用户名: 密码: 验证码:
鹿茸多肽纳米复合材料对成骨细胞及骨愈合的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床上由于创伤、肿瘤、感染所造成的骨缺损很常见,目前缺乏较为理想的植骨材料:自体骨移植常受到自身供体有限性的限制以及术后供区损伤、感染等并发症,异体骨主要存在移植后的免疫排斥反应及传播疾病等问题。组织工程学的问世为人体组织器官缺损的再造和修复开辟了新的途径。模仿天然骨的成分和结构特征制造的骨替代材料,可为细胞提供与天然骨相类似的微环境。β-磷酸三钙(Beta-tricalcium phosphate, P-TCP)因其具有良好的生物相容性和成骨活性,在水溶液和体液中的溶解度是羟基磷灰石(HAP)的10-15倍,能够克服HAP在体内的降解问题而成为骨组织修复领域的主要研究对象。但因脆性大和不易成型的缺点,严重制约了其在临床上的应用。将p-TCP与具有良好韧性的有机物复合,形成无机/有机复合生物材料,既可以解决p-TCP的脆性问题,也可以利用有机物来提高材料的生物学活性。纳米β-磷酸三钙是利用纳米技术在纳米结构单元或纳米数量级(1~100nm)下生产的新型材料,具有小尺寸效应、表面效应,可以在三维空间上提高材料的强度。胶原是人体骨组织中的主要有机成分,在体内可以明显增进细胞间的相互作用,如细胞趋化、细胞增殖等。明胶是胶原蛋白的水解产物,具有与胶原相同的氨基酸,良好的生物相容性,同时还具有较好的黏附作用和骨诱导性,可被人体降解吸收以及较低的免疫原性。鹿茸多肽为鹿茸的主要药理活性成分,具有促进骨髓间质细胞分化,软骨细胞、表皮细胞及成纤维细胞增殖等作用,可明显加速骨组织再生、周围神经组织再生及创面愈合。将鹿茸多肽复合到纳米磷酸三钙明胶微球中不仅可以发挥纳米磷酸三钙材料的骨传导性又可以解决多肽类药物不易通过生物屏障,在伤口及创面易被水解酶破坏等问题,可以持续、稳定、高效地控制鹿茸多肽药物的释放速度,延长半衰期,实现药物的靶向释放,大幅度提高药物的生物利用度,从而达到修复骨缺损与药物治疗的双重效果。基于以上认识,本实验研制了鹿茸多肽纳米复合材料。
     实验分五个部分进行观察研究:
     1.鹿茸多肽纳米复合材料的制备及性能研究
     利用反相微乳液法制备了鹿茸多肽纳米复合材料(nano TCP/gel/VAP),扫描电镜观察纳米复合微球形态,SELDI-TOF-MS质谱仪检测复合材料的组成成分。
     2.鹿茸多肽纳米复合材料的生物相容性评价研究
     根据国际标准化组织(IS010993)我国(GB/T 16886)对于生物材料相容性的测试要求,通过急性毒性实验、溶血实验、细胞增殖实验和细胞毒性实验研究复合材料的生物安全性。
     3.鹿茸多肽纳米复合材料对成骨细胞生物学特性的影响
     采用MTT比色法、茜素红染色方法检测nano TCP/gel/VAP对体外培养人成骨细胞的增殖、细胞分泌细胞外钙基质的影响;采用全自动生化分析仪检测成骨细胞碱性磷酸酶活性,通过电镜形态学观察复合材料对受损成骨细胞的影响。
     4.鹿茸多肽纳米复合材料对兔下颌骨缺损修复影响的实验研究
     建立兔下颌骨缺损模型,通过鹿茸多肽纳米复合材料和单纯的纳米复合材料置兔下颌骨缺损处,术后4、8、12周时通过表面观察、Micro-CT、组织病理学和扫描电镜观察评价鹿茸多肽纳米复合材料的骨修复效果。
     5.鹿茸多肽纳米复合材料促成骨细胞早期分化机制的初步研究
     通过p38MAPK信号转导阻断剂SB203580对成骨细胞增殖的影响与鹿茸多肽纳米复合材料对SB203580作用下成骨细胞分泌ALP、ColⅠmRNA表达的影响,观察鹿茸多肽纳米复合材料在成骨细胞早期分化过程中的作用。
     实验获得以下主要结果和结论:
     1.本研究研制了鹿茸多肽纳米复合材料(nano TCP/gel/VAP),扫描电镜观察纳米复合微球形貌良好,直径约20~40μm,具有高度的分散性和均一性,微球表面有纳米级孔洞;通过质谱分析,检测到明胶分子与鹿茸多肽的存在,鹿茸多肽通过静电作用包覆于明胶微球内部。微球形貌规则、尺寸可控,通过调节微球的尺寸可以满足不同骨修复的需要。
     2.根据国际标准化组织(ISO10993)和我国(GB/T 16886)对于生物材料相容性的测试要求,证明鹿茸多肽纳米复合材料无细胞毒性,无急性毒性,不引起溶血反应,符合相应的标准要求,具有良好的生物安全性。
     3.鹿茸多肽纳米复合材料可以促进人成骨细胞的黏附、增殖,并促进成骨细胞分泌细胞外基质和形成钙结节,促进成骨细胞的分化成熟,对受损的成骨细胞有保护和修复的作用。
     4.鹿茸多肽纳米复合材料修复兔下颌骨缺损术后12周,nano TCP/gel/VAP组的骨缺损由骨组织修复,空白对照组的则由纤维组织覆盖,nano TCP/gel组介于上两组之间,边缘是骨组织覆盖,而中心区是纤维组织。Micro-CT检查显示,复合材料组优于空白对照组,nano TCP/gel/VAP组优于nano TCP/gel组。组织学观察nano TCP/gel/VAP组见致密的板层骨,可见哈佛管系统,髓腔再通,板层骨与原骨组织紧密结合;nano TCP/gel组为编织骨修复,缺损中心仍为纤维组织;空白对照组在缺损周边部位可见极少骨岛生成,中心部位仍由纤维组织填充。扫描电镜观察nano TCP/gel/VAP组,为致密的骨样组织,nano TCP/gel组新生骨组织与边界融合不紧密,孔隙较多,结构疏松。空白对照组未见骨组织生成,仍为纤维组织。表明鹿茸多肽纳米复合材料因鹿茸多肽成分的引入在磷酸三钙的传导性基础上增加了骨诱导性能,提高了兔下颌骨缺损的修复效果。
