting of alloy prepared by cast and rapid quenching. J Power Sources, 2004, 125:273-279.
    [18] Viveta S, Jouberta J M, Knospa B, et al. Effects of cobalt replacement by nickel, manganese, aluminium and iron on the crystallographic and electrochemical properties of AB5-type alloys. J Alloys Compd, 2003, 356-357:779-783.
    [19] Vogt T, Reilly J J, Johonson J R, et al. Crystal structure of nonstoichiometric La(Ni,Sn)5+x alloys and their properties as metal hydride electrodes. Electrochem Solid State Lett, 1999, 2(3):111-114.
    [20] Ikoma M, Komori K, Kaida S, et al. Effect of alkali-treatment of hydrogen storage alloy on the degradation of Ni/MH batteries. J. Alloys Compd, 1999, 284: 92-98.
    [21] Kim D M, Jang K J. A review on the development of AB2 type Zr-based Laves phase hydrogen storage alloys for Ni-MH rechargeable hatteries in the Korea Advanced Institute of Science and Technology. J. Alloys Compd, 1999(293-295):583-592
    [22] Matsumura T, Yukawa H, Morinaga M. Alloying effects on the electronic structure of ZrMn2 intermetallic Hydride. J. Alloys Compd, 1998(279):192-200
    [23] Pebler A, Gulbransen E A. Light by light scattering contribution to Lamb shift in hydrogen. Elcetrochem Tech, 1966. 4: 211-215
    [24] Moriwaki Y, Gamo T, Seri H, et al. Electrode characteristics of C15-type Laves phase alloys. J Less-Common Met, 1991, 174:1211-1218.
    [25] Dhar S K, Fetcenko M A, Ovshinsky S R. Advanced materials for next generation high energy and power Nickel-Metal hydride portable batteries. The sixteenth annual proceedings of battery conference on applications and advances, 2001. 325-366.
    [26] Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem, 1968, 7(11):2254-2256.
    [27] Luo J L, Cui N. Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution. J Alloys Compd, 1998, 264:299-305.
    [28] Sapru K, Reichman B, Reger A, et al. Rechargeable battery and electrode used therein. USA, 1986, 4623597.
    [29] Lei Y Q, Wu Y M, Yang Q M, et al. Electrochemical behaviour of some mechanically alloyed Mg-Ni based amorphous hydrogen storage alloys. Zeitschrift fur Physikalische Chemie, 1994, 183:379-384.
    [30] Lee L H, Goo N H, Jeong W T. The surface state of nanocrystalline and amorphous Mg2Ni alloys prepared by mechanical alloying. J Alloys Compd, 2000, 313:258-262.
    [31] Nohara S, Fujita N, Zhang S G. Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni. J Alloys Compd, 1998, 267:76-78.
    [32] Tsushio Y, Enoki H, Akiba E, Energy distribution of hydrogen sites for MgNi0.86M10.03 (M1=Cr, Fe, Co, Mn) alloys desorbing hydrogen at low temperature. J Alloys Compd, 1999, 285:298-301.
    [33] Dehouche Z, Djiaozandry R, Goyette J, Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy. J Alloys Compd, 1999, 288:269-276
    [34]李书存,赵敏寿.钒基固溶体贮氢合金研究现状.稀有金属, 2007, 31(4):558-564.
    [35] Kuriiwa T, Tamura T, Amemiya T, Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization. J Alloys Compd, 1999, 293-295: 521-525
    [36] Tsukahara M, Takahashi K, Mishima T, Improvement of the cycle stability of vanadium-based alloy for nickel-metal hydride (Ni–MH) battery. J Alloys Compd, 1999, 287:215-220.
    [37] Pan H G, Zhu Y F, Gao M X, et al. Investigation of the structural an electrochemical properties of superstoichiometric Ti-Zr-V-Mn-Cr-Ni hydrogen storage alloys. J Electrochem Soc, 2002, 149:829-833.
    [38]富永幸夫,西村真哉,松本要.粉末冶金, 2000, 47:73-77
    [39] Dunlap B D, Viccaro P J, Shenoy G K. Structural relationships in rare earth-transition metal hydrides. J Less-Common Met, 1980, 74:75-79.
    [40] Cromer D T, Olsen C E. The Crystal Structures of PuNi3 and CeNi3. Acta Cryst, 1959, 12: 689-694.
    [41] Liang G, Schulz R. Phase structures and hydrogen storage properties of Ca–Mg–Ni alloys prepared by mechanical alloying. J Alloys Comp, 2003, 356-357: 612-616.
