用户名: 密码: 验证码:
包头混合轻稀土催化材料的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用改进沉淀法制备了包头稀土催化剂,通过掺杂Y、Dy、Tb和Mn对该催化剂进行改性处理。用X衍射仪、激光粒度仪、比表面积测试仪、扫描电子显微镜和透射电子显微镜等手段对所制备催化剂进行了表征,并利用密度泛函的方法对催化剂掺杂前后进行了机理计算。
     通过测定催化剂的比表面积,研究了沉淀剂的浓度、稀土硝酸盐浓度、反应温度、滴加速度及搅拌速度等沉淀条件对催化剂比表面积的影响,找出了制备该催化剂的最佳工艺条件。利用DTA/TG对催化剂样品前驱体的热分解行为进行了动力学分析,结果表明其前驱体热分解反应符合D3模型,活化能为62.939 kJ·mol~(-1),指前因子A=1.184×10~3s~(-1),动力学方程为:dα/dt=1.776×10~3exp[-62.939×10~3/(RT)]·(1-α)~(2/3)[1-(1-α~(1/3)]~(-1)。
     由X射线衍射图谱看出,掺杂改性前后包头稀土催化剂基本属于立方晶系,萤石结构。通过对比表面积、粒度及透射电镜照片分析,未掺杂改性的颗粒内部分布大量空隙,随焙烧温度增加,内部空隙消失,颗粒大小有所增大,比表面积减小;掺杂Y、Dy、和Tb后粒度变小,比表面积增大,抗高温老化性能,提高,H2-TPR还原温度向低温方向移动,但掺杂Mn元素后,抗老化性能不好,催化性能改善不明显。
     依据平面波展开的第一性原理赝势法,研究了包头稀土催化剂掺杂前后的电子结构。结果表明Zr掺杂LaCePrO后在高能带中出现大量由Zr 3d和O 2p贡献的自由载流子电子,增加了Ce离子变价的几率,改善了催化环境。同时,计算了掺杂Y、Dy、Tb和Mn后的LaCePrZrO的电子结构,发现掺杂Y、Dy和Tb后可使体系内部具有更多活跃电子,增加了固溶体中Ce3+和Ce4+之间的变价几率,这样会增加该固溶体中氧负离子的流动性,改善催化环境,提高了催化性能和催化活性,但掺杂Mn却减少了体系中氧负离子的流动性,所以其还原性能没有很好改善。
In this paper, Baotou rare earth mineral catalyst was prepared by precipitation method. It doped Y, Dy, Tb and Mn for modification the catalyst of property. The catalyst property was characterized by X-ray diffraction, laser particle size analyzer, specific surface area, scanning electron microscopy and transmission electron microscopy. Catalytic mechanism was calculated by DFT methods.
     Preparation of the optimum conditions was concluded by measuring specific surface area of catalyst to study the concentration of the precipitant, the concentration of rare earth nitrate, reaction temperature and stirring speed. The DTA / TG were used to study the catalyst precursor of the thermal decomposition kinetic analysis. The results showed thermal decomposition reaction in line with the D3 model, the activation energy is 62.939 kJ·mol~(-1), pre-exponential factor A = 1.184×10~3s~(-1), kinetic equation: dα/ dt = 1.776×103exp [-62.939×10~3 / (RT)]·(1-α)~(2/3)[1 - (1-α)~(1/3)]~(-1).
     Crystal structure of Baotou rare earth catalyst is cubic crystal system, fluorite structure by measuring X-ray diffraction. Morphology of non-doped catalyst is a large number of particles within the distribution of the gap. But, when the calcination temperature increased, the internal gap disappears and particle size has increased and specific surface area decreased. Doped Y, Dy, and Tb sample have small particle size, large specific surface area, H2-TPR reduction temperature shifted to lower temperature, and anti-aging properties of high temperature better than non-doped sample.But the Mn-doped sample is not good at anti-aging properties of high temperature and can not improve the catalytic properties of catalyst obviously.
