用户名: 密码: 验证码:
新型镁钛系BCC结构储氢合金制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氢化物中,氢原子主要占据在金属原子间的间隙位置上,与FCC结构或者HCP结构的储氢合金相比,具有BCC结构的储氢合金能存储氢原子的位置更多,因此受到了广大学者的青睐。镁、钛金属氢化物MgH2和TiH2的储氢量分别为7.6wt.%和4.0wt.%,这两种金属氢化物的储氢容量较高,是车载储氢燃料和镍氢电池的理想材料。目前,对于Mg-Ti BCC结构储氢合金的研究也受人们的广泛关注。本文首先探索Mg-Ti系BCC结构固溶体储氢合金的制备方法,然后添加不同的催化剂加以改善其储氢性能。
     采用机械合金化制备Mg76Ti12Ni12-xCr(x=0,3,6,9)合金,经过30小时球磨后,Mg76Til2Ni12中的二元合金相为FCC结构的Ti2Ni和六方结构的Mg2Ni,Mg76Ti12Ni12-xCrx(x=3,6,9)合金中除了FCC结构的Ti2Ni和六方结构的Mg2Ni二元合金相外,合金中还出现具有六方结构的Cr1.75Ni0.25Ti。随着Cr含量的增加,合金的非晶化程度提高。其中,适量的Cr能降低合金的吸放氢滞后系数以及提高合金的吸氢速率。而当以Mg76Ti12Ni9Cr3为研究对象,通过改变合金中Ti/Mg的比例发现,Mg76-xTi12+xNi9Cr3(x=4,8,12,16)合金相结构主要由Mg2Ni相和Ti2Ni相组成,合金经过20h到80h球磨后,其储氢量分别从3.93wt.%、3.82wt.%、3.64wt.%和2.81wt.%下降到2.36.wt%、2.16.wt%、1.81.wt%和2.0.wt%;随着球磨时间的增加,合金的储氢量下降;经过40h球磨后Mg76-xTi12+Ni9Cr3(x=4,8,12,16)合金氢化物的释氢温度分别为550K、528K、518K和506K,释氢温度随着Ti/Mg比例的增加而降低。Mg76-xTi12+x Ni9Cr3(x=4,8,12,16)合金氢化物的分解焓分别为-80.2kJ/mol、-78.5kJ/mol.-73.5kJ/mol和-80.0kJ/mol。随着Ti含量的增加,合金氢化物分解焓先减小后增大,适当的Ti能有效的降低合金氢化物的稳定性。
     通过研究Mn对镁基储氢性能的影响发现,在Mg76-xTi12Ni12Mnx(x=2,4,6,8)合金中,合金相主要为Mg2Ni和Ti2Ni相,在x=6和x=8的合金中,还出现TiMn2的二元合金相;Mg76-xTi12Ni12Mnx(x=2,4,6,8)合金最大储氢量分别为3.47wt.%、3.32wt.%、3.60wt.%和3.11wt.%,Mg76-xTi12Ni12Mnx(x=2,4,6,8)合金氢化物分解焓分别为:-79.2kJ/mol、-78.0kJ/mol、-73.7kJ/mol和-73.6kJ/mol; Mn能有效提高合金的储氢量,降低合金氢化物的稳定性,有利于改善合金的放氢热力学性能。
     基于Mg70Ti12Ni12Mn6合金具有较好的储氢性能,我们以Mg70Ti12Ni12Mn6为研究对象,采用机械合金化制备Mg70-xTi12+xNi12Mn6(x=8,16,24,32)合金,在球磨50h阶段,合金主要由具有HCP.FCC结构的元素组成;当球磨时间为100h时,Mn固溶到Ti晶格内部中,其对应的衍射峰基本消失,Mg和Ni对应的衍射峰逐渐减弱,合金的粒度减小且非晶化程度提高;当球磨时间增加到200h时,一方面由于Mg2Ni的出现导致衍射峰强度增加,另一方面,Mg和Ni逐渐固溶到Ti的晶格内部中,导致Ti对应的衍射峰强度增加,与此同时,在Mg46Ti36Ni12Mn6和Mg38Ti44Ni12Mn6合金中,在20=43.1°、63.1°和70.7°位置出现具有BCC结构的衍射峰;具有BCC结构的Mg46Ti36Ni12Mn6合金在573K温度下吸氢量为1.36wt.%,其氢化物的脱氢温度明显低于Mg62Ti20Ni12Mn6、Mg54Ti28Ni12Mn6和Mg38Ti44Ni12Mn6氢化物的脱氢温度。当球磨时间增加到400h时,Mg46Ti36Ni12Mn6和Mg38Ti44Ni12Mn6合金中,Mg的衍射峰全部消失,部分Ni衍射峰也消失,合金中仅剩FCC和BCC结构,Mg和Ni进一步固溶到Ti的基体中,合金中FCC结构是部分没有被固溶的Ni元素。为进一步改善BBC结构Mg46Ti36Ni12Mn6合金的储氢性能,在Mg46Ti36Ni12Mn6合金中添加不同含量的TiF3,研究发现,Mg46Ti36Ni12Mn6+xwt.%TiF3(x=2,5,8,11)合金的吸氢量分别为1.65wt.%,2.33wt.%,1.95wt.%和1.87wt.%,当TiF3的质量分数为5%时,合金的储氢性能最佳。
     为了比较相同含量不同添加剂的催化效果,在Mg46Ti36Ni12Mn6合金中添加质量分数为5%M(M=LiH, TiF3, Nb2O5, C)作为催化剂发现,添加C后合金主衍射峰所对应的FWHM最小,合金的晶格畸变越小,其次分别是TiF3、LiH和Nb205。在Mg46Ti36Ni12Mn6合金中添加5wt.%M,当M=C和LiH,能显著提高球磨效率,在相同的球磨时间内,合金的颗粒尺寸更小,但并不能提高合金的储氢性能;当M=TiF3和Nb205时,能有效的提高合金的储氢性能。Mg46Ti36Ni12Mn6+5wt.%M(M=TiF3, C, Nb2O5, LiH)合金经过200h的球磨后,其储氢量分别为2.33wt.%、0.68wt.%、2.36wt.%和1.49wt.%。Mg46Ti36Ni12Mn6+5wt.%M(M=TiF3, C, Nb2O5, LiH)合金氢化物的初始放氢温度温度分别为:568K、608K、535K和627K。
     而当以5wt%M(M=MgH2,CaH2,LiAlH4,NaH)作为添加剂后,Mg46Ti36-Ni12Mn6合金的储氢性能有了较大改善,经过200h的球磨后,合金中都出现了BCC结构的相。与MgH2和LiAlH4相比,添加NaH和CaH2后,合金的颗粒更小,合金的固溶度以及非晶化程度更高,当添加NaH和CaH2后,以Mg-Ti为基体,其他元素更易于固溶到Mg-Ti基体中,形成较为稳定的Mg-Ti基BCC结构。在303K温度下,其吸氢量分别为2.78wt.%、2.16wt.%、0.71wt.%和0.85wt.%。当温度在573K时,除了以CaH2作为添加剂的合金外,其他合金均在较短的时间内吸氢达到平衡,合金的吸氢量分别为3.1wt.%、2.76wt.%、3.2wt.%和1.95wt.%,随着温度的增加,合金吸氢量略有上升。合金氢化物经过加热后第一个吸热峰分别为:534K、517K、521K和553K。当以CaH2、 LiAlH4、MgH2和NaH做为添加剂后,在一定程度上降低储氢合金的释氢温度。
     以Co,Cr,Fe和V取代Mg46Ti36Ni12Mn6合金中的Mn,在Mg46Ti36Ni12Cr6、 Mg46Ti36Ni12Fe6和Mg46Ti36Ni12V6合金中BCC结构相出现在40.4°、58.6°和73.9°位置,合金中除了出现BCC结构外,还有FCC结构相和Diamond Cubic结构相;而在M946Ti36Ni12Co6合金中,BCC结构出现在42.9°和62.2°位置,合金中未出现FCC结构相和diamond Cubic结构相,但有Primitive Cubic结构相。Mg46Ti36Ni12M6(M=Co,Cr,Fe,V)合金BCC结构相晶格参数分别为:0.2982、0.3148、0.3140和0.3376nm,BCC结构的晶格参数随着替代元素原子半径的增大而增大。在303K时,Mg46Ti36Ni12M6(M=Co,Cr,Fe,V)合金的吸氢量分别为1.14wt.%、1.59wt.%、1.55wt.%和2.38wt.%;在573K时,其吸氢量分别为1.95wt.%、2.25wt.%、2.01wt.%和2.95wt.%,合金的吸氢量随着替代元素原子半径的增大而增大。Mg46Ti36Ni12M6(M=Co,Cr,Fe,V)合金氢化物初始放氢温度分别为460K、441K、441K和453K,在加热过程第一个吸热峰分别出现在624K、530K、514K和569K。
Hydrogen atoms mainly occupy the interstitial site among metal atoms in metal hydrides. In comparison with FCC and HCP structures, BCC structures have more interstitial site to hold much more hydrogen. Mg and Ti are more popular metallic elements which form stable hydrides because of their higher hydrogen capacities (theoretically up to7.6wt%) and lower costs (they form MgH2and TiH2hydrides including7.6mass%and4.0mass%hydrogen, respectively), so that MgH2and TiH2hydrides are excellent materials for vehicle fuel and nickel-metal hydride batteries. In the present work, we have explored the preparation method to synthesize Mg-Ti BCC alloys and tried to improve the hydrogen storage performance of these alloys by adding different kinds of additives.
