用户名: 密码: 验证码:
滇西南耿马地区昌宁—孟连带盆地演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来滇西昌宁-孟连带一直是国内外地质专家、学者进行古特提斯洋构造演化研究的热点地区,通过多年的研究工作,新的发现、新的认识层出不穷,极大的提高了该区的研究。但是,对昌宁-孟连带原型沉积盆地的大地构造性质、规模和演化历史,不同的学者和专家有不同的认识和理解。尤其是对昌宁-孟连带是弧后盆地、或是保山陆块的边缘裂谷、或是古特提斯主洋盆的残迹、或是冈瓦纳大陆与欧亚大陆晚古生代时的界线,以及在滇西地区众多的俯冲-碰撞接合带墨江碰撞结合带、金沙江碰撞结合带、高黎贡山碰撞结合带和昌宁-孟连碰撞结合带中,到底哪一条代表古特提斯洋的主支位置也存在不同的认识,成为长期争议的焦点。
     论文以现代地层学理论、造山带地层学理论、板块学说理论等为指导思想,立足于研究区内所获的基础性实际资料、成果、科研成果,以昌宁-孟连带中段耿马地区弄巴剖面、大龙塘剖面、回爱剖面、牛井山剖面、干龙塘剖面和石佛洞剖面为重点突破,通过对古特提斯演化阶段地层组成中不同时代的地质体进行古生物学、地层学、沉积地质学、岩石学、岩石地球化学、同位素年代学、构造地质学等方面的研究,正确恢复研究区内古特提斯演化阶段不同构造/盆地单元的地层层序和序列,确定其在盆地中的沉积环境/背景;加强对不同时代、不同类型火山岩岩石地球化学、大地构造背景、源区特征、岩浆的起源及演化、成岩之后的变形-变质改造过程等的研究。在上述基础上探讨研究区古特提斯盆地演化过程及机制,复原古特提斯构造古地理面貌,进一步确定滇西古特提斯洋的性质、规模。
     耿马东部地区原划的上二叠统南皮河组(P2n),对其物质组成、层序、时代、沉积背景等的认识争论已久。在系统资料收集、区域地质调查的基础上,重点对耿马弄巴地区原划分的中二叠统南皮河组正层型剖面进行研究,正确厘定了该区的地层层序与序列,并采获了大量的植物、牙形石、放射虫、笔石等,取得了突破性进展,至此从根本上解决了长期以来由“南皮河组”所引发的岩石地层、年代地层等一系列争论。确定以弄巴剖面为正层型所建立的“上二叠统南皮河组(P2n)”并不存在,为一错误划分的岩石地层单位,“上二叠统南皮河组(P2n)”应该废除。该套地层可分解为泥盆系下-上统温泉组(Dw)、中-上统曼信组(Dm)、石炭系下统平掌组(C1pz)、新建石炭-二叠系光色组(CPg)等,分别代表了滇西古特提斯洋演化阶段被动大陆边缘、大洋盆地、洋岛、海山、洋壳系列,为分析和研究滇西南昌宁-孟连带古特提斯洋的时空演化格架提供了重要的地质依据。
     南皮河组正层型剖面研究结果表明:该套岩系普遍发育四种层序类型:一为代表浊流沉积的鲍马序列;二为由泥质岩与岩屑石英(杂)砂岩透镜体(层)构成的水道沉积序列;三为由薄层状砂岩与泥岩呈韵律状互层构成的浊流远端低密度流序列;四为薄层状硅质岩与硅质泥岩呈韵律状组成的基本层序,对比为泥盆系温泉组(Dw)。首次在其中获早泥盆世那高岭期-郁江期笔石Monograptus cf. yukonensis-Neomonograptus himalayensis带,早泥盆世郁江期-四排期植物Zosterophyllum yunnanicum-Drepanophycus spinaeformis组合、中泥盆世Taeniocrada sp., Psilophytopsida sp., Psilophytes sp.、晚泥盆世晚期Protopteridium cf.minutum Halle、Dimeripteris sp.、cf. Hamatophyton sp.等植物分子,可以确定其时代为D1-D3,而非前人认为的仅限于早泥盆世。代表西部被动大陆边缘的沉积,为泥盆纪继承性扩张的产物。
     在原划南皮河组大套的硅质岩中获大量晚泥盆世弗拉斯晚期Palmatolepis gigas带、晚泥盆世法门早期Palmatolepis triangularis带牙形石,确定属中-晚泥盆世曼信组(Dm)。与温泉组间以横向上的相变关系为主,而非简单的上下叠置关系。
     首次在耿马县贺派乡回爱剖面、沧源县怕秋北部曼信组中、上部的硅质岩中发现有火山岩夹层。玄武岩具枕状构造,岩石中SiO2含量47.59~51.92%,全碱alk=2.83~6.75,m/f=0.8~1.39,富铁趋势明显。在FeO/MgO-TiO2图解上,所有的点均落入洋岛玄武岩区;在TiO2-MnO-P2O5图解上,所有的点均落入洋岛碱性玄武岩区。Σ REE=121.33-223.68ppm,稀土配分模式为曲线强烈右倾的轻稀土富集型,CeN/YbN=5.94~9.25,轻稀土相对富集。LaN/SmN=1.93~2.70, GdN/YbN=2.57-3.31,轻稀土分馏较重稀土元素不明显。δEu=0.99~1.10,铕轻微正异常,地球化学性质具洋岛玄武岩(OI13)的特征;在微量元素洋中脊玄武岩(MORB)标准化图上,样品的曲线形态基本一致,总体上岩石中Rb、Ba、Th、Ta、Ti等不相容元素富集,Cr、Ni、Co等相容元素出现亏损;在Zr/Y-Zr、Zr/Nb-Zr判别图解中,所有的样品均落在富集地幔的附近,表明地幔柱的活动在晚泥盆世已形成溢流玄武岩,地幔柱活动的位置处于大陆边缘。
     曼信组硅质岩大部分岩石的Al/(A1+Fe+Mn)比值介于0.44~0.70之间,MnO/TiO2的值偏低,一般均小于0.5;硅质岩仅有很弱的Ce异常值,Ce/Ce*比值在0.8560~0.9662之间,属于大洋环境生物成因;硅质岩常量元素比值散点图解、LaN/CeN-Al2O3/(Al2O3+Fe2O3)图解、硅质岩北美页岩(NASC)标准化的REE分布模式图等,总体表现为大陆边缘型硅质岩的特征,部分样品受到热液作用的影响而表现出类似洋脊硅质岩的特征。
     研究结果表明区内中-晚泥盆世为临近大陆边缘的洋盆环境,具洋壳性质的昌宁-孟连古特提斯盆地在晚泥盆世已经形成。
