用户名: 密码: 验证码:
稀土掺杂六角晶系铁氧体材料电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的飞速发展,电磁辐射对人类的身心健康及各种电子电气设备产生了不可忽视的危害且日趋严重。因此,研制性能优良的抗EMI材料具有十分重要的意义。Co2Z型六角晶系铁氧体材料由于存在大的各向异性场,可以工作的在GHz频段。国际上主要在离子替代,配方设计,制备工艺等方面对六角晶系体氧体材料开展研究。本文采用稀土离子取代和SiO2掺杂来改善Co2Z型六角晶系铁氧体材料的特性。
     本文介绍了研究的目的和意义,以及目前所用尖晶石系铁氧体的局限,引出了Z型六角晶系铁氧体材料的巨大潜力。展示了目前国内外Co2Z型六角铁氧体的主要研究方法和研究成果。研究了六角晶系铁氧体的基本理论。系统研究了六方晶系Z型铁氧体的合成条件,结构与电磁性能。
     首先采用普通陶瓷工艺制备未掺杂时的Z型六角晶系铁氧体Ba3Co2Fe24O41,研究其制备工艺及电磁特性,烧结温度为1200℃。
     接着采用稀土元素R=La、Gd、Ho取代,制备Ba3Co2RxFe24-xO41,取代量X=0~0.3,烧结温度为1200℃。发现除La取代外,样品的性能较未稀土离子取代时有较大的改善,尤其当Gd取代量X=0.1时,样品的具有以下特点:①高磁导率;②高损耗;③高自然共振频率。
     为了进一步提高性能,可以通过改善材料的微观结构来提高磁导率。最后在保持稀土Gd取代时,添加不同质量分数的SiO2,烧结温度仍为1200℃。发现当SiO2的掺杂量为0.2wt%时,磁导率的实部与虚部都得到了提高,自然共振频率向高频移动。而掺杂SiO2对复介电常数的影响不是很明显。
With the rapid development of modern science and technology, electromagnetic radiation on human health and all kinds of electrical and electronic equipment has the increasingly serious harm.Therefore, the development of material with good performance against EMI is of great significance.Co2Z-type hexagonal ferrite materials because of the large anisotropy field,can be used in the GHz.In the international ion substitution, formulation, preparation technology are the main research on the hexagonal ferrite materials.In this paper, I used the replacement of rare earth ions and doped SiO2 to improve the properties of Co2Z-type hexagonal ferrite material.
     This paper presents a study of purpose and meaning, and the limitations of currently used spinel ferrite, leds to Z-hexagonal ferrite materials which have enormous potential and displays the main research methods and research results of Co2Z– hexaferrites at home and abroad.Study the basic theory of the hexagonal ferrite and the conditions for the synthesis, structure and electromagnetic properties.
     First, without doping the polycrystalline Ba3Co2Fe24O41 were prepared by an usual ceramic sintering method.Study the preparation and its electromagnetic characteristics, the sintering temperature was 1200℃.
     Then with the replacement of REE,R = La, Gd, Ho the Ba3Co2RxFe24-xO41 was prepared, substitution X=0~0.3, and the sintering temperature was1200℃.Found that apart from La replaced, the properties of the samples were a larger improvement than without the replacement rare-earth ions.Particularly when the Gd substitution X=0.1, the samples with the following features :①high permeability;②high attrition;③high natural resonant frequency.
     To further enhance performance, we can improve the microstructure of materials to improve the permeability rate.Finally with the Gd replacement, different content of SiO2 were dopped.Sintering temperature was still 1200℃.When the SiO2 content of the doping was 0.2wt%, the real and imaginary parts of the permeability have been improved, the natural resonant frequency shifted to high frequency.Doped SiO2 there is not obvious impact on complex permittivity.
