用户名: 密码: 验证码:
海底天然气渗漏系统水合物形成分解动力学及微生物作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过美国墨西哥湾GC185区BUSH HILL海底天然气渗漏系统的地质特征分析,建立了海底渗漏天然气沉淀水合物及分解的动力学模型。对Bush HILL渗漏系统内水合物形成和分解动力学过程和控制因素的研究表明,渗漏系统的天然气来源于邻近的Jolliet油气藏,渗漏天然气中约有9%在海底沉积物中形成了水合物,单个天然气渗漏通道在~600年后将被沉淀的水合物堵塞。在渗漏系统活动的1万年中,海底沉淀了~1.1×10~9m~3的水合物天然气。渗漏系统的天然气渗漏速度是影响海底渗漏和水合物天然气化学组成的最主要控制因素。在海底天然气渗漏系统演化的早期(高速渗漏,q>~20 kg/m~2-a),海底渗漏天然气几乎具有与气源天然气一致的天然气组成、形成的水合物具有最重的天然气组成。在渗漏系统的晚期(低速渗漏,q<~0.5 kg/m~2-a),在海底附近没有水合物沉淀。介于二者之间的中期是海底水合物和自养生物群的发育阶段,海底水合物和渗漏天然气的化学组成主要受渗漏速度的控制。10年来渗漏系统的海底直接观测表明,海底水合物天然气、渗漏天然气、天然气渗漏速度在时空上是多变的,并且,过去的渗漏速度比现今要慢。在系统渗漏速度降低的演化过程中,单个通道内化学组成上不稳定的水合物将分解。如果海底水温的短期突变,水合物分解不仅在动力学上是非常快的,而且,化学组成上不稳定的水合物分解所产生的天然气必须快速移出,否则分解天然气将阻碍水合物的进一步分解。
     海底天然气渗漏系统甲烷氧化细菌特征及其产物-冷泉碳酸盐岩的微观分析表明,冷泉碳酸盐岩保存了大量的以纳米为主的细菌化石。这些化石形态和集合体结构表明可能是石化的甲烷氧化细菌和硫酸盐还原细菌。这些微生物通过生命代谢过程,使渗漏系统中的CH_4被氧化转变为CO_2,同时孔隙水中的SO_4~(2-)还原成H_2S,与Ca和Fe离子结合沉淀冷泉碳酸盐岩。南海东沙附近海底碳酸盐岩的岩石学、稳定同位素和稀土元素特征表明存在冷泉碳酸盐岩,碳酸盐岩特别负的碳同位素、及其保存的细菌化石是海底天然气渗漏活动的直接标志,可能是南海东沙附近海域水合物存在的另一个重要标志。
     对海底渗漏系统中热成因天然气水合物资源预测方法进行了研究,应用热力学预测方法对我国南海琼东南盆地、青藏高原冻土带水合物分布有利区和资源
    
    远景进行了探讨。琼东南盆地具有天然气水合物形成的地质条件,琼东南盆地
    水合物分布于水深大于约450m的海底,稳定带最大厚度约300一400m,盆地内水
    合物天然气远景为~1.65xl0‘丫。青藏高原多年冻土带水合物埋藏于~40一
    220枷,计算表明青藏高原冻土带水合物天然气资源约1 .2 x10,’一2.4 xlo,丫。
    在冻土层越厚·冻土层及冻土层之下沉积层的地温梯度越小的地区,最有利于
    水合物发育。气温季节性变化对水合物影响不大。在全球气温快速上升的背景
    下,青藏高原水合物将失稳,最终完全消失。
Duo Fu Chen (Geochemistry) Directed by Pingan Peng
    Based on the geological analyses of the gas seeping system in the Bush Hill in GC185, Gulf of Mexico, a compositional kinetic model of hydrate crystallization and dissolution from a gas stream was constructed in the Bush Hill gas seeping system. The Bush Hill seeping system is fed by reservoir gas from the nearby Jolliet field. On average ~9% of the vent gas is precipitated as hydrate in the subsurface. Total About ~1.1 X 109m3 (STP) of gas may have accumulated as hydrate in the system during the system age of 10,000 yrs. A gas seeping channelway must shift position on a -600 yr timeframe because their plumbing will plug completely with hydrate in about this time interval. The compositional differences in the vent and hydrate gases in the system are controlled mainly by gas venting rate. If venting rates are fast (gas flux q>-20 kg/m2-a) in the earlier stage of the seeping system, the vent gas has almost the same composition as the source gas, and the heaviest possible hydrates are crystallized at the surfac
    e. If venting rates are slow (gas flux q <~0.5 kg/m2-a) in the later stage, hydrate crystallization will not reach the sea floor, seep carbonate will be occurred on the sea floor. Between these extremes both the vent and hydrate gas compositions depend strongly on venting rate, and gas hydrate and seep community is developed on the sea floor of the gas seeping system. Changes in vent and hydrate gas chemistry observed at submersible visits to the Bush Hill gas seeping system suggest the variations of venting rates between different submersible visiting time and different bubble streams (locations) over the last 10 years. The chemistry of hydrate and vent gases imply that the Bush Hill system has higher vent rate in the recent than in the past. The model shows that subsurface hydrates will dissolve when the local gas mass flux decrease. Temporarily raising the seafioor temperature can cause hydrates to dissolve, the dissolution kinetics must be fast compared to the crystallization kinetics, and the dissolutio
    n gases must be so rapidly removed that
    