     Mg76Ti12Ni12-xCrx (x=0,3,6,9) alloys were prepared by mechanical alloying. For Mg76Ti12Ni12alloy, the binary alloy phase of Mg2Ni and Ti2Ni phase formed after milled30h. Besides Ti2Ni phase and Mg2Ni phase, Cr1.75Nio.25Ti phase also formed in the Mg76Tii2Ni12-xCrx (x=3,6,9) alloys. For Mg76Ti12Ni12-xCrx (x=0,3,6,9) alloys, the amorphous degree increased with the increase of Cr content. The hysteresis coefficient of hydrogen absorptiondes-orption decreased, as well as the hydrogen absorption rate could be improved by adding proper Cr content.
     The Ti and Mg content were changed based on Mg76Ti,2Ni9Cr3alloy. Mg76-xTi12+xNi9Cr3(x=4,8,12,16) alloys were prepared by mechanical alloying. For Mg76-xTi12+xNi9Cr3(x=4,8,12,16) alloys, the main binary alloy phase was Mg2Ni and Ti2Ni after milled. And the hydrogen storage capacity was3.93wt.%,3.82wt.%,3.64wt.%and2.81wt.%after milled20h. However, it decreased to2.36wt.%,2.16wt.%,1.81wt.%,2.0wt.%when the milling time increased to80h. It was found that the hydrogen storage capacity decreased with the increase of the milling time and the ratio of Ti/Mg. It was also found from DTA results that the hydrogen desorption temperature of the Mg76-xTi12+xNi9Cr3(x=4,8,12,16) hydride were550K,528K,518K and506K, respectively. The hydrogen desorption temperature decreased with increasing the rate of Ti/Mg. The decomposition enthalpies of the Mg76-xTi12+xNi9Cr3(x=4,8,12,16) hydride were-80.2kJ/mol,-78.5kJ/mol,-73.5kJ/mol and-80.0kJ/mol, respectively. The decomposition enthalpy decreased with the increase of Ti content firstly, then increased with increasing Ti content. The stability of the hydride can be reduced with proper Ti content.
     Mg76-xTi12Ni12Mnx (x=2,4,6,8) alloys were prepared by mechanical alloying and the effects of Mn content on the hydrogen storage properties were investig-ated systematically. For Mg76-xTi12Ni12Mnx (x=2,4,6,8) alloys, the main binary alloy phase consist of Mg2Ni and Ti2Ni too. It was found that TiMn2phase appeare when x=6and x=8. The hydrides decomposition enthalpies of Mg76-xTi12Ni12Mnx (x=2,4,6,8) alloys were-79.2kJ/mol,-78.0kJ/mol,-73.7kJ/mol and-73.6kJ/mol. The hydrogen storage capacity increased, as well as the stability of the hydride reduced with the addition of the Mn element. The thermodynamics performance was also improved with addition of the element Mn.
     According to the good hydrogen storage properties of Mg70Ti12Ni12Mn6alloy mentioned above, Mg70-xTi12+xNi12Mn6(x=8,16,24,32) alloys were prepared by mechanical alloying. The alloys were mainly composed of HCP and FCC structures after ball-milling for50h. When the milling time increased to100h, it was shown that the diffraction peak of Mn element disappeared, as well as the diffraction peak of Mg and Ni weakened gradually. However, the peak intensities of Ti increase significantly. It was suggested that Mg, Ni and Mn dissolve into Ti lattice to form solid solution. When the milling time increased to200h, X-ray diffraction (XRD) testing showed that the diffraction peak of Mg2Ni occurs, and the diffraction peak of Mg and Ni decreased while the intensity of X-rays diffraction pattern of Ti was improved at2θ=35.3°,38.4°,40.2°nd43.1°. These results demonstrated that Mg and Ni further dissolve into Ti lattice. For Mg46Ti36Ni12Mn6and Mg38Ti44Ni12Mn6alloys, the peaks with the BCC structure appeared at20=43.1°,63.1°and70.7°. After ball-milling for400h, the diffraction peak of Mg disappeared, and part of the diffraction peak of Ni also disappeared, only FCC and BCC structure exist. These results were also due to that Mg and Ni further dissolved into Ti lattice. And, the FCC structure which corresponded to Ni was due to Ni element not yet diffusing into Ti lattice. The hydrogen storage capacity of Mg46Ti36Ni12Mn6alloy with BCC structure was1.36wt.%at573K, and the dehydriding temperature was lower than that of Mg62Ti2oNi12Mn6, Mg54Ti28Ni12Mn6and Mg38Ti44Ni12Mn6hydrides.