    [42] Kadir K, Sakai T, Uehare I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9(R=La, Ce, Pr, Nd, Sm, and Gd) built from MgNi2 Laves-type alternating with AB5 layers. J Alloys Compd, 1997, 257:115-121.
    [43] Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ter -nary system alloys La2MgNi9, La5Mg2Ni23, La3MgNi14, J Alloys Compd, 2000, 311: L5-L7.
    [44] Chen J, Kuriyama N, Takeshita H T, et al. Hydrogen Storage Alloys with PuNi3-type structure as metal hydride electrodes. Electrochem Solid-State Lett, 2000, 3(6):249-252.
    [45] Liao B, Lei Y Q, Lu G L, et al. The electrochemical properties of LaxMg3?xNi9 (x=1.0–2.0) hydrogen storage alloys. J Alloys Compd, 2003, 356-357:746-749
    [46] Pan Hongge, Liu Yongfeng, Gao Mingxia, et al. A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. Inter J Hydrogen Energy, 2003, 28: 113~117
    [47]王大辉,罗永春,闫汝煦. La0.67Mg0.33Ni2.5Co0.5贮氢合金的制备和MH电极性能研究.稀有金属材料与工程, 2004, 33:1283-1286.
    [48] Liu Y F, Pan H G, Gao M X, et al. XRD study on the electrochemical hydriding/dehydriding behavior of the La-Mg-Ni-Co-type hydrogen storage alloys. J Alloys Compd, 2005, 403:296-304.
    [49]刘丽琴,唐睿,柳永宁.稀土元素对La0.8Mg0.2Ni3.2Co0.6储氢合金性能的影响.中国有色金属学报, 2003, 13(4):871-875.
    [50] Pan H G, Ma S, Shen J, et al. Effect of the substitution of Pr for La on the microstructure and electrochemical properties of La0.7-xPrxMg0.3Ni2.45Co0.75 Mn0.1Al0.2 (x=0.0-0.3) hydrogen storage electrode alloys. Inter J Hydrogen Energy, 2007, 32:2949-2945.
    [51] Pan H G, Yue Y J, Gao M X, et al. The effect of substitution of Zr for La on the electrochemical properties of La0.7?xZrxMg0.3Ni2.45Mn0.1Co0.75Al0.2 hydrogen storage electrode alloys. J Alloys Compd, 2005, 397:269-275.
    [52] Zhang F L, Luo Y C, Deng A Q, et al. A study on structure and electrochemical properties of (La, Ce, Pr, Nd)2MgNi9 hydrogen storage electrode alloys. Electrochimica Acta, 2006, 52 (1):24-32.
    [53] Tang R, Wei X D, Liu Y N, et al. Effect of the Sm content on the structure and electrochemical properties of La1.3?xSmxCaMg0.7Ni9 (x=0–0.3) hydrogen storage alloys. J Power Sources, 2006, 155:456-460.
    [54] Zhang X B, Sun D Z, Yin W Y, et al. Crystllographic and electrochemical characteristics of La0.7Mg0.3Ni3-x(Al0.5Mo0.5)x (x=0-0.4) hydrogen storage alloys. Electrochimica Acta, 2005, 50:3407-3413.
    [55] Pan H G, Wu X F, Gao M X, et al. Structure and electrochemical properties of La0.7Mg0.3 Ni2.45?xCo0.75Mn0.1Al0.2Wx (x=0.0.15) hydrogen storage alloys. Inter J Hydrogen Energy, 2006, 31:517-523.
    [56] Zhang Y H, Dong X P, Guo S H, et al. Microstructures and electrochemical performances of La2Mg(Ni0.85Co0.15)9Mx (M=B, Cr, Ti;x=0,0.1) electrode alloys prepared by casting and rapid quenching. Inter J Hydrogen Energy, 2006, 31:63-69.
    [57] Zhang Y H, Dong X P, Wang G Q, et al. Microstructures and electrochemical performances of La2Mg(Ni0.85Co0.15)9Crx (x=0–0.2) electrode alloys prepared by casting and rapid quenching. J Power Sources, 2005, 144:255-261.
    [58] Liao B, Lei Y Q, Chen L X, et al. A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M=Co, Mn, Fe, Al, Cu, Sn) hydrogen storage alloys. J Alloys Compd, 2004, 376:186-195.