     5. p38MAPK阻断剂SB203580使人成骨细胞增殖能力下降,20μM为阻断剂SB203580半数抑制浓度;ALP活性检测结果显示,阻断剂组ALP活性最低,复合材料组ALP活性最高,复合材料加阻断剂组ALP活性低于复合材料组;实时荧光定量PCR结果显示,阻断剂组ColⅠmRNA表达均低于对照组、复合材料组和复合材料加阻断剂组;与复合材料组比较,复合材料加阻断剂组ColⅠmRNA表达在干预初期二者相近,干预时间延长则复合材料加阻断剂组明显低于复合材料组,表明p38MAPK通路在人成骨细胞的分化成熟中起着重要的调控作用,鹿茸多肽纳米复合材料能够逆转阻断剂的作用,进一步促进细胞的ALP活性增高,ColⅠmRNA表达量增加。阻断p38MAPK通路并不能完全抑制复合材料促成骨细胞早期分化作用,提示鹿茸多肽纳米复合材料还可能通过其他信号通路调节成骨细胞的早期分化。
     本研究的创新之处,首次将天然活性多肽—鹿茸多肽复合到纳米磷酸三钙、明胶体系中,制备了具有生物活性的鹿茸多肽纳米复合材料。该项研究填补了鹿茸多肽在骨修复新型材料应用中的空白。首次证明了该新型复合材料对下颌骨缺损具有明显的修复作用。该项研究为临床骨缺损修复的新型材料的研究提供了理论和实验依据。
Bone defect caused by injury, tumor and infection is quite common in clinical practice. However, there is still a deficiency of ideal bone graft material. Autogenous bone grafts are often limited by their own limitations and by the injury, infection and other complications of the donor site after operation, while allograft bone has problems in immunologic rejection after transplantation and dissemination of diseases. The advent of tissue engineering provides a innovative approach for the reconstruction and repair of human tissue and organ defects. The bone replacement materials manufactured by modeling the composition and structure of natural bone can provide the cells with microenvironment similar to natural bones. With good biocompatibility and osteogenic activity, the solubility ofβ-TCP in aqueous solution and in body fluids is 10-15 times of hydroxyapatite (HAP) which makes it the main subject in the field of bone tissue repair as it can solve the problem of HAP degradation in the body. On the other hand, the shortcomings of brittle and difficult to shape severely restrict its clinical applications. Compounding the (3-TCP and the organic compound with good toughness to form inorganic/organic composite biomaterials can solve the brittleness of (3-TCP and improve the biological activity by use of organic materials. Nanoβ-TCP is the new materials under the use of nano technology in nano-structure unit or nanometer scale (1~100nm). With a small size effect and surface effect, it can improve the strength of the material three-dimensionally. Collagen is the major organic components of human bones which can significantly enhance the interaction between cells in the body, such as cell chemotaxis and cell proliferation. Gelatin is a collagen hydrolyzate. with the same amino acid as collagen and good biocompatibility, better adhesion as well as bone induction, which can be degraded and absorbed by the body with lower immunogenicity. VAP is the major pharmacologically active component of antler which can promote differentiation of bone marrow stromal cells, proliferation of chondrocytes, epidermal cells and fibroblasts and can significantly accelerate bone tissue regeneration, peripheral