     To improve the hydrogen storage performance of BCC solid solution Mg46Ti36Ni12Mn6alloy, we added xwt.%TiF3(x=2,5,8,11) to Mg46Ti36Ni12Mn6alloy. The hydrogen storage capacity of Mg46Ti36Ni12Mn6+xwt.%TiF3(x=2,5,8,11) was1.65wt.%,2.33wt.%,1.95wt.%and1.87wt.%, respectively. Among these alloys, the Mg46Ti36Ni12Mn6+5wt.%TiF3alloy presented the best hydrogen storage performance.
     To study the effects of different kinds of catalyst on the hydrogen storage performance of the Mg46Ti36Ni12Mn6alloy with BCC structure,5wt.%M (M=LiH,TiF3,Nb205and C) was added. For Mg46Ti36Ni,2Mn6+5wt.%M (M=LiH,TiF3,Nb205and C) alloys, X-ray diffraction studies indicated that the full width at half maximum (FWHM) of main diffraction peaks corresponding to Mg46Ti36Ni12Mn6+5wt.%C was the smallest. The results revealed that the crystal lattice distortion of Mg46Ti36Ni12Mn6alloy was the least when adding C, the next was TiF3, LiH and Nb2O5. After ball-milling for200h, the hydrogen storage capacity of Mg46Ti36Ni12Mn6+5wt.%M(M=TiF3,C,Nb205,LiH) alloys were2.33wt.%,0.68wt.%,2.36wt.%and1.49wt.%respectively. Among these alloys, the particle size of Mg46Ti36Ni12Mn6+5wt.%M(M=C,LiH) was smaller. The result implied that C and LiH could raise mechanical milling efficiency but did not improve the hydrogen storage performance. However, the hydrogen storage performance can be improved by adding TiF3and Nb2O5. It could be seen from the DTA results that the initial exothermic temperature for Mg46Ti36Ni12Mn6+5wt.%M(M=TiF3,C,Nb205,LiH) hydride were568K,608K,535K and627K, respectively.
     The effect of metal hydride on hydrogen storage properties of Mg46Ti36Ni12-Mn6alloy were investigated By adding5wt.%M (M=MgH2, CaH2, LiAlH4, NaH). It could be found that the BCC structure came into being after ball-milling for200h. SEM results showed that the particle size was smaller, the solubility was better and the efficiency of amorphousness was higher when NaH and CaH2other than MgH2and LiAlH4were used as additives. Furthermore, other elements were easier to dissolve into the Mg-Ti matrix and to form stable BCC structure when NaH and CaH2were used as additives. At303K, the hydrogen storage capacity of Mg46Ti36Ni12Mn6+5wt.%M(M=MgH2, CaH2, LiAlH4, NaH) alloys were2.78wt.%,2.16wt.%,0.71wt.%and0.85wt.%, respectively, and were3.1wt.%,2.76wt.%,3.2wt.%and1.95wt.%as the temperature increased to573K. That was to say, the hydrogen storage capacity increased with increasing the temperature. The differential thermal analysis (DTA) results showed that the first endothermic peaks of Mg46Ti36Ni]2Mn6+5wt.%M(M=MgH2, CaH2, LiAlH4, NaH)hydride were534K,517K,521K and553K, respectively. The hydrogen desorption temperature were deduced by adding MgH2, CaH2, LiAlH4and NaH additives.
     The effect of substituting elements M (M=Co, Cr, Fe, V) for element Mn on hydrogen storage performance of Mg46Ti36Ni12M6alloy has been studied. For Mg46Ti36Ni12Cr6, Mg46Ti36Ni12Fe6and Mg46Ti36Ni12V6alloys, BCC structure, FCC structure as well as diamond cubic structure were observed, and the BCC structure appeared at29=40.4°,58.6°nd73.9°. For Mg46Ti36Ni12Co6alloy, they were only BCC structure and Primitive Cubic structure, not FCC structure and diamond Cubic structure, and the BCC structure appeared at2θ=42.9°and62.2°. The crystal lattice parameter of the BCC solid solution of Mg46Ti36Ni12M6(M=Co,Cr,Fe,V) alloys were2.9828,3.1475,3.1403and3.3764nm, respectively. The crystal lattice parameter increased with the increase of atomic radius of substitute elements.It was found that synthesized Mg46Ti36Ni12M6(M=Co, Cr, Fe, V) alloys were able to absorb hydrogen up to1.14wt.%,1.59wt.%,1.55wt.%and2.38wt.%at303K, respectively. And it increased to1.95wt.%,2.25wt.%,2.01wt.%and2.95wt.%when the temperature rised to573K. The hydrogen storage capacities of Mg46Ti36Ni12M6(M=Co, Cr, Fe, V) increased with the increasing of the substitution elements atomic radius. The initial hydrogen desorption temperature of Mg46Ti36Ni12M6(M=Co,Cr,Fe,V) hydride was460K,441K,441K and453K, and, the first endothermic peak appeared at624K,530K,514K and569K, respectively.
引文
[01]丁福臣,易玉峰.制氢储氢技术[M].2006,化学工业出版社:北京.
    [02]A, Pebler,A.Gulbransen E, Elcetrochem Technol[J],1966.4:211-215.
    [03]Pebler A, Gulbransen E A. Trans Metall Soc. AIME[J],1967.239:p.1593.
    [04]Reilly J J,Wiswall H R.The Reaction hydrogen with alloys of Magnesium and nickel and formation of Mg2NiH[J]. Inorg.Chem,1968,7:2254-2256.
    [05]K Nakatsuka, M Yoshino, H Yukawa, M Morinaga. Roles of the hydride forming and non-forming elements in hydrogen storage alloys[J]. Journal of Alloys and Compounds, 1999.293-295:222-226.
    [06]大角泰章.金属氢化物的性质与应用[M].1990,化学工业出版社:北京.
    [07]Borislav Bogdanovic, Richard A.Brand, Ankica Marjanovic, Manfred Schwickardi, Joachim Tolle. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials[J]. Journal of Alloys and Compounds,2000.302(1-2):36-58.
    [08]R.C Ambrosio,E.A.Ticianelli. Effect of cobalt on the physicochemical properties of a simple LaB5 metal hydride alloy[J]. Journal of Power Sources,2002.110(1):73-79.
    [09]Xianxia Yuan, Han-San Liu, Zi-Feng Ma, Naixin Xu.Characteristics of LaNi5-based hydrogen storage alloys modified by partial substituting La for Ce[J]. Journal of Alloys and Compounds,2003.359(1-2):300-306
    [10]Hongge Pan, Qinwei Jin, Mingxia Gao, Yongfeng Liu, Rui Li, Yongquan Lei. Effect of the cerium content on the structural and electrochemical properties of the La0.7-xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0-0.5) hydrogen storage alloys[J]. Journal of Alloys and Compounds,2004.373(1-2):237-245.
    [11]Zuxian Tan, Yifu Yang, Yan Li, Huixia Shao. The performances of La1-xCexNi5 (0≤x≤) hydrogen storage alloys studied by powder microelectrode[J]. Journal of Alloys and Compounds,2008.453:79-86
    [12]马建新,陈长聘,潘洪革.无钻AB5型MLNi4.45-xAl0.15Mn0.4Sn电极合金[J].电池,2002.32(SI):98-100.
