用户名: 密码: 验证码:
几种金属及其锂合金的吸放氢效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛、锆、钒基储氢合会以其储氢量大,吸放氢速度快等优点而成为目前储氢合金研究领域的一大热点。在中子物理实验研究中,中子发生器是常用的中子源之一。这类中子源常采用钛、钒和锆吸收氢的同位素作靶,通过恰当的核反应得到中子。因此,开展钛、锆、钒吸氢性能的系统研究对研制这类靶基材料有着指导意义。同时,找到一种增加靶基材料吸氢量的简便方法,对增大发生器的中子产额,延长靶的寿命有着现实的应用价值。
     本论文在调研了相关文献的基础上,首次采用热扩散的方法形成钛、锆、钒.的锂合金,然后对钛、锆、钒与钛、锆、钒的锂合金进行了不同条件下的吸放氢实验,对其吸放氢性能进行了比较,研究了锂对钛、锆、钒的最大吸氢量的影响;最后,对样品进行分析测试:用X射线衍射(XRD)做物相分析,用扫描电子,显微镜(SEM)做表观形貌分析,用二次离子质谱(SIMS)做相对含量分析。得出结论如下:
     1、不论是钛、锆、钒还是钛、锆、钒的锂合金,在相同的充氢压,不同的温度下吸氢后,最大放氢量会随着吸氢温度的升高而增大,放氢速率也随之增大;同样,钛、锆、钒与钛、锆、钒的锂合金在相同温度,不同充氢压下吸氢后,最大放氢量随着吸氢温度升高而增大。在相同吸放氢条件下,它们锂合金的最大吸放氢量大于纯钛、锆、钒。
     2、XRD分析结果显示:钛为密排六方结构,吸氢后产生的钛的氢化物TiH_2的结构是体心四方结构,放氢后TiH_2分解产生了具有四方结构的TiH。钒为体心立方结构;吸氢后为面心立方结构;放氢后是体心四方和面心立方结构共存;吸放氢使锆的晶格常数增加,晶胞体积增大;在锂合金的XRD图上有Li(锂)和LiH的峰出现,说明锂成功地扩散。
     3、SEM分析的结论是:未吸氢的样品表面比较致密,裂纹比较少:吸放氢后裂纹增多;高放大倍数下观察发现,裂纹周围粉化很严重,说明吸放氢循环会使样品粉化,在其表面产生很多的氢出入通道。
     4、SIMS分析的结论是:吸氢后的钛、锆、钒样品中有H元素,说明吸氢实验是成功的。
     钛中氢的深度分布在1.2微米,钒中氢的深度分布在2.7微米,锆中氢的深度分布在2.8微米以内的分布基本是均匀的,满足中子发生器的氚靶厚度要求。
Titanium、Zircouium and vanadium-based solid solution Hydrogen storage alloys become studying hotspot because of their high Hydrogen storage capacity and high velocity of Hydrogcn absorption and desorption.Titanium,Zirconium and vanadium have the properties of high Tritium storage density,high temperature of desorbing Hydrogen,strong ability of keeping Helium and low rate of droping powder, it meets the need of neutron generator's Tritium target,thus it can be used for Tritium target.
     The first time,we prepared the Ti-Li,Zr-Li and V-Li alloy were prepared by using thermal diffusion technology.And then,we did the experiment of Ti、Zr andV and Ti-Li、Zr-Li andV-Li alloy Hydrogen absorption and desorption under different conditions,and we did some research on the influence of Hydrogen absorption capability to Vananium.Finally,we did some tests on the experiment samples.We did X-ray diffraction(XRD) analyse for the phase-structure of samples,scanning electron microscope(SEM) analyse for the shape of exterior,secondary ion mass spectroscopy (SIMS) analyse for the comparative content.The results we get as following:
     (1) Both Titanium,Zirconium and Vanadium and Ti-Li、Zr-Li andV-Li alloy,absorbing Hydrogen in the same pressure and different temperature,the maximum Hydrogen desorption and the analytic velocity increase with the increasing of temperature.Both Vanadium and V-Li alloy,absorbing Hydrogen in the same temperature and different pressure,the maximum Hydrogen desorption increase with the increasing of pressure.Absorbing Hydrogen in the same condition,the maximum Hydrogen desorption of Li allay is more than Titanium、Zirconium and Vanadium.