    [59]刘丽琴,唐睿,柳永宁.稀土元素对La0.8Mg0.2Ni3.2Co0.6储氢合金性能的影响.中国有色金属学报, 2003, 13(4):871-875.
    [60] Pan H G, Ma S, Shen J, et al. Effect of the substitution of Pr for La on the microstructure and electrochemical properties of La0.7-xPrxMg0.3Ni2.45Co0.75Mn0.1 Al0.2 (x=0.0-0.3) hydrogen storage electrode alloys. Inter J Hydrogen Energy, 2007, 32:2949-2945.
    [61] Tang R, Wei X D, Liu Y N, et al. Effect of the Sm content on the structure and electrochemical properties of La1.3?xSmxCaMg0.7Ni9 (x=0–0.3) hydrogen storage alloys. J Power Sources, 2006, 155:456-460.
    [62] Pan H G, Yue Y J, Gao M X, et al. The effect of substitution of Zr for La on the electrochemical properties of La0.7?xZrxMg0.3Ni2.45Mn0.1Co0.75Al0.2 hydrogen storage electrode alloys. J Alloys Compd, 2005, 397:269-275.
    [63] Pan H G, Wu X F, Gao M X, et al. Structure and electrochemical properties of La0.7Mg0.3Ni2.45?xCo0.75Mn0.1Al0.2Wx (x=0.0.15) hydrogen storage alloys. Inter J Hydrogen Energy, 2006, 31:517-523.
    [64] Zhang Y H, Dong X P, Wang G Q, et al. Microstructure and electrochemical performances of La0.7Mg0.3Ni2.55?xCo0.45Cux (x = 0–0.4) hydrogen storage alloys prepared by casting and rapid quenching. J Alloys Compd, 2006, 417:224-229.
    [65] Pan H G, Chen N, Gao M X, et al. Effect of annealing treatment on structure and the electrochemical properties of La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2 hydrogen storage alloy. J Alloys Compd, 2005, 397:306-312.
    [66] Zhang F L, Luo Y C, Chen J P, et al. Effect of annealing treatment on structure and electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. J Power Sources, 2005, 150:247-254.
    [67]张羊换,李保卫,蔡颖,等.快淬La-Mg-Ni系贮氢合金的电化学性能及微观结构.稀有金属材料与工程, 2007, 36(1):108-112.
    [68] Chen J, Takeshita H T. Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure. J Alloys Compd, 2000, 302:304-313.
    [69] Kohon T, Yoshida H, Kanda M. Hydrogen storage properties of La(Ni0.9M0.1)3. J Alloys Compd, 2004, 363:249-252.
    [70] Pan H G, Liu Y F, Gao M X, et al. An investigation on the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=3.15-3.8) hydrogen storage alloys. J Alloys Compd, 2003, 351:228-234.
    [71] Tang R, Liu L Q, Liu Y N, et al. Study on the microstructure and electrochemical properties of Ml0.7Mg0.2Ni2.8Co0.6 hydrogen storage alloy. Inter J Hydrogen Energy, 2003, 28:815-819.
    [72] Liu Y F, Pan H G, Gao M X, et al. Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4-xMn0.1Cox hydride alloys I: The structure and hydrogen storage. J Alloys Compd, 2004, 376:296-303.
    [73] Zhu M, Peng C H, Ouyang L Z, et al. The effect of nanocrystalline formation on the hydrogen storage properties of AB3–base Ml-Mg-Ni multi-phase alloys. J Alloys Compd, 2006, 426:316-321.
    [74] Virkar A V, Raman A, Crystal structure of AB3 and A2B7 rare earth-nikel phases, J Less-Common Met, 1969, 18:59-66.
    [75] Buschow K H J, Van Der Goot A S, The crystal structure of rare-earth nikel compounds of the type R2Ni7, J Less-Common Met, 1970, 22:419-428.
    [76]顾巍,非AB5型La-Ni系贮氢合金的相结构与电化学性能[硕士学位论文].杭州,浙江大学, 2002.
    [77]周增林,宋月清,崔舜,等. Nd替代La对La-Mg-Ni系A2B7型贮氢电极合金性能的影响.中国有色金属学报, 2007, 17(1):45-52.
    [78] Zhang Peng, Liu Yongning, Zhu Jiewu, et al. Effect of Al and W substitution for Ni on the microstructure and electrochemical properties of La1.3CaMg0.7 Ni9-x(Al0.5W0.5)x hydrogen storage alloys. Inter J Hydrogen Energy, 2007, 32:2488-2493.