    
    they do not inhibit the rate of dissolution.
    The microanalyses show that bacteria fossils mostly in nanometer scale were preserved greatly in their byproduct-seep carbonates collected in the gas seeping system in GC 238, the offshore Louisiana Gulf of Mexico. These microfossils displays the same form and aggregate structure that is characteristic of archaea/sulfate reducing bacteria colonies. These bacteria collaborate to oxidize venting methane to CO2 and reduce seawater sulfate to H2S by their metabolism in the seeping system. The abundance of COi and HaS, causes the seep carbonate to be deposited. The petrology, stable isotope, and REE in the carbonates from sea floor near Dongsha in South China Sea show that some of carbonates are the seep carbonate. The strongly negative carbon isotopic value and the preservation of bacteria fossils in the carbonates, which are resemble to the seep carbonate of Gulf of Mexico and differ from marine carbonate, indicate the occurrence of gas seeping system in the nearby Dongsha area, and these seep carbonate can be
    possibly as an indicator of gas hydrate occurrence.
    Geological characteristics of Qiongdongnan basin are comparatively propitious to hydrate occurrence. The gas hydrates occur probably in the subsurface where water depth is larger than about 450 m with a maximum thickness of ~300-400m of gas hydrate stable zone. About 1.65 X 1012m3 hydrate gas is estimated in the basin. In Tibet Plateau permafrost, the gas hydrate buried from ~ 40-~ 2200m. The resource potential of hydrate gas estimated as about 1.2xlOu-2.4xl014m3. Gas hydrate is propitious to occur where frozen layer is thicker and thermal gradient is lower. Seasonal change of air temperature in Tibet Plateau does not affect gas hydrate that is buried below 30m deep. On the global warming, gas hydrate will be unstable and finally disappeared in Tibet Plateau permafrost.
引文
[1] Sloan E.D., Clathrate hydrates of natural gases(second edit). New York: Marcel Dekker. Inc, 1998, 1-628.
    [2] Kvenvolden K.A., McMenamin M A. Hydrates of natural gas: a review of their geologic occurrence. U.S. Geol.Surv.Circ, 1990, 825:11.
    [3] Harrison, W. E, Curiale J. A, Gas hydrates in sediments of holes 497 and 498A, Deep Sea Drilling Project Leg 67, Initial Reports, Deep Sea Drilling Project, 1982, 67:1-594.
    [4] Kvenvolden K. A., MacDonald T. J., Gas hydrates of the Middle America Trench, Deep Sea Drilling Project Leg 84, Initial Reports, Deep Sea Drilling Project, 1985, 84:1-682.
    [5] Kvenvolden K. A., A review of the geochemistry of methane in natural hydrate. Org. Geochem. 1995, 23(11/12):997-1008.
    [6] Buffet B. A., Clathrate hydrates,Annu. Rev.Earth Planet. Sci. 2000, 28:447-507.
    [7] Yahushev V. S., Chuvilin E. M., Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Regions Science and Technology, 2000, 31:189-197.
    [8] Grauls D., Gas hydrates: importance and applications in petroleum exploration. Marine and Petroleum Geology, 2001,18:519-523.
    [9] Paull C. K., Matsumoto R., Wallace P. J. et al., Initial Reports of the Ocean Drilling Program, 146A, College Station, Texas,1995, 1-623.
    [10] Sloan E. D., Clathrate hydrate measurements: microscopic, mesoscopic, and macroscopic. J. Chem. Thermodynamics, 2003, 35:41-53.
    [11] Kvenvolden K. A., Gas hydrate as a potential energy resource - A review of their methate content, In Howell, D. G.(ed.):The future of energy gases, USGS Professional Paper 1570,1993,555-561.
    [12] Milkov A. V., Sassen R., Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope, Mar. Geol. 2001, 179:71-83.
    [13] Milkov A. V., Sassen R.. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope, Mar. Petrol. Geol. 2003, 20:111-128.
    [14] Ruppel C., Anomalously cold temperatures observed and the base of the gas hydrate stability zone on the U. S. Atlantic passive margin. Geology, 1997, 25,
    