     耿马弄巴地区东部出露一套火山岩-硅质岩系,其中获早石炭世牙形石Scaliognathus anchoralis带、下Gnathodus bilineatus bilineatus亚带、放射虫Albaillella paradoxa带、Albaillella cartalla组合、Latentifistula组合和中-晚二叠世放射虫Nazarovella-Ishigaum组合、Entactinia itsukaichiensis组合,新建石炭-二叠系光色组(CPg)。
     光色组火山岩主要岩石类型有橄榄玄武岩、致密状玄武岩、杏仁状玄武岩、杏仁状橄辉玢岩、苦橄岩、次橄榄辉绿岩、粒玄岩、角闪玄武岩等。在A-F-M图解上投影点位于拉斑玄武岩系列和钙碱性玄武岩系列的分界线上,显示了过渡类型玄武岩的特点;在FeO/MgO-TiO2图解、火山岩Ti-V图解上,落入洋中脊玄武岩区。岩石∑REE=35.27~41.16ppm,稀土配分曲线呈近平坦型、略向右倾,CeN/YbN=1.67~2.07,轻稀土相对富集。LaN/SmN=1.02-1.12, GdN/YbN=1.11~1.23,轻、重稀土分馏均不明显;δEu=1.12~1.32,铕轻微正异常。在洋中脊玄武岩标准化的微量元素比值蛛网图上表现出过渡类型洋中脊玄武岩的特征,K、Rb、Ba、Th、P、Ti、Sc、Cr富集,Sr、Ta、Nb、Ce、 Zr、Yb亏损,与洋中脊过渡型玄武岩和低钾拉斑玄武岩特征相似;一些微量和常量元素的地球化学构造判别图解中投影点也主要落入大洋拉斑玄武岩区或洋中脊玄武岩区及其附近。硅质岩的SiO2含量均在80%以上,MnO/TiO2的平均值为0.58, Al/(A1+Fe+Mn)的平均值约为0.48,Ce/Ce*的平均值为0.91,与已知大地构造背景的硅质岩地球化学特征对比,表明其为近大陆边缘的洋盆边缘型硅质岩。
     光色组火山岩与放射虫硅质岩共同构成洋壳残片,为古特提斯洋洋中脊岩浆活动的产物。从而进一步证实了昌宁-孟连洋确实存在由早石炭世火山岩-硅质岩组成的代表大洋中脊火山喷发-洋盆沉积系列,为古特提斯快速扩张期的产物。
     在安康、香竹林一带,见鱼塘寨组碳酸盐岩呈孤岛状整合于早石炭世平掌组洋岛火山岩之上,自下而上由石炭系平掌组洋岛玄武岩→鱼塘寨组碳酸盐塌积岩/钙质角砾岩夹具鲍马层序的浅灰紫色含砾砂岩→粉砂岩→页岩→鱼塘寨组碳酸盐岩台地沉积组成,具典型的火山岩基底加碳酸盐岩盖层的洋岛-海山型双层式结构,与现代太平洋中的众多海山以及古洋岛的地层结构相同,构成较为典型的海山层序。
     耿马县大龙塘、弄巴一带,出露一套河流相细粒岩屑石英砂岩、含砂质泥质粉砂岩、灰色薄层状泥岩、灰绿色薄-中层状含微砂粉砂质泥岩、含砂质粉砂质泥岩与灰绿色粉砂质泥岩,角度不整合于下伏泥盆系温泉组、曼信组之上。与曼信组接触界面之上见大量浅灰色泥质硅质角砾岩,局部见蜂窝状铁质层,具古风化特点。通过对大龙塘剖面几个层位泥质岩进行孢粉研究,蕨类植物孢子中,主要为无环三缝孢类,包括光面、粒面、刺面、瘤面和棒刺面三缝孢属;具环三缝孢属和单缝孢属含量较低。该套陆相地层的发现,为进一步证实滇西古特提斯洋是在晚三叠世之前封闭的提供了有力证据。
     出露于双江县牛井山-耿马县安雅-勐永一带的牛井山蛇绿混杂岩带,北与铜厂街地区的蛇绿混杂岩相接,南与孟连地区的基性、超基性岩属同一岩浆岩带。现存岩石面貌主要为斜长角闪片岩、强片理化玄武岩、绿泥片岩与少量浅灰绿色变质(中)基性火山岩、强片理化致密状玄武岩和杏仁状玄武岩、镁铁质岩等。
     按超镁铁岩类的地球化学特征可将其划分为两类;一类具有较高而稳定的MgO、较低的Al2O3、极低的CaO, m/f值为8.0-8.4,可与世界上一些典型的蛇绿岩套中变质橄榄岩进行对比。另一类被认为属超镁铁质堆晶岩,其MgO、Al2O3、CaO、ΣREE变化较大,并呈现出连续变化的趋势,岩石的m/f值为9.8~3.6。
     变质镁铁质岩石的主元素中K2O=0.09~0.76%,TiO2=0.21~2.10%,具有较为典型的洋中脊玄武岩(MORB)或洋底低钾拉斑玄武岩(LKT)的地球化学特点。岩石稀土元素配分模式可分为LREE平坦型和LREE亏损型两类,指示了其原始岩浆起源于近原始或典型的大离子元素亏损型的地幔,为典型的大洋中脊拉斑玄武岩的特征。其微量元素的分配形式类似于过渡类型的洋中脊玄武岩,同时表现出(K)、Rb、Ba、Th、(Ta)的明显富集的特征。
     据野外产状及岩石学特征,可将牛井山蛇绿混杂岩中的浅色岩类划分下述4类,(1)呈囊状、团块状散布于斜长角闪岩中的中粒黑云英云闪长岩;(2)呈韵律状夹层分布在片状斜长角闪岩、层状斜长角闪岩中的英云闪长岩、斜长花岗岩;(3)呈细脉状侵入到斜长角闪岩中的斜长花岗岩;(4)片麻状英云闪长岩、斜长花岗岩。尽管这些岩石的地球化学特征都类似于大洋斜长花岗岩,但各类岩石的具体成因可能不尽相同。
     在干龙塘剖面上对斜长角闪岩进行了锆石U-Pb法的年龄测定,获330.69~329.05Ma年龄值,应该代表了干龙塘剖面上牛井山蛇绿混杂岩(CNop)原岩的成岩年龄上限。
     总而言之,昌宁-孟连洋盆在早石炭世已经存在洋脊玄武岩、出现过洋壳。双江县石炭纪牛井山蛇绿混杂岩的岩石类型及其地球化学特征可与世界上一些典型地区的蛇绿岩进行对比。这一发现提供了一个令人信服的岩石学证据,它表明了昌宁-孟连构造带确实是古特提斯洋的残迹。
     综上所述,昌宁-孟连带古特提斯演化阶段,耿马地区保存了滇西乃至全球较为完整的古特提斯洋盆的沉积、岩石记录,它由一系列相对稳定的地块、被动大陆边缘、洋岛、海山碳酸盐台地、洋盆、洋中脊等组成,具多岛洋格局,代表了滇西古特提斯带的主洋盆。牛井山-干龙塘蛇绿构造混杂带为滇西古特提斯洋闭合时形成的府冲带,滇西古特提斯洋的封闭时限为三叠纪。
     滇西昌宁-孟连带中段耿马地区古特提斯洋盆由西向东划分为:耿马被动陆缘带、中部洋盆带和东部大陆边缘带三个构造环境或三个亚带。耿马被动陆缘带由泥盆系温泉组、曼信组、下石炭统平掌组、石炭-二叠系鱼塘寨组、中二叠统大名山组和上二叠统石佛洞组组成;包含了滇西古特提斯洋较为完整的被动大陆边缘-大洋盆地沉积系列、海山系列及其石炭-二叠纪碳酸盐台地沉积系列。洋盆带的石炭系中基性火山岩由平掌组、石炭-二叠系光色组和牛井山蛇绿混杂岩组成,属于以石炭纪为主的洋脊、准洋脊型拉斑玄武岩-洋岛火山岩系列、洋岛型碱性玄武岩系列和大洋板内拉斑玄武岩-碱性玄武岩系列,为古特提斯洋西缘陆洋过渡壳幔源岩浆活动产物。东部大陆边缘带主要由泥盆-石炭系南段组、二叠系拉巴组组成,代表临沧地体被动大陆边缘的沉积。