    [79] Zhang Peng, Liu Yongning, Tang Rui, et al. Effect of Ca on the microstructural and electrochemical properties of La2.3-xCaxMg0.7Ni9 hydrogen storage alloys. Electrochimica Acta, 2006, 51:6400-6405.
    [80] Yamamoto T, Inui H, Yamaguchi M, Microstructure and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8~83.2 at.%Ni. Acta Mater, 1997, 45:5213-5221.
    [81] Akiba E, Hayakawa H, Kohno T. Crystal structure of novel La-Mg-Ni hydrogen absorbing alloys. J Alloys Compd, 2006, 408-412:280-283.
    [82] Zhang Di, Yamamoto T, Inui H. Characterization of stacking faults on basal planes in Intermetallics compounds La5Ni19 and La2Ni7. Intermetallics, 2000, 8:391-397.
    [83] Yamamoto I., Yamaguchi M, Fujino M, et al. Magnetic field effects on the chemical equilibrium between metals and hydrogen Physica B, 1996, 216:399-402.
    [84] Oesterreicher H, Cliton J, Bittner H. Hydride of La-Ni compounds. Mater Res Bull, 1976, 11:1241-1247.
    [85] Pan H G, Jin Q W Gao M X, et al. Effect of the cerium content on the structural and electrochemical properties of the La0.7?xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0–0.5) hydrogen storage alloys, J Alloys Compd, 2004, 373:237-245.
    [86] Liu Y F, Pan H G, Gao M X, et al. Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4?xMn0.1Cox hydride alloys II. Electrochemical properties, J Alloys Compd, 2004, 376:304-313.
    [87]宋月清,周增林,崔舜.铝在新型稀土镁基AB3型贮氢电极合金中的作用研究.稀有金属, 2006, 30(1):114-117.
    [88]许剑轶,闫汝煦,王大辉,等. A2B7型La0.75Mg0.25Ni3.5 -xAlx (x=0~0.3)合金相结构及电化学性能.稀有金属材料与工程, 2007, 36(2):349-353.
    [89] Chu H L, Qiu S J, Tian Q F, et al. Effect of ball-milling time on the electrochemical properties of La-Mg-Ni-based hydrogen storage composite alloys. Inter J Hydrogen Energy, 2007, 32:4925-4932.
    [90] Chu H L, Qiu S J, Sun L X, et al. The improved electrochemical properties of novel La-Mg-Ni-based hydrogen storage composites. Electrochimica Acta, 2007, 52:6700-6706.
    [91]朱重光.横向非均匀磁场对原子的作用.淮北煤师院报,1996, 17(1):30-32.
    [92] Kasuga M, Takano T, Akiyama S. Growth of ZnO films by MOCVD in high magnetic field. J Crys Growth, 2005, 275:545-550.
    [93] Hirota N, Hara S, Uetake H. In situ microscopic observations of an electrolyses silver deposition process under high magnetic fields. J Crys Growth. 2006, 286:465-469.
    [94] Feng Qiuyuan, Li Tingju, Zhang Zhongtao. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field. Surf Coat Tech, 2007, 201: 6247-6252.
    [95] Li Xi, Ren Zhongming, Fautrelle Yves. Effect of a high axial magnetic field on the microstructure in a directionally solidified Al-Al2Cu eutectic alloy. Acta Mater, 2006, 54: 5349-5360.
    [96] Shimotomai M, Maruta K. Aligned two-phase structures in Fe-C alloys. Scripta Mater, 2000, 42: 499-503.
    [97] Han Yi, Ban Chunyan, Guo Shijie. Alignment behavior of primary Al3Fe phase in Al-Fe alloy under a high magnetic field. Mater Lett, 2007, 61:983-986.
    [98]田民波.磁性材料.北京,清华大学出版社. 2001, (1): 11-23.
    [99] Heczko O, Straka L, Lanska N, Temperature dependence of magnetic anisotropy in Ni-Mn-Ga alloys exhibiting giant field-induced strain. J Appl Phys, 2002, 91(10): 8228-8230.
    [100] Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni-Mn-Ga single crystals. Appl Phys Lett, 1996, 69(13):1966-1968.
    [101] Baibich M N, Broto J M, Fert A. Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61(21): 2472-2475.
    [102] Goot R A, Mueller F M, Engen P G, et al. New Class of Materials: Half-Metallic Ferromagnets. Phys Rev Lett, 1983, 50(25):2024-2027.