    699-702.
    [15] Sassen R., Sweet S. T., Milkov A. V. et al., Thermogenic vent gas and gas hydrate in the Gulf of Mexico slope: Is gas hydrate decomposition significant?. Geology, 2001, 29(2):107-110.
    [16] Bouriak S., Vanneste M., Saoutkine A., Inferred gas hydrate and clay diapers near the Storegga Slide on the southern edge of the Vφring Plateau, offshore Norway. Mar. Geol., 2000, 163:125-148.
    [17] Lerche I., Bagirov E., Guide to gas hydrate stability in various geological settings. Mar. Pet. Geol., 1998, 15:427-437.
    [18] Ginsburg G. D.,Soloviev V. A., Methane migration within the submarine gas -hydrate stability zone under deep-water conditions. Mar.Geol, 1997,137:49-57.
    [19] Milkov A. V., Sassen R., Novikova I. et al., Gas hydrates at minimum stability water depths in the Gulf of Mexico: Significance to geohazard assessment. Trans. Gulf Coast Assoc. Geol. Soc., 2000,50:217-224.
    [20] Englezos P., Bishnoi P. R., Predictions of gas hydrate formation conditions in aqueous solutions. Am. Inst. Chem. Eng. 1988, 34:1718-1721.
    [21] 姚伯初,南海北部陆缘天然气水合物初探.海洋地质与第四纪地质,1998,18(4):11—18.
    [22] Chi W. C., Reed D. L., Liu C. S. et al., Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terrestrial Atmospheric and Oceanic Sciences, 1998, 9(4):779-794.
    [23] 孟宪伟,刘保华,石学法等,冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析,沉积学报,2000,18(4):629-633.
    [24] 宋海斌,耿建华,Wang H K等,南海北部东沙海域天然气水合物的初步研究,地球物理学报,2001,44(5):687-695.
    [25] 符溪,杨木壮,文鹏飞等,南海天然气水合物地震资料处理及其特征,地质科技情报,2001,20(4):33-40.
    [26] 张光学,黄永样,祝有海等,南海天然气水合物的成矿远景,海洋地质与第四纪地质,2002,22(1):75-81.
    [27] 姚伯初,南海的天然气水合物矿藏.热带海洋学报,2001,20(2):20-28.
    [28] 陈多福,姚伯初,赵振华等,南海珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区。海洋地质与第四纪地质,2001, 21(4):73-78.
    [29] 陈多福 赵振华 姚伯初,南海琼东南盆地崖13气田天然气形成水合物的温压
    
    条件和沉积厚度计算模拟,地球化学,2001,30(6):585-591。
    [30] Jin C. S., Wang J. Y., Preliminary study on the gas hydrates stability zone in the South China Sea. Acta Geologica Sinica (english edition), 2002, 76 (4): 423-428
    [31] 卢振权,吴必豪,祝有海,南海潜在天然气水合物藏的成因及形成模式初探,矿床地质,2002,21(3):232-239.
    [32] 栾锡武,初风友,赵一阳等,我国东海及邻近海域气体水合物可能的分布范围,沉积学报,2001,19(2):315-319.
    [33] McDonnell S. L., Max M. D., Cherkis N. Z., Czarnecki M. F., Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 2000, 17:929-936
    [34] Shyu C. T., Hsu S. K., Liu C. S., Heat flows off southwest Taiwan: Measurements over mud diapirs and estimated from bottom simulating reflectors, Terrestrial Atmospheric and Oceanic Sciences,1998, 9(4): 795-812.
    [35] 龚建明.杨文达.卢振权等,东海天然气水合物的区域地质特征及可能的远景区,海洋地质动态,2001,7(7):20-23.
    [36] 祝有海,张光学,卢振权等,南海天然气水合物成矿条件与找矿前景,石油学报,2001,22(5):6-12.
    [37] 卢振权,张祖基,吴必豪,南海临震前卫星热红外增温异常原因初探,地球学报,2002,23(1):42-46.
    [38] 卢振权.龚建明.吴必豪等,东海天然气水合物的地球化学标志与找矿远景,海洋地质与第四纪地质,2003,23(3):77-81.
    [39] Zhu Y. H., Huang Y. Y., Matsumoto R., Wu B. H., Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions from site 1146, ODP Leg 184: implications for gas hydrate. In: Prell W L, Wang P, Blum P, Rea D K, Clemens S C (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results Volume 184, 2003, 1-15 (Web publication).
    [40] 徐学祖,程国栋,俞祁浩,青藏高原多年冻土区天然气水合物的研究前景和建议.地球科学进展.1999,14(2):201-204.
    [41] 黄朋,潘桂棠,王立全等,青藏高原天然气水合物资源预测,地质通报,2002,21(11):794-798.
    [42] Chen G. J., Guo T. M,. A new approach to gas hydrate _odeling. Chemical
    