     昌宁-孟连盆地古特提斯洋是在原特提斯滇缅泰马微大陆东部的被动边缘之上扩张成盆的,具继承性扩张的特点。它的演化基本遵循威尔逊旋回,主要经历了泥盆系继承性扩张阶段(D)、晚泥盆世-早石炭世快速扩张及洋壳形成阶段(D3-C1)、晚石炭世-晚二叠世主洋盆俯冲消减阶段(C2-P3)晚二叠世-早三叠世残余洋盆阶段(P2-T1)及中-晚三叠世碰撞造山阶段(T2-T3)等五个阶段。
Changning-Menglian zone always is hot area, where oversea and Chinese geologists study tectonic evolution of Paleo-Tethys ocean. By the long term researching, study degree is evidently advanced because of new discovery and ideal is continuously brought forward. But there are many different ideals and comprehensions among different scholars and experts about tectonic feature, scale and evaluative history of sedimentary prototype basin in Changning-Menglian zone. In particular the Changning-Menglian zone is the back-arc basins, or is the margin rift of the Baoshan landmass, or is the vestigium of the the Paleo-Tehys ocean basin, or is the boundary between the Gondwana and the Eurasia Continent in ate Paleozoic Era, as well as the multitudinous dive-collision juncture zone in west Yunnan-the Mojiang collision juncture zone, the Jinsha River collides unifies the belt, the Gaoligongshan collision juncture zone and Changning-Menglian collision juncture zone, which represented the main branches of the Paleo-Tehys ocean also to have the different understanding has been a controversial focus.
     Study of holostratotype section of the Nanpihe Group indicates that Four types of sedimentary sequence can be recognized:Frist is the Bouma sequence representing turdidity current deposit; Second is channel depositional sequence which is consists of mudstone and lens-shaped lithic quartz sandstone or gray wake; Third is low density turiblity sequence composed of flaggy sandstone and mudstone; Fourth sequence is a rhythemic interbed composed of thin-bedded siliceous rock and siliceous mudstone. First time, the stratum collected graptolite Monograptus cf. yukonensis-Neomonograptus himalayensis zone of the Lower Devonia Nagaolingian-Yujiangian Stages, plant Zosterophyllum yunnanicum-Drepanophycus spinaeformis assemblages of the Lower Devonia Yujiangian-Shipaian Stages, Taeniocrada sp., Psilophytopsida sp., Psilophytes sp. Of the Middle Devonia and Protopteridium cf. minutum Halle、Dimeripteris sp.、cf. Hamatophyton sp. Upper Devonia and so on, which indicates that the age being Lower-Upper Devonian and should not be restricted to Lower Devonia.According to lithological association, sedimentary enviroment and regional stratigraphic correlation, it ought to be compared with the Devonian Wenquan Formation, which is deposisted on the passive continental margin, and it is the outcome of the Devonian successively spreading.