     We are based on plane wave expansion of the first principles pseudopotential method to study the before and after doping of rare-earth catalyst electronic structure. The results show that the Zr-doped high-energy band in the emergence of a large number of Zr 3d and O 2p contributions to the free carrier electronics, an increase of Ce ions of the probability of price change. At the same time, the calculation of the doped Y, Dy, Tb and Mn in LaCePrZrO of the electronic structure found that doping Y, Dy and Tb will take more active system of internal electronics, an increase of solid solution of Ce3+ and Ce4+ between the probability of price change, which will increase the solid solution in the mobility of oxygen ions to improve the catalytic environment, and improve the catalytic properties and catalytic activity, but Mn-doped system has reduced the mobility of oxygen ions, the restore performance improvement is not very good.
引文
[1] Roskill.Information Services Ltd.TheEconomics of Rare Earth and Yttrium [M].London,2004.
    [2]顾保江,龙世奇,黄小卫等.我国稀土化合物产业现状和展望[J].稀有金属,2003,27 (3):391-392.
    [3] KaparJ,FornasieroP,GrazianiM.Use of CeO2 based oxides in the three-way catalysis [J].Catal.Today,1999,50(2):285-286.
    [4] Trovarelli A,Durbin T D,Rhee S H,et al.Catalytic properties of ceria and CeO2 containing materials [J].Catal .Rev. Sci.Eng.,1996,38(2):439-441.
    [5] Kapar J,Monte R D,Fornasiero P,et al.Dependency of the oxygen storage capacity in zirconia-ceria solid solutions upon textural properties [J].TopicsinCatal.,2001,16 (1– 4):83-85.
    [6] Liu Y,Shao M,Zhang J, et al.Distributions and source apportionment of ambient volatile organic compounds in Beijing city [J].Environ. Sci .Health A,2005,40(10):1843-1845.
    [7] Hao J M,Hu J N, Fu L X,et al.Controlling vehicular emissions in Beijing during the last decade [J].Transportation Research Part A-Policy and Practice,2005,40(8):639-640.
    [8] Hung W T.Taxation on vehicle fuels:its impacts on switching to cleaner fuels [J].Energy Policy,2006,34(16):2566-2567.
    [9] Burch R,Watling T C.The difference between alkanes and alkenes in the reduction of NO by hydrocarbons over Pt catalysts under lean-burn conditions [J].Catal. Lett.,1997,43(2):19-21.
    [10] Obuchi A,Kaneko I,Oi J,et al.A practical scale evaluation of catalysts for the selective reduction of NOx with organic substances using a diesel exhaust [J].Appl. Catal.,1998,13(15):37-40.
    [11] Meunier F C,Breen J P,Zuzaniuk V,et al.Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts [J].Catal..1999,187(2):493-495.
    [12] Hickey J N,Fornasiero P,Kaspar J,et al.Improvement of SO x-resistance of silver lean-DeNOx catalysts by supporting on CeO2-containing zirconia Catal [J].2002,209 (4):271-273.
    [13] Takahashi N,Shinjoh H,Iijima T,et al.The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst [J].Catal. Today,1996,27(3):63-65.
    [14] Matsumoto S.Recent advances in automobile exhaust catalysts [J].Catal. Today, 2004,90(4):183-184.
    [15] Heck R M,Farrauto R J.Automobile exhaust catalysts [J].Appl. Catal.,2001,22(1):443-445.
    [16] Lafyatis D S,Ansell G P,Bennett S C,et al.Ambient temperature light-off for automobile emission control [J].Appl.Catal.,1998,15(18):123-133.
    [17] Nishihata Y,Mizuki J,Akao T,et al.Self-regeneration of a Pd-perovskite catalyst for automotive emissions control [J].Nature,2002,4(18):64-167.
    [18] Shelef M, McCabe R W.Twenty-five years after introduction of automotive catalysts:what next [J].Catal.Today,2000,6(2):35-36.
    [19] Wu X,Weng D.Development of auto exhaust catalysts and associated application of rare earths in China [J].J. Rare Earths,2004,22(6):837-838.