nerve tissue regeneration as well as wound healing. The compounding of VAP to the nano-TCP microspheres in the gelatin can not only make full use of bone conduction of nano-TCP materials but also solve the problem that peptide drugs cannot easily go through biological barriers. As to the problem that wound and wound surface can be easily damaged by hydrolase. it can conduct sustainable, stable and efficient control of drug release rate of VAP. extend half-life period, achieve targeted release of drugs, and greatly improve the bioavailability of drugs, thus can repair bone defect and drug treatment. Based on the above understandings, nano TCP/gel/VAP was developed in this study.
     Five parts of experimental observation are explained as follows:
     1. Preparation and Introduction of nano TCP/gel/VAP Properties
     By use of reverse microemulsion. nano TCP/gel/VAP was developed. The specification of nano-composite microspheres was also observed through SEM. Examining components of composite materials by SELDI-TOF-MS mass spectrometer was also part of the experiment.
     2. Evaluation of biocompatibility of nano TCP/gel/VAP
     According to ISO10993 and China biological material compatibility testing requirements (GB/T 16886). the biological safety of composite materials was studied through the acute toxicity test, hemolysis test, cell proliferation test and cell toxicity test.
     3. The effects of nano TCP/gel/VAP on Biological characteristics of osteoblasts
     MTT colorimetry and Alizarin red staining were used to detect the effects of nano TCP/gel/VAP on culturing human osteoblasts proliferation, secretion of extracellular calcium matrix by cells in vitro. ALP activity was detected by automatic biochemical analyzer.
     4. Experimental study of nano TCP/gel/VAP on the repair of rabbit mandibular defects
     By making a rabbit mandible defect model and seting nano TCP/gel/VAP and simple nanocomposites respectively at the defect site,, the effects of nano TCP/gel/ VAP on bone repair effects by gross observation, Micro-CT, histopathology and SEM was evaluated and examined respectively 4 weeks,8 weeks and 12 weeks after surgery.
     5. The experimental study of nano TCP/gel/VAP in promoting early differentiation of osteogenic cells
     Through the effect of p38MAPK signal transduction inhibitor SB203580 on the proliferation of osteoblasts, the effect of SB203580 and nano TCP/gel/VAP on ALP, ColⅠmRNA secreting from osteogenic cells, the effects of nano TCP/gel/VAP on the process of early differentiation of osteogenic cells were observed.