    Engineering Journal, 1998, 71: (2) 145-151.
    [43] Liao J., Mei D. H., Yang J. T., Guo T. M., Prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and (electrolytes plus methanol). Industrial & Engineering Chemistry Research, 1999, 38: (4) 1700-1705.
    [44] Mei D. H., Liao J., Yang J. T., Guo T. M., Experimental and modeling studies on the hydrate formation of a methane plus nitrogen gas mixture in the presence ofaqueous electrolyte solutions. Industrial & Engineering Chemistry Research, 1996,35: (11) 4342-4347.
    [45] Sloan E. D., Subramanian S., Matthews P. N., Lederhos J.P., Khokhar A. A., Quantifying hydrate formation and kinetic inhibition. Industrial & Engineering Chemistry Research, 1998, 37: (8) 3124-3132.
    [46] Sloan E. D., Clathrate hydrate measurements: microscopic,mesoscopic, and macroscopic. J. Chem. Thermodynamics, 2003, 35:41-53.
    [47] Elgibaly A. A., Elkamel A. M., A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilibria, 1998, 152:23-42.
    [48] Avlonities, V., Varotsis, N. Modelling gas hydrate thermodynamic behavior: therothical basis and computational methods. Fluid Phase Equilibria, 1996, 123:107-130.
    [49] Bishnoi, P. R., Natarajan V., Formation and decomposition of gas hydrate. Fluid Phase Equilibria, 1996, 117:168-177.
    [50] Matthew Clarke, P. R. Bishnoi. Determination of the intrinsic rate of ethane gas hydrate decomposition. Chemical Engineering Science, 2000, 55:4869-4883.
    [51] Susan Circone, et al., Methane Hydrate Dissociation Rates at 0.1 MPa and Temperature above 272K. In Holder and Bishnoi (eds.): Gas Hydrates Challenges for the Future. Annals of the New York Academy of Sciences Volume 912. The New York Academy of Sciences, New York, New York, 2000, p.544-555.
    [52] Mori, Y. H., Estimating the thickness of hydrate Films from their lateral growth rates: application of a simplied heat transfer model. Journal of Crystal Growth, 2001, 223:206-212.
    [53] Goel, N., Wiggins, M., Shah, S., Analytical modeling of gas recovery from in situ hydrates dissociation. Journal of Petroleum Science and Engineering, 2001,
    
    29:115-127.
    [54] Sassen, R., Sweet, S. T., DeFreitas, D. A., Milkov, A.V., Exclusion of 2-methylbutane (isopetane) during crystallization of structure Ⅱ gas hydrate in sea-floor sediment, Gulf of Mexico, Organic Geochemistry, 2000, 31:1257-1262.
    [55] Sassen, R., Joye S, Sweet S.T., et al., Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope, Organic Geochemistry, 1999, 30:485-497.
    [56] Roberts, H. H., Carney, R. S., Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. Economic Geology, 1997, 92:863-879.
    [57] Roberts H. H., Aharon P., Hydrocarbon-derived carbonate buildups of the Northern Gulf-of-Mexico continental-slope - a review of submersible investigations. Geo-marine letters, 1994, 14: (2~3) 135~148.
    [58] Aharon P., Geology and biology of modem and ancient submarine hydrocarbon seeps and vents: An introduction. Geo-marine Letters, 1994, 14: (2~3) 69~73.
    [59] Rad U. V., Rosch H., Berner U., Geyh M., Marching V., Schulz H., Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism of Pakistan. Marine Geology, 1996, 136:55-77.
    [60] Cavagna S., Clari P., Martire L., The role of bacteria in the formation of cold seep carbonates, geological evidence from Monferrato (Tertiary, NW Italy). Sedimentary Geology, 1999, 126:253-270.
    [61] Stakes D. S., Orange D., Paduan J. B., Salamy K. A., Maher N., Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geology, 1999, 159:93-109.
    [62] Peckmann J., Goedert J. L., Thiel V., Michaelis W., Reitner J., A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology, 2002, 49:855-873.
    [63] Peckmann J., Reimer A., Luth U., Hansen B.T., Heinicke C., Hoefs J., Reitner J., Methane-derived carbonates and authigenie pyrite from the northwestern Black Sea. Marine Geology, 2001, 177:129-150.
    [64] Valentine D. L., Reeburgh W. S., New perspectives on anaerobic methane oxidation. Environmental Microbiology,, 2000, 2:477-484.
    [65] Orphan V.J., House C.H., Hinrichs K.U., McKeegan K.D., DeLong E.F., Methane-consuming archaea revealed by directly coupled isotopic and
    