     (2) The XRD analyse reveals that the structure of Titanium before hydrogen-absorption is close-packed hexagonal,the TiH_2 that formed via hydrogen-absorption is body-centered tetragonal,and the TiH that formed due to hydrogen-desertion of TiH_2 is cubic.The phase-structure of pure Vanadium is body centered cubic.It turns into face centured cubic after absorbing Hydrogen. It's body centered tetragonal and face centured cubic coexist after dcsorbing Hydrogen.After absorbing and desorbing Hydrogen,their lattice parameters increas,and the lattice volumes also increas.The peak of Lithium and LiH appear in the picture of XRD,which is proved that Lithium diffusing successfully.
     (3) By SEM analyse,it's compact and flawless for Vanadium before absorbing Hydrogen.There are many flaws after absorbing and desorbing Hydrogen.It's observed that the flaw pulverize badly by high degree miscoscope.It can be concluded that the shape of sample pulverize badly and appear some passages for Hydrogen after absorbing and desorbing Hydrogen.
     (4) By SIMS analyse,the depth of Hydrogen in Titanium、Zirconium and Vanadium is more than 1.2μm、2.8μm and 2.7μm,it meets the need of Tritium target's depth,so they can be used for Tritium target.
引文
[1]陈长聘.氯碱工业,2003,(5):1
    [2]王娟娟,马晓燕,梁国正 贮氢材料研究进展 金属功能材料 2004 11(1)24-28
    [3]Bogdanovic B,Schwickardi M.Ti-doped alkali metal aluminium hydrides as potential novel reversiblehydrogen storage materials[J].AlloysComp,1997,253-254:1-9.
    [4]Bogdanvic B,et al.[J].Alloy Comp,2000,302:36
    [5]Kiyobayashi T,et al·[J].Phys Chem B,2003,107:7671
    [6]Morioka H,et al·[J].Alloy Comp,2003,353:310
    [7]Fichtner M,Fuhr O·[J].Alloy Comp,2002,345:28
    [8]卢国俭,周仕学,姜瑶瑶。金属合金及碳材料储氢的研究进展,材料导2007.21(3),86-89.
    [9]雷永泉,新能源材料[M].天津:天津大学出版社,2000
    [10]陈进富,陆绍信,朱亚杰.新能源,1998,20(2):13-15.
    [11]陈进富,俞英,蔡卫权。Li2O对Pt-Sn/γ-Al2O3催化剂表面酸性与MCH 脱氢性能的影响[J].太阳能学报,2002,23(6):782-786.
    [12]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [13]Griinenfelder N F,Schucan T H.Seasonal storage of hydrogen in liquid organic hydrides:description of the second prototype vehicle[J].Int J.Hydrogen Energy,1989,14(8):579-586.
    [14]陈人杰,吴锋。有机液体氢化物贮氢新技术的研究[J].2003青年氢能论坛论文集[C].北京,2003.152-155.
    [15]Chen P,Wu X,Lin J,Tan K L·[J]·Science,1999,285,91.
    [16]Ye Y,Ahn C C,et al·[J].Appied Physics Letter,1999,74,2307.
    [17]Liu C,Fan Y Y,Liu M,Cong HT,Cheng HM et al·[J].Science,1999,286,1127.
    [18]Wang Q Y·[J]·J Phys Chem B,1999,103,4809.
    [19]DresselhausMS,WilliamsKA,Eklund PC.Hydrogen adsorption in carbon materials[J].MRS Bulletin,1999.45.
    [20]黄宛真等·[J]·化学物理学报,2002,15(1):51.
    [21]陈进富等·[J]·化工进展,1999,1:10.
    [22]范月英,刘敏等.[J].材料研究学报,1999,13(3):230-233
    [23]Chambers A,Colin Park R,Baker K,et al.[J].PhyChe,B,
    [24]周理.氢能利用与高表面活性碳吸附储氢技术[J].科技导报,1999,12,10-11.
    [25]王敬等.[J].物理化学学报,2002,18(2):97.1998,102(22):4253-4256
    [26]R.L.Beck..Investigation of Hydrating Characteristics of Intermetallic Compounds.DRI 2059,1962
    [27]Pebler A,Gulbransen E A.A phenomenological model for the hydrogen absorption capacity in pseudo binary Laves phase compounds[J].Electrochemist Technol.1966,211-215
    [28]Pebler A,Gulbransen E A.Hydrogen absorption and desorption properties of AB_2Laves-phasepseudobinarycompounds[J].TransMetalSoc,AIME.1967,239:1593
    [29][日]大角泰章.国外金属加工.1995,(3):29-37.