     Plenty of conodontes were discovered in siliceous rock of the Nanpi river Formation, which are Palmatolepis gigas zone of the Upper Devonian Frasnian and Palmatolepis triangularis zone of the Upper Devonian Famennian, it determined that is Middle-Upper Devonian Manxin Formation (Dm). Relations with the Wenquan Formation is phase change in horizontal direction, but non-simple about up-down superposition relations.
     For the first time on the Huiai section at Hepai Gengma and northern Cangyuan Country Paqiu, in the middle and upside silicon rock has discoved volcanic rock band in the Manxin Formation. The basalt has pillow structure, and the SiO2content47.59-51.92%, entire alkali=2.83~6.75, m/f=0.8~1.39, the rich iron (Fe) tendency is obvious. In diagram of FeO/MgO-TiO2, all plotted points fall the ocean island basalt area; In diagram of TiO2-MnO-P2O5, all plotted points fall the ocean island alkalinity island basalt area.EE=121.33-223.68ppm, the REE distribution pattern is characterized by rightinclining type with enrichment of light lanthanon; CeN/YbN=5.94~9.25, which is enrichment of light lanthanon, LaN/SmN=1.93~2.70, GdN/YbN=2.57-3.31, comparison between fractionation of light lanthanon and heavy lanthanon is not obvious.8Eu=0.99-1.10, with positive Eu anomaly, the geochemistry nature is characterized by ocean island basalt (OIB); In standardization chart diagram of trace element mid ocean ridge basalt (MORB), sample curve shape basic consistent, as a whole, incompatible elements Rb, Ba, Th, Ta, Ti and so on are enriched in the rock, compatible elements Cr, Ni, Co and so on are negative anomaly; In didgram of Zr/Y-Zr and Zr/Nb-Zr, all samples fall in enriched mantle neighbor, it indicated that activity of mantle plume has formed the overflow basalt in the Upper Devonian, the position for mantle plume activity is in the continental margin.
     On the Manxin Formation Silicon rock, majority of rock Al/(A1+Fe+Mn) ratio is between0.44and0.70, the MnO/TiO2value is low, which is less than0.5; The silicon rock has very weak abnormal Ce value, the Ce/Ce*ratio between0.8560and0.9662, belongs to biology origin of the ocean environment; In diagram of silicon rock major elements ratio plot, LaN/CeN-Al2O3/(Al2O3+Fe2O3), standardized REE distribution pattern for the Silicon rock and North America Shale (NASC) and so on, the overall is characterized by the continental margin silicon rock, the partial samples is characterized by similar with oceanic ridge silicon rock because of influence to hydrothermalism.
     Researching result indicates that study area was located in an oceanic basin environment adjacent to the continental margin on the Middle-Upper Devonian, and that the Changning-Menglian Paleo-Tethys oceanic basin with features of ocean crust had already formed on the Upper Devonian.
     In the Gengma, eastern Nongba area, it outcropped a set of volcanic rock-silicon rock series, in which attains Lower Carboniferous conodont Scaliognathus anchoralis zone, Lower Gnathodus bilineatus bilineatus zone, radiolarian Albaillella paradoxa zone, Albaillella cartalla assemblage, Latentifistula assemblage and Middle-Upper Permian radiolarian Nazarovella-Ishigaum assemblage, Entactinia itsukaichiensis assemblage, and newly built Carboniferous-Permian Guangse Formation.(CPg)
     Main rock type for Guangse Formation volcanic rock has olivine basalt, massive basalt, amygdaloidal basalt, amygdaloidal olivine-pyroxene porphyrite, picrite, olivine diabase, dolerite, amphibole basalt and so on. In diagram of A-F-M, plotted points fall the boundary between tholeiite series and calc-alkaline basalt series, which is characterized by transitional-type basalt. In diagram of FeO/MgO-TiO2, volcanic rock Ti-V, plotted points falls in the mid-ocean ridge basalt area.ΕREE=35.27~41.16ppm, and the REE partition curve is of even type with inclines toward the right, CeN/YbN=1-67~2.07, which is enrichment of light lanthanon, LaN/SmN=1.02-1.12, GdN/YbN=1.11~1.23, fractionation of light lanthanon and heavy lanthanon is not obvious; δEu=1.12~1.32, has positive Eu anomaly. On the web diagram of trace element ratio with midocean ridge basalt standardization, which is characterized by transitional-type midocean ridge basalt, K, Rb, Ba, Th, P, Ti, Sc, Cr enrichment and with Sr, Ta, Nb, Ce, Zr, Yb deficiency, is similar to transitional-type midocean ridge basalt and low potassium tholeiite. In diagram of geochemical-tectonic discriminition of trace and major elements, the plotted points falls the oceanic tholeiite area or the midocean ridge basalt area and neighbor. The silicon rock SiO2content above80%, MnO/TiO2mean value is0.58, Al/(A1+Fe+Mn) mean valuers approximately0.48, Ce/Ce*mean value is0.91, which contrast with the geochemical characteristics for known geotectonics background silicon rock, indicates that is silicon rock near continental margin ocean basin type.