    [13]马建新,潘洪革,李寿权,陈长聘RE(NiCoMnAl)5电极合金中RE成分对微结构和电化学性能的影响[J].稀有金属材料与工程,2002.3(31):217-220.
    [14]T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda. Hydrogen storage properties of new ternary system alloys:La2MgNi9,La5Mg2Ni23, La3MgNi14[J].Journal of Alloys and Compounds,2000.311(2):L5-L7.
    [15]M.Latroche,A.Percheron-Guegan, Structural and thermodynamic studies of some hydride forming RM3-type compunds(R=Lanthanide, M=transition metal)[J]. Journal of Alloys and Compounds,2003.356-356:461-468.
    [16]S.A Lushnikov, S.N Klyamkin, V.N Verbetsky. Interaction of RT3 (R=Ce, T=Co, Ni, Fe) intermetallic compounds with hydrogen under high pressure[J]. Journal of Alloys and Compounds,2002.330-332:574-578.
    [17]R Baddour-Hadjean, J.P Pereira-Ramos, M Latroche, A Percheron-Guegan. New ternary intermetallic compounds belonging to the R-Y-Ni (R=La, Ce) system as negative electrodes for Ni-MH batteries[J]. Journal of Alloys and Compounds,2002.330-332: 782-786.
    [18]M.Latroche, R. Baddour-Hadjean, A. Percheron-Guegan, Crystallographic and hydriding properties of the system La1-x-CexY2Ni9 (x=0,0.5 and 1)[J]. Journal of Solid State Chemistry,2003.173(1):236-243.
    [19]Hongge Pan, Yongfeng Liu, Mingxia Gao, Yunfeng Zhu, Yongquan Lei. The structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=3.0-5.0) hydrogen storage alloys[J]. International Journal of Hydrogen Energy,2003.28(11):1219-1228.
    [20]He Miao, Hongge Pan, Shengcai Zhang, Ni Chen, Rui Li, Mingxia Gao. Influences of Co substitution and annealing treatment on the structure and electrochemical properties of hydrogen storage alloys La0.7Mg0.3Ni2.45-xCo0.75+rMn0.1Al0.2 (x=0.00,0.15,0.30)[J]. International Journal of Hydrogen Energy,2007.32(15):3387-3394.
    [21]X.B. Yu, Z.X. Yang, H.K. Liu, D.M. Grant, G.S. Walker.The effect of a Ti-V-based BCC alloy as a catalyst on the hydrogen storage properties of MgH2[J]. International Journal of Hydrogen Energy,2010.35(12):6338-6344.
    [22]柴玉俊,赵敏寿.几种固溶体储氢合金的研究近况[J].稀有金属材料与工程,2005.34(2):174-177.
    [23]严义刚,闫康平,陈云贵.钒基固溶体型储氢合金的研究进展[J].稀有金属,2004(4):738-743.
    [24]K.Nomura, E. Akiba.H0 Absorbing-desorbing characterization of the Ti-V-Fe alloy system[J]. Journal of Alloys and Compounds,1995.231(1-2):513-517.
    [25]Yigang Yan, Yungui Chen, Hao Liang, Chaoling Wu, Mingda Tao, Tu Mingjing. Effect of Al on hydrogen storage properties of V30Ti35Cr25Fe10 alloy[J]. Journal of Alloys and Compounds,2006.426(1-2):253-255.
    [26]H Itoh, H Arashima, K Kubo, T Kabutomori. The influence of microstructure on hydro- gen absorption properties of Ti-Cr-V alloys[J]. Journal of Alloys and Compounds,2002. 330-332:287-291.
    [27]Yigang Yan, Yungui Chen, Hao Liang, Chaoling Wu, Mingda Tao. Hydrogen storage properties of V3o-Ti-Cr-Fe alloys[J]. Journal of Alloys and Compounds,2007.427(1-2): 110-114.
    [28]Masachika Shibuya, Jin Nakamura, Hirotoshi Enoki, Etsuo Akiba. High-pressure hydrogenation properties of Ti-V-Mn alloy for hybrid hydrogen storage vessel[J]. Journal of Alloys and Compounds,2009.475(1-2):543-545.
    [29]Yigang Yan, Yungui Chen, Xiaoxiao Zhou, Hao Liang, Chaoling Wu, Mingda Tao. Some factors influencing the hydrogen storage properties of 30V-Ti-Cr-Fe alloys[J]. Journal of Alloys and Compounds,2008.453(1-2):428-432.
    [30]X.B.Yu, S.L.Feng, Z.Wu, B.J.Xia, N.X.Xu. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content[J]. Journal of Alloys and Compounds,2005.393(1-2):128-134.
    [31]Yigang Yan, Yungui Chen, Chaoling Wu, Mingda Tao, Hao Liang. A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity[J]. Journal of Power Sources,2007.164(2):799-802.
    [32]C.L.Wu, Y.G.Yan, Y.G.Chen, M.D.Tao, X.Zheng. Effect of rare earth (RE) elements on V-based hydrogen storage alloys[J]. International Journal of Hydrogen Energy,2008. 33(1):93-97.
    [33]Takahiro Kuriiwa, Takahiro Maruyama, Atsunori Kamegawa, Masuo Okada. Effects of V content on hydrogen storage properties of V-Ti-Cr alloys with high desorption pressure[J]. International Journal of Hydrogen Energy,2010.35(17):9082-9087.
    [34]B. Abrashev,S. Bliznakov, T. Spassov, A. Popov. Electrochemical hydriding of nanocry-stalline TiFe alloys[J]. Journal of Applied Electrochemistry,2007.37(7):871-875.
    [35]H.Miyamura, T.Sakai, N.Kuriyama, H.Tanaka, I.Uehara, H.Ishikawa. Hydrogenation and phase structure of Ti-Fe-V alloys[J]. Journal of Alloys and Compounds,1997.253-254: 232-234.
    [36]Jeoung-Gun Park, Dong-Myung Kim, Kuk-Jin Jang, Jai-Sung Han, Kurn Cho, Jai-Young Lee. The intrinsic degradation behaviour of (V0.53Ti0.47) Fe0.75 alloy during temperature induced hydrogen absorption-desorption cycling[J]. Journal of Alloys and Compounds, 1999.293-295:150-155.
    [37]马建新,潘洪革Fe0.85Mn0.15Ti0.9M0.1 (M= Zr, V, Ca)合金的储氢性能[J].稀有金属 材料与工程,2000.29(2):137-141.
    [38]L.Zaluski, A.Zaluska, P.Tessier, J.O.Strom-Olsen, R.Schulz. Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling[J]. Journal of Alloys and Compounds,1995.227(1):53-57.
    [39]徐海鸥,陈长聘,蔡官明Ti1.2Fe+x%Mg (x=1,3,5)合金的储氢特性[J].稀有金属材料与工程,2003.32(3):220-223.
    [40]S.M.Lee,T.P.Perng.Correlation of substitutional solid solution with hydrogenation properties of TiFe-1xMx (M=Ni, Co, Al) alloys[J]. Journal of Alloys and Compounds, 1999.291(1-2):254-261.