    [20] Kapar J,Monte R D,Fornasiero P,et al.Dependency of the oxygen storage capacity in zirconia-ceria solid solutions upon textural properties [J].TopicsinCatal.,2001,16 (1– 4): 83-85.
    [21]何洪,戴洪兴.Ce0.6Zr0.35Y0.05O2和Pr0.6Zr0.35Y0.05O2催化剂表面上CO氧化和18O-16O交换反应的研究[J].中国稀土学报,2004,22 (4):547-549.
    [22]毛小波,陈英旭,叶曾.铈锆比对低贵金属Pt + Rh/Ce0.3+xZr0.6-xY0.1O1.95+Al2O3三效催化性能的影响[J].化学学报,2007,65(4):300-305.
    [23]毛小波,楼莉萍,陈英旭等.铈锆比对Ce0.3+xZr0.6-xY0.1O1.95系列储氧材料性能的影响[J].2007,28(3):561-563.
    [24]蒋晓原,陆峥,周仁贤.高比表面积Ce-Zr-O复合氧化物的制备与表征[J].浙江大学学报(理学版), 2002,29(4):442-443.
    [25]胡玉才等.新一代三效催化剂的关键材料─CexZr1-xO2固溶体研究进展[J].环境科学与技术,2002,25(4):43-44.
    [26]王敏,胡玉才,冯长根.高热稳定高比表面积低铈型铈锆钇储氧材料的制备及其性能研究[J].高等学校化学学报,2006,27(5):944-946.
    [27]李凯,周卫华,王学中.CeO2基氧化物储氧材料研究制备储氧性能研究[J].中国稀土学报,2004,22(1):81-84.
    [28] Bonamartini Corradi A , Bondioli F , Ferrari A M . Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method [J].Materials Research Bulletin,2006,41(1):38-44.
    [29]杨志柏,林培琰,汪文栋.以Nd改性CeO2-ZrO2固溶体助剂的研究[J].催化学报,2001,22(4):365-368.
    [30]胡玉才,冯长根等.新型储氧材料Ce0.6Tb0.1Zr0.3O2在三效催化剂中的应用研究[J].现代化工,2003,23(4):174-175.
    [31] MinshouZhao,XinjianZhu,GuangyiCao.Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3(RE=Ce,Dy)hydrogen storage electrode alloys [J].International Journal of Hydrogen Energy,2007,23(7):1-2.
    [32]冯长根,樊国栋,刘霞.铽改性铈锆固溶体[J].应用化学,2005,22(7):703-707.
    [33]樊国栋,冯长根,张昭.铽掺杂铈锆固溶体的合成及结构表征[J].功能材料,2007,5(38):769-770.
    [34]王振华,石秋杰等.稀土改性铈锆固溶体的制备及表征[J].景德镇高专学报2006,21 (4):46-47.
    [35]侯文华,徐林,邱金恒.采用不同方法制备CeO2超细粒子[J].南京大学学报,1999,35(4):486-490.
    [36]张燕红,邱向东,赵谢群.超细颗粒的制备[J].稀有金属,1997,21(6):451-457.
    [37] Chu X,Chung W,Schmidt L D.Sintering of sol-gel prepare submicrometer particles studied by transmission electron microscopy [J].Journal America Ceramic Society,1993,76(8):2115-2118.
    [38] Kuribayashi K,Uchikawa R,Akahashi K.Preparation of cerium dioxide thin films via sol-gel process and their characteristics electricalbuffer layers [J].Journal Ceramic Society,1999,107(3):275-277.
    [39]董相廷,洪广言.溶胶-凝胶法合成二氧化铈纳米晶[J].长春理工大学学报,2002,25(2):43-46.
    [40] Matijievic E,Hsu M P.Preparation and properties of mondispersed colloidal particles of lanthanid compounds [J].Colloid & Interface Science,1987,118(2):506-523.
    [41] Chen P L,Chen L W.Reactive cerium oxide powders by the homogeneous precipitation method [J].Journal America Ceramic Society,1993,76:1577-1583.
    [42] Tsaii,Ming Shyong.Formation of nanocrystalline cerium oxide and crystal growth [J].Journal of Crystal Growth,2005,274(3):632-637.