     The ocean crust slices is composed of the Guangse Formation volcanic rock and radiolarian silicon, which is the Paleo-Tethys median ridge magmatic activity. Thus, further confirmed that the Changning-Menglian zone has truly existed representative the ocean median ridge volcanic eruption-ocean basin deposition series who is composed of the early Carboniferous volcanic rock-silicon rock, the result is Paleo-Tethys to expand fast.
     In Ankang and Xiang zhulin, we see the Yutangzhai Formation carbonate rocks to assume the isolated island shape conformity above the early Carboniferous Pingzhang Formation ocean island volcanic rock, from bottom to top, which is composed of the Carboniferous series, Pingzhang Formation ocean island basalt, Yutangzhai Formation carbonate collapse breccia/calcareous breccia, bed Baoma sequence which is consists of light gray purple gravel sandstone-siltstone-shale, and Yu tangzhai Formation carbonate platform deposition, have typical two-layer structure with oceanic island-type basement of volcanic rock and cap of carbonate rock, is similar with the modern Pacific Ocean's multitudinous seamounts as well as the ancient ocean island stratal configuration and make up of typical seamount sequence.
     In the Gengma county Dalongtang, Nongba area, outcrop a set of fluvial facies which is composed of fine grain lithic quartz sandstone, muddy siltstone, greyish-green thin-bedded mudstone, greyish-green thin-medium bedded silty mudstone with micro-grained sand and sand, and greyish-green silty mudstone, it is in contact with underlying Devonian Wenquan Formation and Manxin Formation by unconformability of dip. Above the contact surface with the Manxin Formation can see the massive french grey argillaceous silicon breccia and partially honeycomb-shaped ferruginous beded, which is characterized by ancient weathering crust. Through the palynological studies of several position mudstone in Dalongtang section, sporopollen assemblage, pteridophytes spore content goes far beyond the gymnosperm pollen content. It mainly is acyclic trilete spores in pteridophytes spore。
     Carboniferous Nujinshan ophiolite melange is situated from Niujinshan to Mengyong area, where is dominated by Shuangjiang County and Gengma County respectively, southwestern Yunnan Province. The ophiolite melange can be connected with Tongchangjie ophiolite melange further north in Mengyong area. Major petrographic category are amphibolite, schistous amphibolite, layered amphibolite, greenschist. Subordinate are plagioclase granite dike, layered tonalite, tonalitic conglomeration dispersed in amphibolite, ultramafic rock and metabasalt etc..
     Ultramafic rock can be divided two kinds according to it's geochemical characteristics. One kind is characterized by high and steady MgO, lower Al2O3and trace CaO, m/f=8.0-8.4, it can be correlated with metaperidotite from some representative ophiolite melange in the world.. Other kind can be considered as ultramafic cumulate, which wide ranged and continuously varied in MgO, Al2O3, CaO and ΕREE, m/f=9.8-3.6.
     Major elements of metamorphic mafite, characterized by K2O=0.09-0.76%, Ti2O=0.21-2.1%, show some geochemical characteristics of typical mid-ocean ridge basalt (MORB) or low kalium tholeiite (LKT) from ocean bottom. Two REE distributed pattern, LREE-depleted and flat, which display a specific character of typical mid-ocean ridge tholeiite, indicate that primary magma may be derived from near primary or a typical large ion lithophile element-depleted mantle. Trace elements distributed pattern is similar to transitional mid-ocean ridge basalt. Simultaneously, the pattern, which displayed a clear (K、R、Ba、Th、(Th)-enriched.
     According to occurrence and petrographic data from field, the leucocratic rock in the ophiolite melange can be divided into four kinds as follows:(1)medium-grained biotite tonalite, dispersed in amphibolite as conglomeration,(2)fine-grained layered tonalite and plagioclase granite, which is rhythmic interbed scattered in schistous and layered amphibolite,(3)plagioclase granite dike, intruding in amphibolite.(4)gneissose tonalite and plagioclase granite. Respective lithogenesis may be different, notwithstanding their geochemical characteristics are similar to ocean plagiogranite in whole.
     This paper studies the zircon Uranium-Lead dating method of amphibolite in the Ganglongtang section, an emplacement age of330.69-329.05Ma was obtained which ought to interpreted as the upper limit of diagenetic age of the Nujinshan ophiolite melange(CNop).
     All in all, it already exsisted petrographic category in Carboniferous Nujinshan ophiolite melange, their petrographic category and geochemical characteristics can be correlated with representative ophiolite melange in the world.This discovery offered a convincing evidence from petrology, which testified that Changning-Mengliang zone was a vestige of Paleozoic Tethys Sea.
     To sum up, Changning-Menglian zone Gengma area have comparatively entire preserved the Paleo-Tethys ocean basin deposition and rock records notes in west Yunnan even the whole world, it is composed of a series of relatively stable blocks, passive continental margins, ocean islands, seamount carbonas platforms, ocean basins, midocean ridge etc., which is characterized by Tethyan archipelagic ocean model, and has represented the Paleo-Tethyan Main Ocean of the western Yunnan. Niujingshan ophiolite tectonic melange is a subduction zone due to Paleozoic Tethys Ocean closed in west Yunnan Province, and it closed time is Triassic.
     In Gengma area, Paleo-Tethys Oceanic basin can be divided into western Gengma passive continental margin, middle oceanic basin and eastern continental margin in middle segment of Changning-Menglian basin. Gengma passive continental margin is consists of Lower-Upper Devonian Wengquan Formation, Middle-Upper Devonian Manxin F., Lower Carboniferous Pingzhang F., Carboniferous-Permian Yutangzhai F., Middle Permian damingshang F. and Upper Permian Shifudong F.; It is passive continental margin-Oceanic Basin sedimentary sequence, Seamount sequence and Carboniferous-Permian carbonate platform sedimentary sequence. In the ocean basin belt carboniferous series the basic volcanic rock by the Pingzhang Formation, the Carboniferous-Permian is the Guangse Formation and Niujingshan ophiolite tectonic melange is composed, belongs by the carbon period primarily oceanic ridge, the accurate oceanic ridge pulls the spot basalt-ocean island volcanic rock series, the ocean island alakli-basalt series and the ocean board internal bracing spot basalt-alakli-basalt series, for raises the Paleo-Tethys antiquely the reason land ocean transition shell curtain source magmatic activity product. The eastern edge of mainland China are mainly from the Devonian-Carboniferous Nanduan Formation, Permian Laba Formation, and representatives of Lincang to the passive continental margin sediments.