     Main findings and conclusions of the experiments are as followings:
     1. This research developes nano TCP/gel/VAP. With the diameter of about 20-40μm, specification of nanocomposite microspheres looks good through SEM, with high degree of dispersion and uniformity. Meanwhile, there are nano-holes on microsphere surface. Through mass spectrometry analysis, the existence of gelatin molecules and VAP are detected. VAP coats on the inside of gelatin microspheres by electrostatic interaction. With a regular shape and controllable size, microspheres can meet the different needs of bone repair by adjusting the size.
     2. According to ISO10993 and China biological material compatibility testing requirements(GB/T 16886), it's proved that nano TCP/gel/VAP has no cytotoxicity, no acute toxicity, does not cause hemolysis reaction in line with corresponding standards, and ensures biological safety.
     3. Nano TCP/gel/VAP can promote the proliferation of osteoblasts from human embryo, secretion of extracellular matrix from osteoblasts and formation of calcium nodules which promote differentiation and maturation of osteoblasts.
     4.Within 12 weeks after the surgery of rabbit mandibular defects repair by the effects of nano TCP/gel/VAP. bone defects in nano TCP/gel/VAP group are repaired by bone tissues, while the ones in blank control group are covered by the fibrous tissues. Nano TCP/gel group is between the two groups in which the edges are covered by bone tissues while the central areas are covered by fibrous tissues. The examination of Micro-CT shows that the composite material group is superior to the blank control group; nano TCP/gel/VAP group is superior to nano TCP/gel group. Dense lamellar bone can be seen by histological nano TCP/gel/VAP group. Harvard tube system, medullary cavity recanalization and integration between lamellar bones and the original bone tissues are also visible. Nano TCP/gel group can repair for bones, while the defect center is still fibrous tissue. In blank control group, it is rare to see bone island generation around the defects and the center is still filled with fibrous tissues. It is dense bone-like tissue under the examination of SEM in nano TCP/gel/VAP group. New bone tissues of nano TCP/gel group are not closely integrated with the boundary, with small holes and loose structure. The blank control group is still fibrous tissue without bone tissue formation. This indicates that nano TCP/gel/VAP increase bone induction on the basis of conductivity of TCP by the introduction of VAP and improves the repair effects of rabbit mandibular defects.
     5. p38MAPK inhibitor SB203580 decreases ability of osteoblast proliferation. 20μM is the half density for inhibitor SB203580 to restrain the proliferation of osteoblasts. The result of ALP activity test shows that ALP activity of inhibitor group
引文
[1]刘琳玲,丛波,姜洪梅,等.鹿茸多肽功能的研究进展[J].特产研究,2009,2:67-70.
    [2]王本祥.鹿茸的化学,药理及临床研究进展[C].长春:96’长春国际鹿科学技术研讨会.1996.
    [3]张志强.鹿茸多肽的抗炎作用[J].中国药理学报,1994.15(3):282-284.
    [4]霍玉书,霍虹.鹿茸神经生长因子活性及促分化作用的研究[J].中药新药与临床药理,1997,6(8).79-81.
    [5]董万超.田野.梅花鹿茸多肽新成分的提取分离及其生物效应研究[J].特产研究,2000,,22(2):7-10.
    [6]郭颖杰,周秋丽,刘平,等.鹿茸多肽对骨、软骨细胞增殖的实验研究[J].中国生化药物杂志,1998.19(2):74-76.
    [7]周秋丽,王丽娟.鹿茸多肽对实验性骨折的治疗作用及机理研究[J].白求恩医科大学学报,1999,25(5):586-588.
    [8]周秋丽,郭颖洁.鹿茸多肽促进软骨和成骨样细胞增殖及骨折愈合[J].中国药理学报,1999,20(3):279-282.
    [9]周秋丽.鹿茸生长素药理作用的研究[J].中国药理学报,1997,11(5):16-19.
    [10]周秋丽,刘永强,王颖.梅花鹿茸和马鹿茸多肽化学性质及生物活性比较[J].中国中药杂志,2001,26(10):699-702.
    [11]翁梁,周秋丽,王丽娟,等.鹿茸多肽促进表皮和成纤维细胞增殖及皮肤创伤愈合[J].药学学报,2001,36(11):817-820.