    [30]Bitter H F,Babcock C C..J Electrochemist Soc.,1983,130:193C.
    [31]徐艳辉,陈长聘,王国元等。材料科学与工程,2002,20(1):101-105.
    [32]李静明.安庆师范学院学报,2004,10:16
    [33]Vouch J H N,Kuijpers F A,Bruning H C A M.Philips ResRep.,1970,25:133
    [34]Reilly J J,Wiswall R H.Iron Titanium Hydride as a Source of Hydrogen For Stationary and Automotive Applications[J].Jr.Inorg Chem,1974,13:218
    [35]郑庆元,余守志,彭亦如等。河南科学,1998-04-010:422-428
    [36]Liang G,Huo T J.Alloys Comp,1999,282:286
    [37]陈军(Chen J),陶占良(Tao Z L).能源化学(EnergyChemistry).北京:化学工业出版社(Beijing:Chemical Industry Press),2004.161
    [38]Willems J J.BuschowKH.J.LessComm.Met.,1987,128:12
    [39]刘胜林:孙冬柏:贮氢合金的研究现状及其发展趋势 稀有金属与硬质合金 2005 33(4)46-51
    [40]钱久信,陈健,叶于浦.TiMn_x合金储氢性能的研究[J].金属学报1987,23(6):A534-536
    [41]Lee S M,Perng T P.Hydrogen Energ,1994,19:259
    [42]Pebler A,Gulbransen E A.Electrochemist.Technol.,1966,4:211-215
    [43]Pebler A,Gulbransen E A.Trans.Metall.Soc.AIME,1967,239:1594-1600
    [44]K.Y.Shu,X.G.Yang,G.L.Lu,Y.Q.Lei,Q.D.Wang.Effect of Cr and Co additives on microstructure and electronchemical performance of Zr(NiVMn)_2 M_(0.1)alloys[J].J.Alloys and Componds2000,(306):122-126
    [45]Sawa H,Wakao S.Mater Trans,1990,31:487
    [46]张文魁,马淳安,杨晓光等.稀有金属材料与工程,1999,28(4):202-205.
    [47]张文魁,马淳安,杨晓光等.稀有金属材料与工程,2001,30(3):194-196.
    [48]M.Okada,T.kuriiwa,A.Kamegawa,et al.Role of intermetallics in hydrogen storage materials[J].Matefials Science and Engineering 2002,A329-331:305-312
    [49]Jun Shi,et al.[J].Alloys Comp,1999,293:718
    [50]柴玉俊,赵敏寿 几种固溶体储氢合金的研究近况 稀有金属材料与工程2005 34(2)174-178
    [51]Seo Chan-Yeol,et al.[J].Alloys Comp,2003,348:252
    [52]Jun Shi,et al.[J].Alloys Comp,1999,293:716
    [53]Reilly J J.Wiswall R H.J.Inorg.Chem.,1968,7:2254-2256
    [54]李法兵(Li F B),蒋利军(Jiang L J),郑强(Zheng Q)等.稀有金属(Chinese Journal of Rare Metals),2003,27(6):823-826
    [55]周怀营,王仲民,顾正飞等.Preparation and structure of Mg2-xRexNi(where Re=La,Ce,Pr,Nd,Y).中国稀土学报,2004,22:263267.
    [56]蒙冕武;刘心宇;成钧;周怀营;机械合金化LaNi5231%Mg 的结构及性能征矿冶工程 2004 24(4)68-72
    [57]王仲民,朱敏,彭成红等。Mg2Ni型合金与AB5型稀土储氢合金纳米复合对电极性能的影响,中国有色金属学报,2002,12(2):300304.
    [58]赵罡,刘守平,周上祺等。钒-氢反应规律与钒基固溶体贮氢合金开发。钢铁钒钛2003,24(2)3943
    [59]于振兴,孙宏飞,王尔德,等.中国有色金属学报,2005,15:876
    [60]周仕学,胡秀颖,吴峻青,等.第六届全国氢能会议论文集,上海,2005·204
    [61]黄坚,陈胜福Mg2 Ni型贮氢合金的研究,与展望化学世界,2007 07442-446
    [62]郑元庆,余守志,贮氢合金的晶体结构与性能研究.河南科学,1997;15(2):149-153
    [63]徐艳辉,陈长聘,王国元等.材料科学与工程,2002,20(1):101-105.