     Author thinks that Paleo-Tethys Ocean successively evolved based on the Proto-Tethys of the Yunnan-Burma-Tailand-Malaysia continental plates in the Changning-Menglian basin, and the basin evolution in this area is marked by inheritance expansed nature. The evolution of Paleo-Tethys Ocean accord with Wilson cycle in west Yunnan Province, it experienced Devonian successively spreading stage(D), Upper Devonian-Lower Carboniferous rapidly spreading and forming oceanic crust stage(D3-C1), Upper Carboniferous-Upper Permian oceanic crust subduction-consuming stage(C2-P3), Upper Permian-Lower Triassic oceanic crust subduction stage(P3-T1)and Middle-Upper Triassic collision-orogenesis stage(T2-T3).
引文
[1]Argand, E., La Tectonique ed I Asia. Comoptes Renfus ⅩⅢ Session, Congres Geol. Intern.1924;
    [2]Bullard, E. C. et al., The fit of the continents around the Atlantic. Royal Phil. Soc. London Trans., Ser. A, 1965,258(1088):41-51;
    [3]Sengor, A. M. C.; Mid-Mesozoic closure of Permo-Triassic Tethys snd its implications. Nature,1979,279: 590-593;
    [4]Sengor, A. M. C. and Hsu, K. J.; The Cimmerides of eastern Asia history of the eastern end of Paleo-Tethys, Mem. Soc. Geol. Fr. N. S.,1984,147:139-167;
    [5]Sun Shu, Li Jiliang, Lin Jinglu,Wang Qingcheng et al; Inosinides in China and the Consumption of Eastern Paleotethys in:Tectonics and Mountain Building,Academic Press Limited,1991,363-384
    [6]D.贝努利,M.莱穆耶;特提斯的形成及其早期演化。1980;26届国际会议专辑(5):《Geology of the Alpine Chains born of the Tethys
    [7]黄汲清,陈炳蔚。中国及邻区特提斯海的演化。北京:地质出版社,1987。1-78;
    [8]李兴振等。西南三江地区特提斯构造演化与成矿。地质出版社,1999年。
    [9]钟大赉,丁林。从三江及邻区特提斯带演化讨论冈瓦纳大陆离散与亚洲大陆的增生。见:IGCP第321项中国工作组编,亚洲的增生。北京:地震出版社,1993。5-8;
    [10]刘增乾,李兴振,叶庆同等。三江地区构造岩浆带的划分与矿产分布规律。北京:地质出版社,1993。1-246;
    [111潘桂棠等。东特提断地质构造形成演化。北京:科学出版社,1996。
    [12]潘桂棠,陈智樑,李兴振等。东特提断多岛弧—盆系统演化模式。岩相古地理,1996,16(2):53-65;
    [13]金鹤生。东特提斯时的演化。湘潭矿业学院学报,1991,6(2):109-115;
    [14]莫宣学。我国西部造山带火山岩研究中的一些新问题。见:中国地质大学岩石教研室编,岩石学论文集。武汉:中国地质大学出版社,1992,47-54;
    [15]莫宣学,路风香,沈上越等。三江特提斯火山作用与成矿。北京:地质出版社,1993。1-67;
    [16]云南省地质矿产局。云南省区域地质志。北京:地质出版社,1990。1-178:
    [17]杨嘉文。对云县铜厂街蛇绿岩的探讨。云南地质,1982,1(1):59-71;
    [18]张旗、李达周、张魁武。云南省云县铜厂街蛇绿混杂岩的初步研究。岩石学报,1985,1(3):1-14;
    [19]方宗杰,周志澄,林敏基。从地层学的角度探讨昌宁—孟连缝合带的若干问题。地层学杂志,1992,16(4):292-303:
    [20]朱勤文,张双全。滇西南曼信夭折堆晶岩的确认及其意义。地质科技情报,1999,18(2):1-3;
    [21]钟大赉等。滇川西部古特提斯造山带。北京:科技出版社,1998。
    [22]吴根耀等。滇西昌宁—孟连地区依柳组、平掌组地层初议。地层学杂志,1993,17(4):302-310;
    [23]刘本培,方念桥,冯庆来等。滇西古特提斯多岛洋构造古地理格局。见:地质矿产部成都地质矿产研究所主编,中国西部特提斯构造演化及成矿作用学术讨论会文集。成都:电子科技大学出版社,1991,212:
    [24]刘本培,冯庆来,方念桥等。滇西昌宁—孟连和澜沧江带带古特提斯多岛洋构造演化。地球科学,1993,18(5):529-539:
    [25]刘本培,冯庆来等。滇西古特提斯多岛洋的结构及其南北延伸。地学前缘,2002,9(3):161-171;
    [26]张旗等。横断山区镁铁—超镁铁岩。北京:科学出版社,1992。
    [27]张旗、周德进、赵大升等。滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论[J]。岩石学报,1996,12(1):17-28;
    [28]范承均,张翼飞。云南西部地质构造格局。云南地质,1993,12(2);
    [29]罗君烈。滇西特提斯造山带的演化及基本特征。云南地质,1990,9(4):248-290;
    [30]杨开辉,莫宣学。滇西南晚古生代火山岩和裂谷作用及区域构造演化。岩石矿物学杂志,1993,12(4):297-311:
    [31]王义昭。滇西昌宁—孟连带地质构造特征及构造环境分析。特提斯地质,1997,21:31-55;
    [32]王义昭,李兴林,段丽兰等。三江地区南段大地构造与成矿。北京:地质出版社,2000。64-66;
    [33]张翼飞、段锦荪等。滇西蛇绿岩带地质构造演化与澜沧江板块缝合线研究。昆明:云南科技出版社,2001。