引文
[1]龙云芳,李昌吉,詹承烈等.低强度微波和噪声对作业人员神经行为的影响.中国公共卫生,1998,14 (2):94~95
    [2]白同云,吕晓德.电磁兼容设计.北京:北京邮电大学出版社,2001:15~18
    [3] J L Norman Violette,Donald R J white,Michael F Violette.Electromagnetic Compatibility Handbook,N.Y.:Plenum Press,1987:20~25
    [4]冯则坤,李海华,何华辉.甚高频段应用的Co2Z型铁氧体材料研究.现代技术陶瓷,2002,92 (2):3~5
    [5]张有纲.磁性材料.成都:成都电讯工程学院出版社,1988:108~110
    [6] Tatsuya Nakamura , Ken-ichi Hatakeyama . Complex Permeability of Polycrystalline Hexagonal Ferrites.IEEE Transactions on magnetics,2000,36(5):1024~1031
    [7]张洪国,周济,岳振星等.Z型Ba3Co2Fe24O41软磁铁氧体性能的改善.压电与声光,1999,21 (4):277~280
    [8]刘岗,严岩,徐明等.纳米陶瓷粉体的溶胶-凝胶法制备技术.绝缘材料,2006, 39 (2):52~59
    [9]车如心,高宏,赵宏滨等.溶胶-凝胶技术的发展历史及现状.云南大学学报,2005,27 (3A):378~383
    [10] Gang Xing,Guo Baowei,Xu Jieyang,et al.Characterizationand size一dependent magnetic properties of Ba3Co2Fe24O41 nanocrystals synthesized through a sol-gel methed.J. M.Sci.,2000,35 (5):931~935
    [11]张洪国,周济,岳振星等.低温烧结Z型六角结构铁氧体研究.功能材料,1999,30 (6):613~614
    [12]张洪国,周济,岳振星等.凝胶自燃法制备低温烧结Z型铁氧体材料.功能材料,2000,31(增刊):363~364
    [13] Dong Woo Hahn,Young Ho Han.Co2Z type hexagonal ferrites prepared by sol-gelmethod.Materials Chemistry and Physics,2006,95(3):248~251
    [14]郑子樵,李红英.稀土功能材料.北京:化学工业出版社,2003:1~4
    [15]刘光华.稀土固体材料学.北京:机械工业出版社,1997:40~45
    [16] Chen Yajie,Liu Peisheng,Jin Zongming.J.Mater.Sci.lett,1995,14 (14):998
    [17] K S Rohn,K H Ryu,C H Yo.J.Mater.Sci,1995,30 (5):1245
    [18] T T Fang,H B Lin,K T Lee.J.A mer.Ceram.Soc,1988,71(5):365~368
    [19] T T Fang,J B Hwang,F S shiau.J.Mater.Sci.Lett,1992,11 (18):1217
    [20]甘树才,李红英,孟健等.溶胶-凝胶法合成稀土Z型铁氧Ba3-xLaxCo2Fe24O41与表征.中国稀土学报,2004,22 (6):751~754
    [21] Catherine Jacquiod,Denis Autissier.Rare-earth substitutions in Z-type hexaferrites. Journal of Magnetism and Magnetic Materials,1992,104(4):419~420
    [22] Sawada.H,Yamarnoto M,Kakizaki K,et al.Effects of substitution of rare-earth metal ions on the high-frequency characteristics of Co2Z ferrite.Journal of the Magnetics Society of Japan, 2003,27 (4):359~362
    [23]宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1988:150~180
    [24]都有为.磁性材料进展.物理,2000,29 (6):323~332
    [25]廖绍彬.铁磁学(下册).北京:科技出版社,2000:72~75
    [26]贾利军,张怀武,钟智勇等.功能材料与器件学报,2002,8 (4):411~414
    [27]и·κ·土鲁宾涅尔,Μ·Д·依比茨.密度计量技术.北京:机械工业出版社,1957:10~157
    [28]何华辉,邓联文.纳米磁性吸波材料研究新进展.功能材料,2005,2 (2):8~18
    [29]贾利军,张怀武,钟智勇等.Co2Z铁氧体的结构与磁性能研究.功能材料(增刊),2001,10(4):557~559
    [30]阳开新.铁氧体吸波材料及其应用.磁性材料及器件,1996,27 (3):19~23
    [31]曹江.介质材料电磁参数测量综述.宇航计测技术,1994,13 (3):30-34
    [32]景莘慧,蒋全兴.基于同轴线的传输/反射法测量射频材料的电磁参数.宇航学报,2006,26 (5):630~634
    [33]高正娟,曹茂盛,朱静.复合吸波材料等效电磁参数计算的研究进展.宇航材料工艺,2004,4 (5):12~14