    [41]Liu Shouping, Qiu Guibao, Liu Xiaojun, Li Jin, Bai Chenguang. Structures and Properties of TiMn2-5x(V4Fe)x(x=0.30,0.35) Hydrogen Storage Alloys[J]. Rare Metal Materials and Engineering,2010.39(2):214-218.
    [42]B.Massicot,M.Latroche,J.-M.Joubert. Hydrogenation properties of Fe-Ti-V bcc alloys[J]. Journal of Alloys and Compounds,2011.509(2):372-379
    [43]敖鸣,王启东.经四氢峡喃改性后Mg的储氢性能[J].金属学报,1990.26(3):A194-A197.
    [44]A.Zaluska, L.Zaluski, J.O.Strom-Olsen. Nanocrystalline magnesium for hydrogen storage[J]. Journal of Alloys and Compounds,1999.288(1-2):217-225.
    [45]B. Darriet, J.L. Soubeyroux, M. Pezat, D. Fruchart. Structural and hydrogen diffusion study in the Mg2Ni-H2 system[J]. Journal of the Less Common Metals,1984.103(1): 153-162.
    [46]G.Sandrock. A panoramic overview of hydrogen storage alloys from a gas reaction point of view[J]. Journal of Alloys and Compounds,1999.293-295:877-888.
    [47]E Ivanov, I Konstanchuk, A Stepanov, V Boldyrev. Magnesium mechanical alloys for hydrogen storage[J]. Journal of the Less Common Metals,1987.131(1-2):25-29.
    [48]谢昭明,付安庆,陈玉安,潘复生,丁培道.A1的添加对Mg2Ni储氢合金结构和氢扩散能力的影响研究[J].功能材料,2006.4(37):601-603.
    [49]D.H. Xie, P. Li, C.X. Zeng, J.W. Sun, X.H. Qu. Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy[J]. Journal of Alloys and Compounds, 2009.478(1-2):96-102.
    [50]Yang-huan Zhang, Xiao-ying Han, Bao-wei Li, Hui-ping Ren, Xiao-ping Dong, Xin-lin Wang.Effects of substituting Mg with Zr on the electrochemical characteristics of Mg2Ni-type electrode alloys prepared by mechanical alloying[J]. Materials Characterization,2008.59(4):390-396.
    [51]M.Anik, Improvement of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of Mg by Al, Ti and Zr[J]. Journal of Alloys and Compounds,2009.486(1-2):109-114.
    [52]L.Xie, H.Y.Shao, Y.T.Wang, Y. Li, X.G. Li. Synthesis and hydrogen storing properties of nanostructured ternary Mg-Ni-Co compounds[J]. International Journal of Hydrogen Energy,2007.32(12):1949-1953.
    [53]王秀丽,高嵘岗,陈长聘,涂江平,张孝彬.掺Cr纳米晶Mg2Ni合金的气态储氢性能[J].中国有色金属学报,2002.12(5):907-911.
    [54]Liquan Li, Itoko Saita, Katsushi Saito, Tomohiro Akiyama. Hydriding combustion synthesis of hydrogen storage alloys of Mg-Ni-Cu system[J]. Intermetallics,2002. 10(10):927-932.
    [55]Yang-huan Zhang,Bao-wei Li Zhi-hong Ma,Shi-hai Guo,Yan Qi, Xin-lin Wang. Improved hydrogen storage behaviours of nanocrystalline and amorphous Mg2Ni-type alloy by Mn substitution for Ni[J]. International Journal of Hydrogen Energy,2010.35(21): 11966-11974.
    [56]L.W.Huang,O.Elkedim,V.Moutarlier.Synthesis and characterization of nanocrystalline Mg2Ni prepared by mechanical alloying:Effects of substitution of Mn for Ni[J]. Journal of Alloys and Compounds,2010.504:S311-S314.
    [57]王美涵,张连中,孙立贤,谭志诚,徐芬,袁华堂,张涛.四元Mg0.9Ti0.1Ni0.9X0.1 (X=Mn,Zn,Co, Fe)系列合金的制备及性能研究[J].高等学校化学学报,2005.26(9):1673-1676.
    [58]冯艳,焦丽芳,袁华堂,王一菁,刘强,刘毅Mg0.9Ti0.iNi1-xCox(x=0.05,0.1,0.15,0.2)合金的合成及电化学性能研究[J].化学学报,2006.64(5):423-427.
    [59]Mustafa Anik, Isin Akay, Gizem O" zdemir, Bedri Baksan. Electrochemical hydrogen storage performance of Mg-Ti-Zr-Ni alloys[J]. International Journal of Hydrogen Energy,2009.34(24):9765-9772.
    [60]刘素琴MgNi-x%TiNi0.5Mn0.5(x=10,30,50)储氢合金的制备与电化学性能[J].化学学报,2009.67(6):513-518.
    [61]刘素琴,陈东洋,黄可龙,黄红霞MgNi-TiNi0.56M0.44(M=Al、Fe)储氢合金的制备和电化学性能研究[J].无机材料学报,2009.24(2):361-367.
    [62]Y Tsushio, E. Akiba, Hydrogen desorption properties of the quaternary alloy system Mg2-xM1xNi1-yM2y[J]. Journal of Alloys and Compounds,1998.267(1-2):246-251.
    [63]R.J.J, W.R.H. Reaction of hydrogen with alloys of magnesimn and copper[J]. Inorg. Chem,1967.6(12):2220-2223.
    [64]陈玉安,杨丽玲,林嘉靖,程绩Mg2Cu基储氢合金的表面复相改性[J].中国有色金属学报,2010.20(9):1716-1724.
    [65]A.Gebert, B.Khorkounov, U.Wolff, Ch.Mickel, M.Uhlemann, L.Schultz.Stability of rapidly quenched and hydrogenated Mg-Ni-Y and Mg-Cu-Y alloys in extreme alkaline medium[J]. Journal of Alloys and Compounds,2006.419(1-2):319-327.
    [66]A.Seiler, L.Schlapbach, Th.Von Waldkirch, D.Shaltiel, F.Stucki. Surface analysis of Mg2Ni-Mg,Mg2Ni and Mg2Cu[J]. J.Less-Common Met,1980.73:193-199.
    [67]YTsushio, P.Tessier, H.Enoki, E.Akiba. Hydrogenation properties of Mg1-xMlxCu2(Ml= La and Nd) with larger interstitial sites than MgCu2[J]. Journal of Alloys and Compounds,1998.280:262-264.
    [68]H.Linjun, L.Gongying, S.Zhanbo, Effects of Neodym(?)am Content on Hydrogen-Storage Properties of Mg-Cu-Nd Amorphous Alloys[J]. Rare Metal Materials And Engineering, 2007.36(6):1033-1036.
    [69]J.P. Lei, H. Huang, X.L. Dong, J.P. Sun, B. Lu, M.K. Lei, Q. Wang, C. Dong, G.Z. Cao. Formation and hydrogen storage properties of in situ prepared Mg-Cu alloy nanoparticles by arc discharge[J]. International Journal of Hydrogen Energy,2009. 34(19):8127-8134.