    [103] Fledering R, Keim M, Reuscher G, Injection and detection of spin-polarized current in a light-emitting diode. Nature, 1999, 402:787-790.
    [104] Died T, Ohno H, Matsukura F. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287:1019-1022.
    [105] Pearton S. Magnetic semiconductors: Silicon-based spintronics. Nature Mater, 2004, 3(4): 203-204.
    [106]晋芳伟,任忠鸣,任维丽,等.梯度强磁场下Al-18%Si合金中初晶硅的细化.金属学, 2007, 43(5): 521-528.
    [107]王晖,任忠鸣,蒋国昌.均恒强磁场在材料科学中的应用.材料科学与工程, 2001, 19:119-123.
    [108]傅小明,钟云波,任忠鸣,等. 10 T超导强磁场下低温中和法制备有序亚微米MnxOy的研究.功能材料, 2007, 38(1):59-62.
    [109]王强,王春江,庞雪君,等.利用强磁场控制过共晶铝硅合金的凝固组织.材料研究学报, 2004, 18(6):568-576
    [110] Hinds, G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport. Electrochem Comm. 2001, 3:215-218.
    [111] Willems J J G, Buschow K H J, From permanents to rechargeable hydride electrodes. J Less Common Met, 1987, 129:13-20.
    [112]张绍英. Sm2Fe17Nx稀土化合物的结构、磁性与制备工艺[博士学位论文].北京,钢铁研究总院, 1993.
    [113] Coey J M D, Yaouanc A, Fruchart D. Effect of hydrogen on the magnetic properties of Y2Fe4B. Solid State Cmmun, 1986, 58:413-419.
    [114] Zhang LY, Pourarian F, Wallace W E. Magnetic behavior of. R2Fe14B hydrides (R = Gd, Tb, Dy, Ho and Er). J Magn Magn Mater, 1988, 71:203-210.
    [115] Pareti L, Moze O, Fruchat D, et al. Effect of hydrogen absorption on the 3d and 4f anisotropies in RE2Fe14B (RE = Y, Nd, Ho, Tm). J Less Common Met, 1988, 142:187-191.
    [116] Harris I R; Mcguiness P J. Hydrogen:its use in the processing of NdFeB-type magnets. J Less Common Met. 1991, 172-174:1273-1284
    [117] Soubeyroux J L, Fruchart D, Isnard O, et al. Role of the (H,C,N) interstitial elements on the magnetic properties of iron-rare earth permanent magnet alloys. J Alloys Compd, 1995, 219:16-19.
    [118] Fujino M, Yamamoto O, Yamaguchi M, et al. Influences of magnetic fields on the electrochemical potential of GdCo5Hx electrodes, J Alloys Compd, 1995, 231:631-637.
    [119] Fahidy T Z, Scale-up of the deposit ion-threshold voltage in the electrodeposition of bright chromium. J Appl Electrochem, 1983, 13:553-563.
    [120] Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport. J Electrochem Soc, 1990, 137:1796-1804.
    [121] Pan Hongge,Ma Jianxin,Li Shouquan,Chen Changpin. The electrochemical properties of Sm0.1La0.9Ni2.0Co3.0 hydride permanent magnet electrodes. J Alloys Compd, 2001, 327:136-140.
    [122] Notten P H L, Einerhand R E F, Daams J L C. On the nature of the electrochemical cycling stability of non-stoichiometric LaNi5-based hydride-forming compounds party I. crystallography and electrochemistry. J Alloys Compd, 1994, 210:221- 232.
    [123] Vogt T, Reilly J J, Johnson J R, et al. Crystal structure of nonstoichiometric La(Ni,Sn)5+x alloys and their properties as metal hydride electrodes. Electrochem Solid-State Lett, 1999, 2(3):111-114.
    [124] Notten P H L, Hokkeling P. Double-phase hydride forming compounds—A new class of highly electrocatalytic materials. J Electrochem Soc, 1991, 138:1877-1885.
    [125]罗永春,蔡秀娟,王大辉. PuNi3和Ce2Ni7型贮氢合金电极容量衰减的交流阻抗谱分析.兰州理工大学学报, 2007, 33(4):13-17.
    [126] Inui H, Yamamoto T, Hirota M, et al. Lattice defects introduced during hydrogen absorption- desorption cycles and their effects on P-C characteristics in some intermetallic compounds. J Alloys Compd, 2002, 330-332:117-124.