    [43] Chen Hueying,Chang Hungyi.Synthesis of nanocrystalline cerium oxide particles by the precipitation method [J].Ceramics International,2005,31(6):795-802.
    [44] Briois V.Formation of solid particles by hycholysis of cerium(IV) sulphate [J].Material Science,1993,28:5019-5031.
    [45] Hirano,Masanori,Kato,Hydrothermal synthesis of nanocrystalline cerium(IV) oxide powders [J].Journal of the American Ceramic Society,1999,82(3):786-788.
    [46] Masui T,Hirai H,Imanaka N,et al.Synthesis of cerium oxide nanoparticles by hydrothermal crystalline with citric acid [J].Material Science,2002,21:489-493.
    [47] Bondioli F,Ferrari A M.Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route [J].Journal of Materials Chemistry,2005,15(10):1061-1066.
    [48] Kawi S,Tang Y P,Hidajat K.Synthesis and characterization of nanoscale CeO2 catalyst for deNOx [J] . Journal of Metastable and Nanocrystalline Materials,2005,23:95-98.
    [49] Bonamartini Corradi A , Bondioli F , Ferrari A M . Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method [J].Materials Research Bulletin,2006,41(1):38-44.
    [50] Zhang J,Ju X,Wu Z Y,et al.Structural characteristics of cerium oxide nanocrystals prepared by the microemulison method [J].Chemical Material,2001,13:4192-4197.
    [51]石硕,鲁润华,汪汉卿.W/O微乳液中超细CeO2粒子的制备[J].化学通报,1998,(12):51-53.
    [52]徐宏,刘剑洪.纳米氧化铈的制备及其催化性能研究[J].深圳大学学报(理工版),2002,19(2):13-19.
    [53] Zhou Youchum,Phillips R J,Switier J A.Electrochemical synthesis and sintering of nanocrystalline certium oxide powders [J].Journal America Ceramic Society,1995,78(4) :981-985.
    [54]潘湛昌,杨文霞,张环华.纳米二氧化铈的电化学制备与表征[J].化工新型材料,2004,32(10):32-36.
    [55]张丽娟,王国良.氧化铈纳米微粒的制备及其在金属钒钝化中的应用[J].化学研究,2000,21(4):24-27.
    [56]董相廷,刘桂霞.透明纳米CeO2的合成与表征[J].中国稀土学报,2002,20(2):122-125.
    [57] Fabris S,Gironcoli S,Baroni S,et al.Taming multiple valency with density functionals:A case study of defective ceria [J].Phys Rev. B.,2005,71(41):102-105.
    [58] Guillou N , Nistor L C , Fuess H , et al . Microstructural studies of nanocrysalline CeO2 produced by gas condensation [J] . Nanostructure Materials,1997,8(5):545-557.
    [59] Fabris S,Vicario G,Balducci G,et al.Electronic and atomistic structures of clean and reduced ceria surfaces [J].Phys.Chem.B.,2005,10(9):860-870.
    [60] Skorodumova NV,Simak S I,Lundqvist B I,et al.Quantum origin of the oxygen storage capability of ceria [J]. Phys. Rev. Lett.,2002,89(16):17– 19.
    [61] Consa J C.Computer modeling o fsurfaces and defects on cerium dioxide [J].Surf.Sci.,1995,339(4):337-340.
    [62] Sayle T X T,Parker S C,Catlow C R A.The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide [J].Surf. Sci,1994,316(4):329-330.
    [63] Yang Z X,Woo T K,Baudin M,et al.Atomic and electronic structure of unreduced and reduced CeO2 surfaces:A first-principles study [J].Chem. Phys., 2004,120(16):7741-7742.
    [64] Jiang Y,Adams J B,Schilfgaarde M.Theoretical study of environmental dependence of oxygen vacancy formation in CeO2 [J].App. Phys. Lett. , 2005,87: 14-19.
    [65] Dutta G,Waghmare U V,BaidyaT,et al.Reducibility of Ce1- x Zr xO2:origin of enhanced oxygen storage capacity [J].Catal.Lett.,2006,10(8):165-166.