    [70]H. Akyildiz, T. Ozturk.Hydrogen sorption in crystalline and amorphous Mg-Cu thin films[J]. Journal of Alloys and Compounds,2010.492(1-2):745-750.
    [71]Myoung Youp Song, Sung Nam Kwon, Jong-Soo Bae, Seong-Hyeon Hong. Hydrogen-storage properties of Mg-23.5Ni-(0 and 5)Cu prepared by melt spinning and crystallization heat treatment[J]. International Journal of Hydrogen Energy,2008.33(6): 1711-1718.
    [72]C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini. Mg-Ni-Cu mixtures for hydrogen storage:A kinetic study[J]. Intermetallics,2010. 18(2):203-211.
    [73]Huaiyu Shao, Yuntao Wang, Hairuo Xu, Xingguo Li.Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy[J]. Journal of Solid State Chemistry,2005. 178(7):2211-2217.
    [74]M. Jurczyk, I. Okonska, W. Iwasieczko, E. Jankowska, H. Drulis Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials[J], Journal of Alloys and Compounds,2007.429(1-2):316-320.
    [75]庞立娟,陈云贵,严义刚,吴朝玲,刘艳,郑欣.添加纳米TiO2对Mg17Al12吸氢性能的影响[J].西安交通大学学报,2008.42(5):647-651.
    [76]曹中秋,王婷,边静,张辉,张国英(Mg58Al42)0.9Ni0.1储氢合金的制备及其电化学性能[J].中国有色金属学报,2009.19(10):1854-1860.
    [77]张辉,王婷,曹中秋,张国英Mg58Al42储氢合金的制备及其电化学性能[J].稀有金属材料与工程,2009.38(3):536-541.
    [78]M.Tanniru, D.K. Slattery, F. Ebrahimi, A study of phase transformations during the development of pressure-composition-isotherms for electrodeposited Mg-Al alloys[J]. International Journal of Hydrogen Energy,2011.36(1):639-647.
    [79]G.Duarte,L.Bustamante,P.Demiranda. Hydriding properties of an Mg-Al-Ni-Nd hydrog-en storage alloy[J]. Scripta Materialia,2007.56(9):789-792.
    [80]X.L. Wang, J.P. Tu, P.L. Zhang, X.B. Zhang, C.P. Chen, X.B. Zhao. Hydrogenation prop-erties of ball-milled MgH2-10wt%Mg17Al12 composite[J]. International Journal of Hydrogen Energy,2007.32(15):3406-3410.
    [81]A. Parente, A. Nale, M. Catti, E. Kopnin, P. Caracino.Hydrogenation properties of Mg2-AlNi2 and mechanical alloying in the Mg-Al-Ni system[J]. Journal of Alloys and Compounds,2009.477(1-2):420-424.
    [82]A.Andreasen. Hydrogenation properties of Mg-Al alloys[J]. International Journal of Hydrogen Energy,2008.33(24):7489-7497.
    [83]J.C.Crivello, T. Nobuki, T. Kuji, Improvement of Mg-Al alloys for hydrogen storage applications[J]. International Journal of Hydrogen Energy,2009.34(4):1937-1943.
    [84]Xuezhang Xiao, Lixin Chen, Zhouming Hang, Xinhua Wang, Shouquan Li, Changpin Chen, Yongquan Lei, Qidong Wang.Microstructures and electrochemical hydrogen storage properties of novel Mg-Al-Ni amorphous composites[J]. Electrochemistry Communications,2009.11(3):515-518.
    [85]肖学章,陈长聘,王新华,陈立新,高林辉,王丽,杜树立.非晶Mg2Fe复合物的机械球磨制备及其电化学储氢特性[J].高等学校化学学报,2006.27:116-120.
    [86]I. Okonska, W. Iwasieczko, M. Jarzebski, M. Nowak, M. Jurczyk. Hydrogenation prop-erties of amorphous 2Mg+Fe/xwt% Ni materials prepared by mechanical alloying (x=0,100,200)(x=0,100,200) [J].International Journal of Hydrogen Energy,2007.32(17): 4186-4190.
    [87]R.A. Varina, S. Lia, Ch. Chiua, L. Guo, O. Morozovac,T. Khomenko, Z. Wronski. Nano-crystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X= Fe, Co, Mn, B) systems[J]. Journal of Alloys and Compounds,2005.404-406:494-498.
    [88]M. Herrich, N. Ismail, J. Lyubina, A. Handstein, A. Pratt,O. Gutfleisch. Synthesis and decomposition of Mg2FeH6 prepared by reactive milling[J]. Materials Science and Engineering B,2004.108(1-2):28-32.
    [89]Mark D. Riktor, Stefano Deledda, Monika Herrich, Oliver Gutfleisch, Helmer Fjellvag, Bj(?)rn C. Hauback.Hydride formation in ball-milled and cryomilled Mg-Fe powder mixtures[J]. Materials Science and Engineering:B,2009.158(1-3):19-25.
    [90]G.F. Lima, M.M. Peres, S. Garroni, M.D. Baro, S. Surinyach, C.S. Kiminami,T.T.Ishika-wa, W.J. Botta, A.M. Jorge Jr. Microstructural characterization and hydrogenation study of extruded MgFe alloy[J]. Journal of Alloys and Compounds,2010.504:S299-S301.
    [91]Qian Li, Jing Liu, Kuo-Chih Chou, Gen-Wen Lin, Kuang-Di Xu. Synthesis and dehydro-genation behavior of Mg-Fe-H system prepared under an external magnetic field[J]. Journal of Alloys and Compounds,2008.466(1-2):146-152.
    [92]F.C.Gennari, F.J. Castro,J.J. Andrade Gamboa, Synthesis of Mg2FeH6 by reactive mech-anical alloying:formation and decomposition properties[J]. Journal of Alloys and Compounds,2002.339(1-2):261-267.
    [93]Borislav Bogdanovic, Alexander Reiser, Klaus Schlichte, Bernd Spliethoff, Bernd Tesche.Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds,2002. 345(1-2):77-89.
    [94]J.A.Puszkiel, P.A. Larochette,F.C.Gennari, Thermodynamic and kinetic studies of Mg-Fe-H after mechanical milling followed by sintering[J]. Journal of Alloys and Compounds,2008.463(1-2):134-142.
    [95]J.Puszkiel, P. Arneodolarochette, F. Gennari, Hydrogen storage properties of MgxFe (x:2, 3 and 15) compounds produced by reactive ball milling[J]. Journal of Power Sources, 2009.186(1):185-193.
    [96]J.-L.Bobet,B. Chevalier,B. Darriet, Effect of reactive mechanical grinding on chemical and hydrogen sorption properties of the Mg+10 wt.%Co mixture[J]. Journal of Alloys and Compounds,2002.330-332:738-742.
    [97]I.Gonzalezfernandez, F.Gennari, G. Meyer.Influence of sintering parameters on formation of Mg-Co hydrides based on their thermodynamic characterization [J]. Journal of Alloys and Compounds,2008.462(1-2):119-124.
    [98]Chuan Wu, Ying Bai, Feng Wu, Xin Wang, Jin-ying Lu, Chong Qiao. Novel ternary metal boride Mg-Co-B alloys as anode materials for alkaline secondary batteries[J]. Electrochemistry Communications,2009.11(11):2173-2176.