    phylogenetic analysis. Science, 2001, 293:484-487.
    [66] Orphan V.J., House C. H., Hinrichs K.U., McKeegan K.D., DeLong E.F., Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:7663-7668.
    [67] Boetius A., Ravenschlag K., Schubert C. J., Rickert D., Widdel F., Gieseke A., Amann, R., Jrgensen, B. B., Witte, U., Pfannkuche, O., Amarinemicrobial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407:623-626.
    [68] Lanoil B., Sassen R., Duc M. T. L., Sweet S. T., Nealson K. H., Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Applied and Environmental Microbiology, 2001, 67:5143-5153.
    [69] Miles P. R., Potential distribution of methane hydrate beneath the European continental margins. Geophysical Research letters, 1995, 22(23):3179-3182.
    [70] Milkov A. V., Sassen, R., Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope. Marine and petroleum Geology, 2001,17:981-991.
    [71] Rao, Y. H., C-program for the calculation of gas hydrate stability zone thickness. Computers & Geosciences, 1999, 25:705-707.
    [72] Collett, T. S., Energy resource potential of natural gas hydrates, AAPG, 2002, 86(11):1971-1992.
    [73] 程国栋,赵林,青藏高原开发中的冻土问题.第四纪研究,2000,20(6):521-531.
    [74] 徐学祖,程国栋,俞祁浩,青藏高原多年冻土区天然气水合物的研究前景和建议.地球科学进展.1999,14(2):201-204.
    [75] 黄朋,潘桂棠,王立全,胡宁静,青藏高原天然气水合物资源预测.地质通报,2002,21(11):794-798.
    [76] Sassen R., and MacDonald I. R., Evidence of structure H hydrate, Gulf of Mexico continental slope, Organic Geochemistry, 1994, 22(6): 1029-1032.
    [77] Kvenvolden K. A., A primer on the geological occurrence of gas hydrate, in Henriet J. P., and Mienert J., ed., Gas hydrates relevance to world margin stability and climate change, The Geological Society, London, 1998, 9-30.
    [78] Sassen R., Sweet S.T., Milkov A.V., et al., Geology and geochemistry of gas hydrates, Central Gulf of Mexico continental slope, Gulf Coast Association of Geological Societies Transactions, 1999, ⅩLⅨ:462-468.
    [79] Ginsburg G. D., Soloviev V. A., Submarine gas hydrates. VNIOkeangeologia, St.
    
    Petersburg, 1998, p. 1-216.
    [80] Collett T. S., Natural-gas hydrates of the Prudhoe Bay and Kuparuk river area, North Slope, Alaska, AAPG Bulletin-American Association of Petroleum Geologists, 1993, 77(5):793-812.
    [81] Kermicutt Ⅱ M.C., Brooks J.M., Bidigare R.R., Fay R.R., Wade T.L. and MacDonald T.J., Vent type taxa in a hydrocarbon seep region on the Louisiana slope, Nature, 1985, 317:351-353.
    [82] MacDonald I. R., Guinasso N. L. Jr., Sassen R., et al., Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico, Geology, 1994, 22(8):699-702.
    [83] Booth J. S., Rowe M. M., Fischer K. M., Offshore gas hydrate sample database, U.S. Geological Survey Open-File Report, 1996, 96-272:1-17.
    [84] Sassen R., Losh S. L., Cathles Ⅲ L. M., et al, Massive vein-filling gas hydrate: Relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico, Mar. Petrol. Geol., 2001, 18:551-560.
    [85] Sassen R., Sweet S. T., Milkov A. V., et. al., Stability of thermogenic gas hydrate in the Gulf of Mexico: Constraints on models of Climate Change, in: Paull, C. K., and Dillon, W. P., ed., Natural gas hydrates: Occurrence, distribution, and detection. American Geophysical Union, Washington, DC, 2001, p.131-143.
    [86] Collett T. S., Gas hydrate resources of the US, in Gauter et al., National assessment of U.S. oil and gas resources on CD-ROM, USGS Digital Data Series 30, 1995.
    [87] Collett T. S., Kuuskraa V. A., Hydrates contain vast store of word gas resources, Oil and Gas Journal, 1998, 96(19):90-95.
    [88] Kornacki A. S., Kendrick J. W., Berry J. L., Impact of oil and gas vents and slicks on petroleum exploration in the deepwater Gulf of Mexico, Geo-Marine Letters, 1994, 14:160-169.
    [89] Wenger L. M., Goodoff L. R., Gross O., P., Harrison S. C., Hood K. C., Northern Gulf of Mexico: an integrated approach to source, maturation, and migration, in: Geological Aspects of Petroleum System. Proceedings, First Joint American Association of Petroleum Geologists/Association Mexican de Geologos Petroleos Research Conference, Mexico City, 1994.
    [90] Sassen R., MacDonald I. R., Guinasso N. L. Jr., et al., Bacterial methane
    