    [34]吴明忠,赵振声,何华辉.层状多晶铁纤维吸波材料的等效电磁参数.磁性材料及器件,1998,29 (1):55~60
    [35]葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响.宇航材料工艺,1996,5(3):42~49
    [36]邱才明,刘述章,林为干.含强散射体的随机混合媒质的等效电磁参数.电子学报,1993,21 (6):6~13
    [37] Sihvola A H,Kong J A.Effective permittivity of dielectric mixtures.IEEE Transactions Geoscience Remote Sensing ,1988,26 (4):420~429
    [38] Lagarkov A N,Sarychev A K.Electromagnetic properties of composites containing elongated conducting inclusions.Physical Review B,1996,53(4):6318~6333
    [39] Choi H D,Shim H W,Cho K Y,et al.Electromagnetic and electromagnetic wave-absorbing properties of the SrTiO3-epoxy composite.Journal of Applied Polymer Science,1999,72 (1):75~83
    [40] Pullar R C,Appleton S G,Bhattacharya A K.The microwave properties of aligned hexagonal ferrite fibers.Journal of Materials Science Letter,1998,17(3):973~975
    [41] Sihvola A H,Alanen E.Studies of mixing formulae in the complex plane.IEEE Transactions on Geoscience and Remote Sensing,1991,29(4):679~686
    [42] Berthault A,Rousselle D,Zerah G..Journal of Magnetism and Magnetic Materials,1992,112(5):477~480
    [43] Achour M E,Malhi M E.,Miane J L,et al.Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws.Journal of applied Polymer Science,1999,73(4):969~973
    [44] H M Musal Jr.,H T Hahn,G G Bush.Validation of Mixture Equation for Dielectric-Magnetic Composite.Journal of applied physics,1988,63(3):3768
    [45]曹茂盛,高正娟,邹桂真等.超细颗粒/环氧体系电磁参量的计算及数值模拟.航空材料学报,2004,24 (3):15~20
    [46]吴明忠.介质材料和磁性材料的射频和微波电磁参数的测量方法研究[博士学位论文].上海:同济大学图书馆,2001:20~25
    [47] N Hiratsuka,H Sawada,K Kakizaki,et al.High frequency characteristics of rare-earth elements substituted Co2-Z ferrite.Journal of the Magnetics Society of Japan,2003,27 (4):359~362
    [48]郑子樵,李红英.稀土功能材料.北京:化学工业出版社,2003:2~10
    [49]刘光华.稀土固体材料学.北京:机械工业出版社,1997:51~60
    [50] T Nakamura,E Hankui.Control of high-frequency permeability in polycrystalline (Ba,Co)-Z-type hexagonal ferrite.Journal of Magnetism and Magnetic Materials, 2003,257(3):158~164
    [51]张秀成,赵振声,何华辉.微波铁氧体吸收剂复磁导率和复介电常数的温度特性研究.功能材料,1994,25 (2):169~171
    [52]张秀成,赵振声,冯则坤等.微波铁氧体吸收剂复介电常数的研究.功能材料,1995,26 (3):251~254
    [53]李红英.Z型铁氧体Ba3-xLaxFe24O41的制备及表征[硕士学位论文].长春:吉林大学图书馆,2002:77~82
    [54] Hongguo Zhang,Ji Zhou,Yongli Wang,et al.Dielectric characteristics of novel Z-type planar hexaferrite with Cu modification.Materials Letters,2002,55(6):351~355
    [55] Pham Quang Niem,Nguyen Chau,Nguyen Hoang Luong,et al.Influence of La doping on the properties of SrBa hexagonal ferrites.Physical B,2003,327(5):266~269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700