    [99]Yao Zhang, Yoshinori Tsushio, Hirotoshi Enoki, Etsuo Akiba. The hydrogen absorption-desorption performances of Mg-Co-X ternary alloys with BCC structure[J]. Journal of Alloys and Compounds,2005.393(1-2):185-193.
    [100]M.G.Veron, F.C. Gennari, GO. Meyer. Role of MgCo compound on the sorption prop-erties of the Mg-Co milled mixtures[J]. Journal of Power Sources,2010.195(2): 546-552.
    [101]A.A.Nayeb-Hashemi, J.B.Clark. Phase Diagrams of Binary Magnesium Alloys[M]. 1988.324.
    [102]Jin Guo, Kun Yang, Liqin Xu, Yixin Liu, Kaiwen Zhou. Hydrogen storage properties of Mg76Ti12Fe12-xNx(x=0,4,8,12) alloys by mechanical alloying[J]. International Journal of Hydrogen Energy,2007.32(13):2412-2416.
    [103]T.-W. Hong, Y.-J. Kim, Synthesis and hydrogenation behavior of Mg-Ti-Ni-H systems by hydrogen-induced mechanical alloying[J]. Journal of Alloys and Compounds,2002. 330-332:584-589.
    [104]S.Rousselot,D.Guay,L.Roue.Comparative study on the structure and electrochemical hydriding properties of MgTi, Mg0.5Ni0.5Ti and MgTi0.5Ni0.5 alloys prepared by high energy ball milling[J]. Journal of Power Sources,2011.196(3):1561-1568.
    [105]Young Joon Choi, Jin Won Choi, Hong Yong Sohn, Taegong Ryu, Kyu Sup Hwang, Zhigang Zak Fang. Chemical vapor synthesis of Mg-Ti nanopowder mixture as a hydrogen storage material[J]. International Journal of Hydrogen Energy,2009.34(18): 7700-7706.
    [106]Young Joon Choi, Jun Lu, Hong Yong Sohn, Zhigang Zak Fang. Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling[J]. Journal of Power Sources,2008.180(1):491-497.
    [107]Daisuke Kyoi, Toyoto Sato, Ewa Ronnebro, Naoyuki Kitamura, Atsushi Ueda,Mikio Ito, Shigeru Katsuyama, Shigeta Hara, Dag Noreus, Tetsuo Sakai. A new ternary magnesium-titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides[J]. Journal of Alloys and Compounds, 2004.372(1-2):213-217.
    [108]S.Rousselot, D.Guay, L.Roue. Synthesis of fcc Mg-Ti-H alloys by high energy ball milling:Structure and electrochemical hydrogen storage properties[J]. Journal of Power Sources,2010.195(13):4370-4374.
    [109]M.Abdel-Hady, K. Hinoshita, M. Morinaga.General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters[J]. Scripta Materialia, 2006.55(5):477-480.
    [110]Mohamed Abdel-Hady, Hiroki Fuwa, Keita Hinoshita, Haruka Kimura, Yoshifumi Shinzato, Masahiko Morinaga. Phase stability change with Zr content in β-type Ti-Nb alloys[J]. Scripta Materialia,2007.57(11):1000-1003.
    [111]I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys-an overview[J]. Materials Science and Engineering A,1998.243(1-2):46-65.
    [112]K. Asano, E. Akiba, Direct synthesis of Mg-Ti-H FCC hydrides from MgH2 and Ti by means of ball milling[J]. Journal of Alloys and Compounds,2009.481(1-2):L8-L11.
    [113]Kohta Asano, Hirotoshi Enoki, Etsuo Akiba. Synthesis of HCP, FCC and BCC structure alloys in the Mg-Ti binary system by means of ball milling[J]. Journal of Alloys and Compounds,2009.480(2):558-563.
    [114]K.Asano, H. Enoki, E. Akiba, Synthesis of Mg-Ti FCC hydrides from Mg-Ti BCC alloys[J]. Journal of Alloys and Compounds,2009.478(1-2):117-120.
    [115]K.Asano, H. Enoki, E. Akiba, Synthesis process of Mg-Ti BCC alloys by means of ball milling[J]. Journal of Alloys and Compounds,2009.486(1-2):115-123.
    [116]K.Maweja, M. Phasha, N. vanderBerg. Microstructure and crystal structure of an equimolar Mg-Ti alloy processed by Simoloyer high-energy ball mill[J]. Powder Technology,2010.199(3):256-263.
    [117]Yao Zhang, Shu-Kai Zhang, Li-Xin Chen, Yong-Quan Lei, Qi-Dong Wang.The study on the electrochemical performance of mechanically alloyed Mg-Ti-Ni-based ternary and quaternary hydrogen storage electrode alloys[J]. International Journal of Hydrogen Energy,2001.26(8):801-806.
    [118]Frose F H, e.a., ed. powder metallurgy[M].1990.1:63.
    [119]T.Haraki,N. Inomata, H. Uchida.Hydrogen desorption kinetics of hydrides of LaNi4.5Al0.5, LaNi4.5Mn0.5 and LaNi2.5Co2.5[J]. Journal of Alloys and Compounds,1999. 293-295:407-411.
    [120]熊义富,敬文勇,罗德礼.Al效应对LaNi5-xAlx系合金储氢性能的影响[J].稀有金属材料与工程,2005.34(2):240-243
    [121]J.Bystrzycki,T.Czujko,R. A. Varin. Processing by controlled mechanical milling of nanocomposite powders Mg+X (X= Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties[J]. Journal of Alloys and Compounds,2005.404-406:507-510.
    [122]H. Ye, H. Zhang, J.X. Cheng, T.S. Huang Effect of Ni content on the structure, thermodynamic and electrochemical properties of the non-stoichiometric hydrogen storage alloys[J]. Journal of Alloys and Compounds,2000.308(1-2):p.163-171.
    [123]SungNam Kwon, SungHwan Baek, Daniel R. Mumm,Seong-Hyeon Hong, MyoungYo-up Song.Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti[J]. International Journal of Hydrogen Energy, 2008.33(17):4586-4592.
    [124]K.Aoki, H.Aoyagi, A.Memezawa,T. Masumoto.Effect of ball milling on the hydrogen absorption rate of FeTi and Mg2Ni compounds[J]. Journal of Alloys and Compounds, 1994.203:L7-L9.
    [125]J.Huot, E. Akiba, T.Takada. Mechanical alloying of Mg-Ni compounds under hydrogen and inert atmosphere [J]. Journal of Alloys and Compounds,1995.231(1-2):815-819.
    [126]A.Zaluska, L. Zaluski, J.O. Strom-Olsen, Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni[J]. Journal of Alloys and Compounds,1999.289(1-2): 197-206.
    [127]王德宝,吴玉程,王文芳,宗跃.机械合金化诱导难互溶系Cu-Cr合金固溶度扩展的研究[J].稀有金属材料与工程,2008.32(1):17-22.