    oxidation in sea-floor gas hydrate: Significance to life in extreme environments, Geology, 1998, 26(9):851-854.
    [91] Sassen R., and MacDonald I. R., Hydrocarbons of experimental and natural gas hydrates, Gulf of Mexico continental slope, Organic Geochemistry, 1997, 26(3/4):289-293.
    [92] Roberts H. H., Fluid and gas expulsion on the Northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses, in Paull, C. K., and Dillon, W. P., ed., Natural gas hydrates: Occurrence, distribution, and detection, American Geophysical Union, Washington, DC, 2001, 145-161.
    [93] Brooks J.M., Cox H.B., Bryant W.R., Kennicutt Ⅱ M.C., Mann R.G. and MacDonald T.J., Association of gas hydrates and oil seepage in the Gulf of Mexico, Organic Geochemistry, 1986, 10:221-234.
    [94] Brooks J.M., Kennieutt Ⅱ, M.C., Fay R.R., MacDonald T.J. and Sassen R., Thermogenic gas hydrates in the Gulf of Mexico, Science, 1984, 225:409-411.
    [95] Kennicutt Ⅱ M.C., Brooks J.M. and Denoux G.J., Leakage of deep, reservoired petroleum to the near surface of the Gulf of Mexico continental slope, Marine Chemistry, 1988, 24:39-59.
    [96] Roberts H. H., Surficial geology of the middle and upper continental slope, northern Gulf of Mexico; the important role of episodic fluid venting, AAPG Bulletin, 1996, 80(9): 1511.
    [97] Xu W., Ruppel C., Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments, Journal of Geophysical Research, 1999, 104(B3):5081-5095.
    [98] Fu B., Aharon P., Sources of hydrocarbon-rich fluids advecting on the seafloor in the northern Gulf of Mexico, AAPG Bulletin, 1998, 82(9): 1781.
    [99] Cook D., D'Onfro P., Jollier Field thrust structure and stratigraphy, Green Canyon Block 184, offshore Louisiana, Transactions Gulf Coast Association of Geological Societies, 1991, 41:100-121.
    [100] Egeberg P. K. and Dickens G. R., Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge), Chemical Geology, 1999, 153(1-4):53-79.
    [101] Helgerud M.B., Dvorkin J., Nur A., Rock physics characterization for gas hydrate reservoirs, Elastic properties, Annals of the New York Academy of Sciences, 2000, 912:116-125.
    
    
    [102] Collett T.S., Lee M.W., Reservoir characterization of marine and permafrost associated gas hydrate accumulations with dowrthole well logs, Annals of the New York Academy of Sciences, 2000, 912:51-64.
    [103] Melnikov V, Nesterov A., Modeling of gas hydrates formation in porous media, in Second international conference on natural gas hydrates, France, 1996, p.541-548.
    [104] Clennell M. B., Henry P., Hovland M., et al., Formation of Natural gas hydrates in marine sediments: Gas hydrate growth and stability conditioned by host sediment properties, Annals New York Academy of Sciences, 2000, 912:887-896.
    [105] Clennell M. B., Hovland M., Booth J. S., et al., Formation of Natural gas hydrates in marine sediments 1: Conceptual model of gas hydrate growth conditioned by host sediment properties, Journal of Geophysical Research, 1999, 104(B10):22,985-22,003.
    [106] MacDonald I. R., Buthman D. B., Sager W. W., Peccini M. B., Guinasso N. L., Pulsed oil discharge from a mud volcano. Geology, 2000, 28:907-210.
    [107] MacDonald I. R., Leifer I., Sassen R., Stine P., Mitchell R., Guinasso N., Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, 2002, 2:95-107.
    [108] Walker N. H., Huh O. K., Rouse L. J., Jr., Warm-core eddy discovered in the Gulf of Mexico. EOS, 1993, 74:337-338.
    [109] Dickens G. R. and Quinby-Hunt M. S., Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications, J. Geophys. Res., 1997, 102:773-783.
    [110] Hyndman R. D., and Cavis E. E., A mechanism for the formation of methane hydrate and sea floor bottom simulating reflectors by vertical fluid expulsion, J. Geophys. Res., 1992, 97:7025-7041.
    [111] Rempel A. W., and Buffett B. A., Formation and accumulation of gas hydrate in porous media, J. Geophys. Res., 1997, 102:10151-10164.
    [112] Roberts H. H., Wiseman W. J., Hooper J., Humphrey G. D., Surficial gas hydrates of the Louisiana Continental slope-initial results of direct observations and in situ data collection. In: Offshore Technology Conference, 10770, Offshore Technology Conference, Houston, TX, 1999, p.259-272.
    [113] Baker A. S., Pepper D. W., Finite Elements 1-2-3, McGraw Hill, New York,
    