    [34]莫宣学,沈上越,朱勤文等。三江中南段火山岩-蛇绿岩与成矿。北京:地质出版社,1998。1-128;
    [35]方念乔,杨伟平。滇西石炭二叠系氧碳同位素记录与扬子西缘及古特提斯域环境演化。见:王鸿祯,王自强,张玲华等著,中国古大陆边缘中、新元古代及古生代构造演化。北京:地质出版社,1994,202-213:
    [36]谭富文,潘桂棠,王剑。滇西泥盆纪一三叠纪盆一山转换过程与特提斯构造演化。矿物岩石,2001,21(3):179-185:
    [37]刘海龄、王子江、施小斌等。古特提斯缝合带澜沧江段花岗岩高温高压实验模拟。热带海洋学报,2004,23(2):10-23:
    [38]廖宗廷,陈跃昆,魏志红等。滇西晚古生代以来的构造演化。同济大学学报,2003,31(9):1029-1033;
    [39]王新利,林丽,朱利东等。对滇西昌宁—孟连带大地构造背景的认识[J]。地质找矿论丛,2007,(02);
    [40]段向东,张志斌,王伟等。滇西南耿马地区泥盆纪牙形石的新发现及地层意义。地质通报,2003,22(3):182-185;
    [41]段向东,张志斌,冯庆来等。滇西南耿马弄巴地区南皮河组正层型剖面地层层序、时代的重新认识。地层学杂志,2003,27(1):59-65;
    [42]从柏林、张儒媛、吴根耀等。中国滇西变质地质学研究。北京:科学通报,1998,22(24);
    [43]蓝朝华,孙诚,范健才。滇西镇康、潞西地区的石炭二叠系。青藏高原地质文集,11。北京:地质出版社,1982,79-91;
    [44]云南省地质矿产局。云南省岩石地层。武汉:中国地质大学出版社,1996。1-366;
    [45]杨伟平,贾进华。滇西耿马四排山地区地质新认识。地层学杂志,1995,19(1):62-71;
    [46]贾进华。滇西昌宁-孟连带南皮河群地层、沉积特征及其构造古地理意义。岩相古地理,1995,15(4):21-27:
    [47]冯庆来。造山带区域地层学研究的思想和工作方法。地质科技情报,1993,12(3):51-56;
    [48]冯庆来,刘本培。滇西南昌宁—孟连构造带火山岩地层学研究。现代地质,1993a,7(4):402-409;
    [49]冯庆来,刘本培,方念桥。造山带断片型地层层序恢复实例剖析。地球科学,1997,32(3):318-326:
    [50]冯庆来,叶玫,章正军。滇西早石炭世放射虫化石。微体古生物学报,1997b,14(1):79-92;
    [51]冯庆来,叶玫,造山带区域地层学研究的理论、方法与实例剖析。中国地质大学出版社,2000。40-94:
    [52]YAO Akira, KUWAHARA Kiyoko. Paleozoic and Mesozoic radiolarians from the Changning-Menglian Terrane, Western Yunnan, China. Biotic and Geological Development of the Paleo-Tethys in China. Peking,1999,17-42[八尾昭,桑原希世子,1999。中国云南昌宁—孟连地体的古生代和中生代放射虫。《中国古特提斯生物及地质变迁》。北京:北京大学出版社,1999,17-42。];
    [53]崔春龙、曾允孚。滇西昌宁—盂连带海西—印支期成因地层学分析。矿物岩石,2002,20(4):31-36;
    [54]张凡,冯庆来,张志斌等。滇西南耿马地区弄巴剖面早石炭世硅质岩的地球化学特征及古地理意义。地质通报,2003,22(5):336-320;
    [55]张凡,冯庆来。滇西南耿马弄巴剖面的晚古生代放射虫动物群。微体古生物学报,2005,22(4):346-356
    [56]张凡,冯庆来,段向东等。滇西南昌宁—孟连构造带西带研究初探—以耿马弄巴剖面为例。地质科技情报,2006,25(3):13-20;
    [57]Liu B P et al., Tectono-paleogeography and paleo-biogeography of the Changning-Menglian belt in Western Yunnan during Hercynian-Indosinian Stage. Reports and Abstracts 4th Intern Symp Pre-J Evol. East Asia, 1989,1:14-17:
    [58]Liu B P et al.. Tectonoic evolution of the paleo-Tethys in Changning-Menglian belt and adjacent regions, Western Yunnan. Jour of China Univ of Geoscien.1991,2(1):18-28;
    [59]FANG Nianqiao and FENG Qinglai,1996. Development to Triassic Tethys in Western Yunnan, China Wuhan:China University of Geosciences ress,1 - 135;
    [60]张元动,A. C. Lenz,张望北。滇西南早泥盆世地层研究新进展。地层学杂志,1998,22(3):220-226
    [61]侯鸿飞,王士涛等。中国的泥盆系。中国地层7。北京:地质出版社,1988:277-282;
    [62]李星学、蔡重阳。西南地区早泥盆世地层的一个标准剖面及其植物组合的划分与对比。地质学报,1978,52(1):1-12:
    [63]蔡重阳、李星学。中国泥盆纪陆相地层的划分与对比。见:中国科学院南京地质古生物研究所(编著),中国各纪地层对比表及说明书。北京:科学出版社,1982。109-123;
    [64]蔡重阳。非海相泥盆系。见:中国科学院南京地质古生物研究所编写《中国地层研究二十年(1979-1999)》),中国科技大学出版社,2000。95-127;
    [65]董致中,王伟。云南牙形类动物群—相关生物地层及生物地理区研究。云南出版集团公司、云南科技出版社,2006。85-204;
    [66]钟铿、吴诒、殷保安等。广西的泥盆系。武汉:中国地质大学出版社,1992。1-384
    [67]白顺良、董致中等。云南泥盆纪牙形石序列。北京:北京大学出版社,1982;
    [68]白顺良等。广西及邻区泥盆纪生物地层。北京:北京大学出版社,1982;
    [69]王成源。广西泥盆纪牙形石。中国科学院南京地质古生物研究所集刊,第25号。科学出版社,1989;
    [70]Bostrom K and Peterson M N A. The origin of Al-poor ferromaganoan sediments in areas of high heat flow on the East Pacific Rise. Mar. Geol.,7:427-447;