    [128]Sung-Nam Kwon, Seong-Hyeon Hong, Hye-Ryoung Park,Song, Myoung-Youp. Hydrogen-storage property characterization of Mg-15wt%Ni-5wt%Fe2O3 prepared by reactive mechanical grinding[J]. International Journal of Hydrogen Energy,2010. 35(23):13055-13061.
    [129]M.Y Song. Improvement in hydrogen storage characteristics of magnesium by mechanical alloying with nickel [J]. Journal of Materials Science,1995.30(5):1343-1351.
    [130]M.Y.Song, H.R.Park. Pressure-composition isotherms in the Mg2Ni-H2 system[J]. Journal of Alloys and Compounds,1998.270(1-2):164-167.
    [131]Noreus, D. and L.G. Olsson, The structure and dynamics of hydrogen in Mg2NiH4 studied by elastic and inelastic neutron scattering [J]. The Journal of Chemical Physics, 1983.78(5):2419-2427.
    [132]齐白羽,韩选利,朱睿.Mn部分替代Ni对LaMg2Ni9系列储氢合金电化学性能的影响[J].稀士,2008.29(5):53-57.
    [133]J.Wang.Effect of addition of Mn and Co on the hydrogen storage characteristics of microcrystalline Mg[J]. Journal of Alloys and Compounds,2003.359(1-2):315-319.
    [134]R.V. Denys, I. Yu Zavaliy, V. Paul-Boncour, V.V. Berezovets, I.V. Koval'chuk, A.B. Riabov.New Mg-Mn-Ni alloys as efficient hydrogen storage materials[J]. Intermetallics,2010.18(8):1579-1585.
    [135]J Chen, P Yao, D.H Bradhurst, S.X Dou, H.K Liu Mg2Ni-based hydrogen storage alloys for metal hydride electrodes[J]. Journal of Alloys and Compounds,1999.293-295: 675-679.
    [136]张文丛,刘鲁生,王召友,王尔德Mg-3Ni-2MnO2储氢材料本征吸放氢动力学性能研究[J].稀有金属材料与工程,2007.36(2):226-230.
    [137]C. Gente, M. Oehring, R. Bormann. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying[J]. Physical Review B,1993. 48(18):13244-13252
    [138]T. Gamo, Y. Moriwaki, N. Yanagihara, T. Yamashita, T. Iwaki.Formation and properties of titanium-manganese alloy hydrides[J]. International Journal of Hydrogen Energy, 1985.10(1):39-47.
    [139]Huaiyu Shao, Kohta Asano, Hirotoshi Enoki, Etsuo Akiba. Correlation study between hydrogen absorption property and lattice structure of Mg-based BCC alloys[J]. International Journal of Hydrogen Energy,2009.34(5):2312-2318.
    [140]K.Asano, H. Enoki, and E. Akiba, Synthesis process of Mg-Ti BCC alloys by means of ball milling[J]. Journal of Alloys and Compounds,2009.486(1-2):115-123.
    [141]K.Asano,H. Enoki, E. Akiba. Synthesis of HCP, FCC and BCC structure alloys in the Mg-Ti binary system by means of ball milling[J]. Journal of Alloys and Compounds, 2009.480(2):558-563.
    [142]K.Asano,H. Enoki,E. Akiba.Synthesis of Mg-Ti FCC hydrides from Mg-Ti BCC alloys[J]. Journal of Alloys and Compounds,2009.478(1-2):117-120.
    [143]L.-P.Ma,P.Wang,H.-M. Cheng. Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3[J]. Journal of Alloys and Compounds,2007.432(1-2): L1-L4.
    [144]L.-P.Ma, X.-D.Kang, H.-B.Dai, Y.Liang, Z.-Z.Fang, P.-J.Wang,P.Wang, H.-M.Cheng. Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2:Catalytic role of fluorine anion[J]. Acta Materialia,2009.57(7):2250-2258.
    [145]L.Xie,Y.Liu,Y.T.Wang,J.Zheng,X.G.Li. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3[J]. Acta Materialia,2007.55(13):4585-4591.
    [146]余学斌,陈金舟,吴铸,夏保佳.Cr含量对TiMn1.2-xCrxV0.25Fe0.05吸/放氢性能的影响[J].金属学报,2004.40(5):527-530.
    [147]V.Fuster. Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere[J]. Journal of Alloys and Compounds, 2009.481(1-2):673-680.
    [148]V.S,1. Z, S.F. A. Philosophical Magazine B.1982.45:137.
    [149]G.Barkhordarian,T. Klassen, R. Bormann. Fast hydrogen sorption kinetics of nanocry-stalline Mg using Nb2O5 as catalyst[J]. Scripta Materialia,2003.49(3):213-217.
    [150]Seong-Hyeon Hong,Sung Nam Kwon, Jong-Soo Bae,Myoung Youp Song. Hydrogen-storage properties of gravity cast and melt spun Mg-Ni-Nb2O5 alloys[J]. International Journal of Hydrogen Energy,2009.34(4):1944-1950.
    [151]G.Barkhordarian,T. Klassen,R. Bormann.Effect of Nb2O5 content on hydrogen reaction kinetics of Mg[J]. Journal of Alloys and Compounds,2004.364(1-2):242-246.
    [152]A. Ranjbar, M. Ismail, Z.P. Guo, X.B. Yu, H.K. Liu Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite[J]. International Journal of Hydrogen Energy,2010.35(15):7821-7826.
    [153]L.Lu等著,李译,机械合金化中的扩散[M].国内外金属加工,1999.1:24-28.
    [154]B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang. Effect of Co substitution for Ni on the structural and electrochemical properties of La2Mg(Ni1-xCox)9 (x=0.1-0.5) hydrogen storage electrode alloys[J]. Electrochimica Acta,2004.50(4):1057-1063.
    [155]T. Czujko, R.A. Varin, Ch. Chiu, Z. Wronski.Investigation of the hydrogen desorption properties of Mg+10wt.%X (X=V, Y, Zr) submicrocrystalline composites[J]. Journal of Alloys and Compounds,2006.414(1-2):240-247.
    [156]R.A.Varin, S.Li, Ch.Chiu, L.Guo, O.Morozova, T.Khomenko, Z. Wronski. Nanocrystal-line and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X=Fe, Co, Mn, B) systems[J]. Journal of Alloys and Compounds,2005.404-406:494-498.
    [157]Xiaopeng Liu, Zhuo Huang, Lijun Jiang, ShumaoWang. Thermal stabilization and hydrogen storage properties of Mg-40 wt%Ti0.28Cr0.50V0.22 composite prepared by mechanical milling[J]. International Journal of Hydrogen Energy,2007.32(8):965-968.
    [158]C. Milanese,A. Girella, S. Garroni, G. Bruni, V. Berbenni, P. Matteazzi, A. Marini. Effect of C (graphite) doping on the H2 sorption performance of the Mg-Ni storage system[J]. International Journal of Hydrogen Energy,2010.35(3):1285-1295.
    [159]Huaiyu Shao, Kohta Asano, Hirotoshi Enoki, Etsuo Akiba.Preparation and hydrogen storage properties of nanostructured Mg-Ni BCC alloys[J]. Journal of Alloys and Compounds,2009.477(1-2):301-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700