    [127] Liu Y F, Pan H G, Gao M X, et al. The effect of Hydriding properties for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55-xCo0.45Mnx hydrogen storage electrode alloys. Inter J Hydrogen Energy, 2004, 29:297-305.
    [128] Watanabe K, Yamada Y, Sakuraba J, (Nb,Ti)3 Sn superconducting magnet operated 11K in vacuum using high-Tc (Bi,Pb)2 Sr2Ca2Cu3O10 current leads et al. Jpn J Appl Phys, 1993, 32:L488-490.
    [129] Watanabe K, Awaji S. Cryogen-free superconducting and hybrid magnets. J Low Temp Phys, 2003, 133:17-30.
    [130] Zylstra H, Westendorp F F, Influence of hydrogen on the magnetic properties of SmCo5. Solid State Commun, 1969, 7:857-859.
    [131] Schlapbach L. Magnetic properties of LaNi5 and their variation with hydrogen absorption and desorption. J Phys F, 1980, 10:2477-2490.
    [132] Fujino M, Yamamoto O, Yamaguchi M. Influences of magnetic fields on the electrochemical potential of GdCo5Hx electrodes. J Alloys compd, 195, 231:631-634.
    [133] Fahidy T Z. On the utility of certain decision theory techniques in electrochemical process design. Current Topics Electrochemy. 2000, 7:119-123.
    [134] Devos O, Olivier A, Chopart J P. et al. Magnetic Field Effects on Nickel Electrodeposition. J Electrochem Soc, 1998, 145:401-410.
    [135]张羊换,李保卫,蔡颖,等.快淬La-Mg-Ni系贮氢合金的电化学性能及微观结构的影响.稀有金属材料与工程, 2007, 36(1):108-111.
    [136] Liu Y F, Pan H G, Gao M X, et al.Hydrogen storage and electrochemical properties of the La0.7Mg0.3Ni3.825?xCo0.675Mnx hydrogen storage electrode alloys. J Alloys Compd, 2004, 365:246-252.
    [137] Liao B, Lei Y Q,Chen L X, et al,Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3?xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries. J Power Sources, 2004, 129:358-367.
    [138] Zhang F L, Luo Y C, Chen J P, et al . Effect of annealing treatment on structure and electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes. J Power Sources, 2005, 150:247-254.
    [139]张羊换,李保卫,任慧平,等.快淬对La0.7Mg0.3Co0.45Ni2.55-xCux (x=0-0.4)电极合金微观结构及电化学性能的影响.稀有金属材料与工程, 2008, 37(6):941-944.
    [140] Pan C C, Yu R H. Study on the microstructure and electrochemical properties of novel Nd-Mg-Ni-Co hydrogen storage alloys. International symposium of hydrogen economy on materials issue, Richmond, Nov 12-15, 2007:11
    [141] Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd, 1993, 202:183-197.
    [142] Li Z P, Suda S. A new family of hydride electrode materials based on CaNi5-type alloys. J Alloys Compd, 1995, 231:751-754
    [143] Wang C S, Klein B M, Krakauer K. Theory of magnetic and structural ordering in iron. Phys Rev Lett. 1985, 54:1852-1855.
    [144] Szabo Z, Ivanyi A. Computer-aided simulation of Stoner–Wohlfarth model J Magn Magn Mater. 2000, 215:33-36.
    [145] Fuzi J. Anisotropic vector preisach particle. J Magn Magn Mater, 2000, 215, 597-600.
    [146] Latroche M, Percheron A. Structural and thermodynamic studies of some hydride forming RM3-type compounds (R=lanthanide, M=transition metal). J Alloys Compd, 2003, 356:461-468.
    [147] Hu W K, Kim D M, Jeon S W, et al. Effect of annealing treatment on electrochemical properties of Mm-based hydrogen storage alloys for Ni/MH batteries. J Alloys Compd, 1998, 270:255-264.
    [148] Ma Z H, Qiu J F, Chen L X, et al. Effects of annealing on microstructure and electrochemical properties of the low Co-containing alloy Ml(NiCoMnAlFe)5 for Ni/MH battery electrode. J Power Sources, 2004, 125:267-272.
    [149] Li R, Wu J M, Zhou S X, et al. Effects of rare-earth content and annealing on the electrochemical properties of Mm(NiCoMnAl)5 hydrogen storage alloys. J Alloys Compd, 2004, 363:292-298.
    [150] R W卡恩,金属与合金工艺.北京:科学出版社, 1999:61-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700