    1991, p.1-341.
    [114] Revil and Cathles, Fluid transport by solitary waves along growing faults: A field example from the South Eugene Island Basin, Gulf of Mexico, Earth. Planet. Sci. Lett. ,2002, 202(2):321-335.
    [115] Luo M., Wood J. R., Cathles L. M., Prediction of thermal conductivity in reservoir rocks using fabric theory, J. Appl. Geophys., 1994, 32(4), 321-334.
    [116] Macdonald I. R., Sager W. W., Peccini M. B., Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico. Ma. Geol., 2003, 198:133-158.
    [117] Carson B., Kastner M., Bartlett D., Jaeger J., Jannasch H., Weinstein Y., Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B, Mar. Geol., 2003, 198:159-180.
    [118] Kuhs W. F., Klapproth A., Gotthardt F., Techmer K., Heinrichs T., The formation of meso- and macroporous gas hydrates, Geophys. Res. Let. , 2000, 27(18):2929-2932.
    [119] Klapproth A., Goreshnik E., Staykova D., Klein H., Kuhs W. F., Structural studies of gas hydrates, Can. J. Phys., 2003, 81 (1-2):503-518.
    [120] MacDonald I. R., Guinasso N. L., Jr., Ackleson S. G., Amos J. F., Duckworth, R., Sassen R., Brooks J. M., Natural oil slicks in the Golf of Mexico visible from space. Journal of Geophysical Research (Oceans), 1993, 98 (C9): 16351-16364.
    [121] Elvert M., Suess E., Greinert J., Whiticar M. J., Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Organic Geochemistry, 2000, 31:1175-1187.
    [122] Thiel V., Peckmann J., Richnow H.H., Luth U., Reitner J., Michaelis W., Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 2001, 73:97-112.
    [123] Thiel V., Peckmann J., Seifert R., Wehrung P., Reitner J., Michaelis W., Highly isotopically depleted isoprenoids. Molecular markers for ancient methane venting. Geochimica et Cosmochimica Acta, 1999, 63:3959-3966.
    [124] Thiel V., Blumenberg M., Pape T., Seifert R., Michaelis W., Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 2003, 34:81-87.
    [125] Zhang C. L., Pancost R. D., Sassen R,, Qian Y., Macko S. A., Archaeal lipid
    
    biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry, 2003, 34:827-836.
    [126] Zhang C.L., Li Y., Wall J.D., Larsen L., Sassen R., Huang Y., Wang Y., Peacock A., White D.C., Horita J., Cole D.R., Lipid and carbon isotopic evidence of methane oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 2002, 30:239-242.
    [127] Pancost R. D., Damste J. S. S., Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chemical Geology, 2003, 195:29- 58.
    [128] Warthmann R., van Lith Y., Vasconcelos C., Mckenie J. A., Karpoff A. -M., Bacterially induced dolomite precipitation in anoxic cultire experiments. Geology, 2000, 28:1091-1094.
    [129] Wright D. T., The role of sulfate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region. Sedimentary Geology, 1999, 126:147-157.
    [130] Van Lith Y., Wathmann R., Vansconcelos C., Microbial fossilization in carbonate sediments, a results of the bacterial surface involvement in dolomite precipitation. Sedimentology, 2003, 50:237-245.
    [131] Folk R.L., SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. Journal of Sedimentary Research, 1993, 63:990-999.
    [132] Folk R. L., Nannobacteria and the precipitation of carbonate in unusual environments. Sedimentary Geology, 1999, 126:47-55.
    [133] Folk R. L., Lynch F. L., Organic matter, putative nannobacteria and the formation of ooids and hardgrounds. Sedimentology, 2001, 48:215-229.
    [134] Folk R. L., Rasbury E. T., Nanometre-scale spheroids on sands, Vulcano, Sicily, possible nannobacterial alteration. Terra Nova, 2002, 14:469-475.
    [135] Gournay J. P., Kirkland B. L., Folk R. L., Lynch F. L., Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah. Sedimentary Geology, 1999, 126:243-252.
    [136] Cisar J. O., Xu D. Q., Thompson J., Swaim W., Hu L., Kopecko D. J., An alternative interpretation of nanobacteria-induced biomineralization. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97:11511-11515.
    