    [66] Esch F,Fabris S,Zhou L.Electron localization determines defect formation on ceria substrates [J].Science,2005,30(9):752-756.
    [67] Palmer M S,Neurock M,Olken M M.Periodic density functional theory study of methane activation over La2O3:activity of O2-,O-,O2- oxygen point defect,and Sr2+ doped surface sites [J].J. Am. Chem. Soc.,2002,12(4):8452-8455.
    [68] Palmer M S,Neurock M.Periodic density functional theory study of the dissociative adsorption of molecular oxygen over La2O3 [J].Phys. Chem. B.,2002, 10(6):6543-6544.
    [69] Jung C,Tsuboi H,Koyama M,et al.Different support effect of M/ZrO2 and M/CeO2 (M= Pd and Pt ) catalysts on CO adsorption:A periodic density functional study [J].Catal. Today.,2006,11(1):322-324.
    [70] Alfredsson M,Catlow C R A.A comparison between metal supported Ce-ZrO and CeO2 [J].Phys. Chem.,2002,4(3):6100-6104.
    [71] Liu Z,Jenkins S J,King D A.Origin and activity of oxidized gold in water-gas-shift catalysis [J].Phys.Rev.Lett.,2005,94(3):19-21.
    [72] P.Hohenbrg,W.Kohn,Inhomogeneous electron gas [J].Phys.Rev.,1964,136(3B):B864~B871.
    [73] W.Kohn , L.J.Sham . Self-Consistent equations including exchange and correlation effects [J].1965,140(4A):A1133~A1138.
    [74] M. Bom,K. Huang.Dynamical Theory of Crystal Lattices [M].Oxford:Oxford University Press,1954.
    [75] W. Kohn,L.J. Sham.Quantum Density Oscillations in an Inhomogeneous Electron [J].Gas. Phys. Rev.,1965,137:A1697~A1705.
    [76] H.L.Oliver,J.P.Perdew.Spin-density gradient expansion for the kinetic energy [J].Phys.Rev. A,1979,20,397~403.
    [77] A.D.Becke.Density-functional exchange-energy approximation with correct symptotic behavior [J].Phys.Rev.A,1988,38:3098~3100.
    [78] J.P.Perdew,K.Burke,M.Ernzerhof.Generalized Gradient Approximation Made Simple [J].Phys.Rev.Lett.,1996,77:3865~3868.
    [79] A.D.Becke.A new mixing of Hartree–Fock and local density-functional theories [J].Chem.Phys,1993,98(2):1372~1377.
    [80] A.D.Becke . Density-functional thermochemistry . III . The role of exact exchange [J].Chem.Phys.,1993,98(7):5648~5652.
    [81] John P.Perdew and Stefan Kurth,Accurate Density Functional with Correct Formal Properties:A Step Beyond the Generalized Gradient Approximation [J].Phys.Rev.Lett.,1999,82 (12):2544~2547.
    [82]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1987.
    [83] MA Zhengxian,HAN Yuexin,LU Chunsheng,et al.Study on mechanism and kinetics of thermal decomposition of zinc hydroxide carbonate [J].Engineering Science, 2003,22 (5):78-82.
    [84] HU Rongzu,SHI Qizhen.Thermal analysis kinetics [M].Beijing:Science Press.2001.
    [85] Zeng Q T,Cao C G,Sui Y. F.Mathematical knowledge acquisition and knowledge inheritance mechanism based on ontology [J].Microelect ronics & Computer,2003,20 (9):19-27.
    [86] Wonyong Choi,Andreas Termin, Michael R.Hoffmann.The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J].Phys.Chem.,1994,98(51):13669~13675.
    [87] Valeriy , Sukharev , Robert Kershaw . Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water.Journal of Photochemistry and Photobiology [J].Chemistry,1996,98:165~169.
    [88] W.Kohn ,L.J.Sham.Quantum Density Oscillations in an Inhomogeneous Electron Gas [J].Phys.Rev.,1965,137:A1697~A1705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700