    [64]李容 博士学位论文,重庆大学,重庆2005
    [65]严义刚 硕士学位论文,四川大学,四川2004
    [66]刘剑硕士学位论文 浙江大学 浙江2005
    [67]孙东升,李国勋等 贮氢合金应用研究近况,功能材料 1997 28(2)215-220
    [68]梁浩 硕士学位论文,四川大学,四川2006
    [69]胡子龙.储氢材料[M].北京:化学工业出版社,2002,P.186-223.
    [70]窦涛,硕士学位论文,中国科学院上海微系统与信息技术研究所,2006
    [71]Pound B G et al A Potentiostatic Double-Step Method for measuring Hydrogen Atom Diffusion and Trapping in Metal Electrodes-Ⅱ Experimental[J].Acta Metal ,1987,35(1) 263-270
    [72]崔昌军,彭乔 钛及钛合金的氢渗过程研究稀有金属材料与工程 2003 32(12)1011-1015
    [73]张学元 杜元龙 腐蚀科学与防护技术1996 8(2)158
    [74]王宇,王佩璇,张建伟,等.纯钛吸氢后的微观结构研究[J].稀有金属, 1995,19(5):348
    [75]黄刚,曹小华,龙兴贵,钛-氢体系的物理化学性 材料导报 2006 20(10)128-134
    [76]Panin A,Kazachenok M,Pochivalov Y.Hydrogen treatment of titanium specimens in various st ructural statcs[A].7thKorea-Russia international symposium on science and technology,proceedings-machine parts andmaterials processing,2003.97
    [77]褚武扬著.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988.171
    [78]Hempelmann R,Richter D,St ritzker B.Optic phonon modes and super-conducti -vity in a phase(Ti,Zr)-(H,D) alloys[J].J Phys F,1982,12(1):79
    [79]Schwickert M,Carpene E,Lieb K P.Hydrogen incorporation in titanium via laser irradiation[J].Appl phys Lett,2004,84(25):5231
    [80]Yu Xuebin,Wu Zhu,Li Feng,et al.Body-centered-cubic phase hydrogen storage alloy with improved capacity and fast activation[J]A.P.L,2004,84(16):3219.
    [81]Lototsky M V,Yartys V A,Yu I.Zavaliy,vanadium-based BCC alloys:phase-structural characteristics and hydrogen sorption properties[J].J.Alloys Compd.,2005,404-406:421.
    [82]Okada M,Kuriiwa T,Tamura T,et al.Ti-V-Cr b.c.c.alloys with high protium content[J].J.Alloys Compd.,2002,330-332:511.
    [83]Beavis LC,Kass WJ.Room Temperature Desorption of He-3 From Metal Tritides-tritium Concentration Effect on Rapid Release From Tritide[J].JVac Sci Technol,1977,14:509-513.
    [84]Wolfer WG.The Pressure for Dislocation LoopPunching by a Single Bubble [J].Phil Mag A,1988,58:285-297.
    [85]罗顺忠,杨本福,龙兴贵中子发生器用氚靶的研究进展原子能科学技术 2002 36(4/5)
    [86]杨柯,宋莉,吕曼祺 贮氢材料在氚技术中的应用 原子能科学技术 2004 39(4) 328-333290-296
    [87]Weaver HT,William JC.Detrapping of Inter2stial Helium in Metal Tritides2NMR Stadies[J].PhysRev B,1975,12:3 054-3 059
    [88]Vedeneev AI.Radiagenic Helium Thermodesorption from Titainium Tritide[J].J Nucl Mater,1996,233:1 189-1 192
    [89]Ishikawa Y,Yoshimura T,Arai M.Effect of Surface Oxide Layers on Deuterium Permiation Through Stainless Steels With Reference to Outgassing Reduction in Ultra2to Exemely High Vacuum[J].Vacuum,1996,47:357-360.
    [90]Perkins WG.Radiation Effects and Tritum Technology for Fusion Reactor[M].New York:Pergamon-2Elsvier,1976.83.
    [91]杨柯,宋莉,吕曼祺 贮氧材料在氚技术中的应用 原子能科学技术2004 39(4)328-333
    [92]Bowman RC,Attella A,Craft BD.Isotope Effect and Helium Retention Behavior in Vanadium Tritide[J].FusionTechnology,1985,8:2 366-2 372.
    [93]葛琴 硕士学位论文,兰州大学,兰州2008.
    [94]王秀文 硕士学位论文,兰州大学,兰州2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700