    [71]杨文强,冯庆来,段向东。滇西南昌宁—孟连构造带晚泥盆世枕状玄武岩和层状硅质岩的特征。地质通报,2007,26(6):739-747;
    [72]Adachi M, Yamamoto K and Sugisaki R.. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity, Sedimentary Geology, 1986,47:125-148;
    [73]Yamamoto K..Geochemical characteristics and depositional environments of chert and associated rocks in the Franciscan and Shimanto Terranes, Sediment. Geol.,1987,52:65-108;
    [74]Bostrom K, Kraemer T and Gartner S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments, Chem. Geol.,1973,11:123-148;
    [75]Murray R W. Chemical criteria to identify the depositional environment of chert:general principles and applications, Sedimentary Geology,1994,90:213-232;
    [76]Murray R W, Buchholtz ten Brink M R, Jones D L et al.. Rare earth elements as indicates of different marine depositional environments in chert and shale, Geology,1990,18:268-271;
    [77]张海清,刘本培,方念乔。滇西南古特提斯石炭纪海山碳酸盐台地的层序地层学研究。沉积学报,1997,15(4):18-23;
    [78]张海清,孙晓猛,陈先兵。海山、洋岛碳酸盐岩的沉积特征及其古地理意义。地质科技情报,1997,16(1):29-33:
    [79]Schlanger, S. O., Douglas, R. G. et al.. Foesil Preservation and Diagenesis of Pe lagic Carbonates from the Magellan Rise, Central North PacificOcean Initial Rcports of the DSDP,1973,7. pp407-427, U.S. Government Printing Ofice, Washington
    [80]Heczen. B. C., Matthews, J. L. et.. Western pacific Guyots. Initial Reports of the DSDP,1973, 20:pp.653-723, U. S. Government Printing Office, Wsshington.
    [81]Sano, Hiroyoshi, Horibo, Kenil and Kumamoto, Yasuko. Tubipbphytes-Archaeolithopore— Givanellarvetal reefal facies Permian buildup, Mino terrane, central Japan. Sed. Crcol.1990,68,293-306;
    [82]Larue, D. K., Smith, A. L. and Schallekens, L. H.. Oceanic island arc stratigraphy in the Caribbean region, don't take it for granite. Sed. Geol.1991,74,289-308;
    [83]颜佳新、刘本培、张海清。滇西昌宁—孟连带内石炭纪—二叠纪鲕粒灰岩的古地理意义。古地理学报,1999,1(3):13-18:
    [84]沈上越,冯庆来,刘本培等。昌宁—孟连带洋脊、洋岛型火山岩研究。地质科技情报,2002,21(3):13-17:
    [85]方宗杰,周志澄,郭震宇等。滇西南石炭纪平掌组火山岩与鱼塘寨组的接触关系。地层学杂志,1999,23(4):257-262:
    [86]段向东、李静、冯文杰。昌宁—孟连带中段耿马地区干龙塘构造混杂岩的新发现及意义。云南地质,2006,25(1):53-62:
    [87]R. G. Coleman,,蛇绿岩。地质出版社,1982。
    [88]从柏林、吴根耀等。中国滇西地区古特提斯演化的岩石学记录,《亚洲的增生》。北京:地质出版社,1994。65-68:
    [89]贾进华。滇西南昌宁—孟连带南段群沉积特征及其构造古地理意义—兼论临沧地体的性质。岩相古地理,1994,14(4):42-48:
    [90]冯庆来,刘本培,叶玫等。滇西南南段组和拉巴群地质时代及构造背景。地层学杂志,1996,20(3):183-189:
    [91]谢学文,刘本培。滇西昌宁—孟连带石炭、二叠纪拉巴群深水沉积环境研究。见:刘本培,肖劲东,周正国等著,古大陆边缘沉积地质文集。武汉:中国地质大学出版社,1992,109-118;
    [92]He Fuxiang and Liu Benpei. Recognition of ancient oceanic island in Paleo—Tethys, Western Yunnan. J. China Univ. Geoscience,1993,4:23-29;
    [93]方念乔。从滇西晚二叠世以后的远洋沉积看古特提斯的最后消亡。见:IGCP第321项中国工件组编,亚洲的增生。北京:地震出版社,1993,57-60;
    [94]肖荫文。滇西首次发现克氏蛤(Claraia)。中国区域地质,1987,(1);92;
    [95]云南省地矿局第三地质大队区域地质调查4分队。滇西南地区早三叠世沉积的发现。地质论评,1988,35(3):244-247;
    [96]罗万林。滇西南地区早三叠世沉积的发现。地质论评,1989,35(3):244-247;
    [97]Fang Nian-qiao, Liu Ben-pei, Feng Qing-lai et al.. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changnlng-Menglian and Lancangjiang belts, Southwestern Yunnan. Journal of Southeast Asian Earth Sciences,1994,9(4):363~37。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700