    
    [137] Kirkland B. L., Lynch F. L., Rahnis M. A., Folk R. L., Molineux I. J., McLean R. J. C., Alternative origins for nannobacteria-like objects in calcite. Geology, 1999, 27:347-350.
    [138] Folk R. L., Lynch F. L., The possible role of nannobacteria (dwarf bacteria) in clay mineral diagenesis and the importance of careful sample preparation in high magnification SEM study. Journal of Sedimentary Research, 1997, 7:597-603.
    [139] 祝有海,吴必豪,卢振权,中国近海天然气水合物找矿前景.矿床地质,2001,20(2):174-180.
    [140] 何家雄,天然气水合物研究进展和南海北部勘探前景初探.海洋石油,2003,23(1):57-64.
    [141] Milkov A. V., Sassen. R., Economic geology of gas hydrate accumulations and provinces. Mar. Petrol. Geol. 2002, 19:1-11.
    [142] Qi L., Gregoire D. C., Determination of Trace Elements In 26 Chinese Geochemistry Reference Materials by Inductively Coupled Plasma Mass spectrometry. Geostandards Newsletter, 2000, 24:51-63.
    [143] McLennan S.M., Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B. R., McKay, G. A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Min. Soc. Am. Rev. Mineral, 1989, 21:169-200.
    [144] 黄保家,琼东南盆地天然气潜力及有利勘探方向.天然气工业,1999,19(1):34-40.
    [145] 黄保家,莺琼盆地天然气成因类型及成藏动力学研究.博士论文,2002,中国科学院广州地球化学研究所,1-77.
    [146] 张国华,南海西部大气区烃源潜力.天然气工业,1999,19(1):18-21.
    [147] 何家雄,冼仲猷,陈伟煌,等,莺-琼盆地生物气及生物—低成熟过渡带气特征与勘探前景.中国海上油气(地质),2002,16(1):27-32.
    [148] Holder G. D., Malone R. D., Lawson W. F., Effects of gas composition and geothermal properties on the thickness and depth of natural-gas-hydrate zone. Journal of Petroleum Technology, 1987, 1147-1152.
    [149] Handa Y. P., Effect of hydrostatic pressure and salinity on the stability of gas hydrates. J. Phys. Chem, 1990, 94:2652-2657.
    [150] Zatsepina O. Y., Buffett B. A., Phase equilibrium of gas hydrate; implications for the formation of hydrate in the deep-sea floor. Geophysical Research Letters,
    
    1997, 24(13): 1567-1570.
    [151] Bishnoi P.R., Dholabhai P.D., Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and methanol. Fluid phase equilibria,1999, 160: 821-827.
    [152] 刘雨芬,南海北部盆地天然气成藏条件及勘探前景.天然气工业,1994,14(2):21-26.
    [153] 薛万俊,霍春兰,司桂贤等,南海北部晚第四纪古气候及古海洋学,见:地质矿产部广州海洋地质调查局情报研究室:南海地质研究(4),武汉:中国地质大学出版社,1991,1-96.
    [154] 程顶胜,李永铁,雷振宇,郭祖军,王桂宏.青藏高原羌塘盆地油气生成特征.地质科学,2000,35(4):474-481.
    [155] 王岫岩,云金表,腾玉洪等,西藏羌塘盆地动力学演化与油气前景分析.石油学报,1999,20(3):38-42.
    [156] 谭富文,王剑,王小龙,杜佰伟,西藏羌塘盆地—中国油气资源战略选区的首选目标.沉积与特提斯地质,2002,22(1):16-21.
    [157] 李建华,利用卫星图像研究西藏羌塘及邻区的断裂活动性.地震地质,1998,20(3):202-207.
    [158] 丘国庆,程国栋,周幼吾,郭东信,李树德,中国冻土.北京:科学出版社,2000,1-450.
    [159] 吴青柏,施斌,刘永智,青藏公路沿线冻土与公路相互作用研究.中国科学(D),2002,32(6):514-520.
    [160] Collett, T.S., Dallimore, S., Permafrost-related natural gas hydrate. In Max, M.D. (ed.): Natural gas hydrate in oceanic and permafrost environments. The Netherlands:Kluwer Academic Publishers, 2000, 43-60.
    [161] 陈多福,张跃中,徐文新,天然气输送管线中水合物形成的边界条件.矿物岩石地球化学通报,2003,22(3):197-201.
    [162] 宋海斌,江为为,张文生,郝天珧,天然气水合物的海洋地球物理研究进展.地球物理学进展.2002,24(5):670-680.
    [163] 刘增利 李洪升 朱元林 蒲毅彬 李红艳,冻土初始与附加细观损伤的CT识别模型.冰川冻土,2002,24(5):676-680.
    [164] 汪崇鲜,淤泥质冻土的物理力学性能试验研究.煤炭科学技术,2000,28(8):9-12.
    [165] 王绍玲,林清,赵林,青康公路(国道214线)沿线的多年冻土.干旱区
    
    地理,1999,22(2):42-49。
    [166] 丁永建,叶佰生,刘时银等,青藏高原大尺度冻土水文监测研究.科学通报,2000,45(2):208-214.
    [167] 吴青柏,朱元林,刘永智,人类活动下冻土环境变化评价模型.中国科学(D),2002,32(2):141-148.
    [168] 王绍玲,几十年来青藏公路沿线多年冻土变化.干旱区地理,1993,16(1):1-18.
    [169] IPCC, Climate change 1995: Implication adaptations and mitigation of climate change. Cambridge: Cambridge University Press, 1996,1-56.
    [170] 南卓铜等,基于年平均地温的青藏高原冻土分布制图及应用.冰川冻土,2002,24(2):142-148.
    [171] 李新,程国栋,高海拔多年冻土对全球变化的响应模型.中国科学(D),1999,29(2):187-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700