    [12]李振华,冷向阳,高忠礼.鹿茸多肽对脊髓损伤保护作用的实验研究[J].中国骨伤,2008,21(4):285-286.
    [13]段冷昕,李夏,王楠娅,等.鹿茸多肽促进肝细胞增殖及肝部分切除小鼠的肝再生[J].中国药学杂志,2008,43(1):72-75.
    [14]张春霞,修忠标.鹿茸多肽对兔骨髓间充质干细胞移植修复关节软骨缺损的影响[J].福建中医学院学报.2007.17(4):16-19.
    [15]John Mikler. Christine Theoret, Jerry C. Effects of Topical Elk Velvet Antler on Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats High [J]. Alternative andComplementaryMedicine.2004,10(5):835-840.
    [16]王丽鸣.鹿茸多肽治疗顽固性鼓膜穿孔30例[J].新中医,2004,36(10):59-60.
    [17]陈东,孟晓婷,刘佳梅,等.鹿茸多肽对胚胎大鼠脑神经干细胞体外诱导分化的实验研究[J].解剖学报.2004.35(3):240-243.
    [18]李立军,路来金.陈雷.等.鹿茸多肽促进大鼠坐骨神经再生的实验研究[J].辽宁中医杂志.2004,31(4):343-344.
    [19]王克立.路来金.富旭,等.鹿茸多肽-PLGA复合膜促进大鼠周围神经再生[J].吉林大学学报(医学版),2006.32(2):199-202.
    [20]Shin. Kuk Hyun.. Yun-Choi. Hye Soak.. Lim. Soon Sung., et al. mmuno-stimulating. anti-stress and anti-thrombotic effects of unossifiedvelvet antlers. Natural product scienences,1999,5(1):54-59.
    [21]Suttie JM., Haines. SR. The effect of aqueous velvet extracts on the immunesystem[J]. New Zealand Game Industry Board,1996.6(2):30-35.
    [22]陈书明.聂向庭.鹿茸醇提物对白细胞减少小鼠模型腹腔吞噬细胞吞噬功能的影响[J].山西中医学院学报.2000.1(1):4.
    [23]陈书明,聂向庭.鹿茸醇提物对用环磷酰胺处理的小白鼠红细胞免疫功能的影响[J].经济动物学报,2000.4(11):23.
    [24]张经华.杨若明,周素红.等.糜鹿、梅花鹿和马鹿鹿茸中微量元素的分析测定[J].微量元素与健康研究,2000,17(4):39.
    [25]潘风光.孙威.周玉.等.梅花鹿鹿茸活性多肽的提取及免疫功效的初步研究[J].中国生物制品学杂志,2007.20(9):669-673.
    [26]Yeon-Kye Kim, Kyung-Sook Kim. Kang-Hyun Chung, et al. Inhibitoryeffects of deer antler aqua-acupuncture, the pilose antler of Cervus Korean Temminck var.mantchuricus Swinhoe, on type Ⅱ collagen-inducedarthritis in rats. International Immunopharmacology,2003,3(7):1001-1010.
    [27]白静丽,杨世忠,赵玉春,等.鹿茸生长素治疗慢性肝炎的临床及实验研究[J].长春中医学院学报.2000,16:21.
    [28]赵世臻.鹿产品及其保健[M].北京:中国农业出版社,2001,20.
    [29]Zhang ZQ. et al. Puri cation and partial characterization of anti-inflammatory peptide from pilose antler of Cervus nippon Temminck. Yaoxuexuebao,1992,27(5):321-324.
    [30]Zhang ZQ, et al. Anti-inflammatory effects of pilose antlerpeptide. Zhongguo Yao Li XueBao,1994,15(3):282-284.
    [31]董万超,张秀莲,刘春华,等.梅花鹿茸多肽新成分的提取分离及其生物效应研究[J].特产研究,2000,2:7-10.
    [32]Kwon- Ho Song, Kyung-Woon Kim. Ji-Min Lee. et al. Effects of TGFbetal and extracts from Cervus korean TEMMINCK var. mantchuricus Swinhoe on acute and chronic arthritis in rats[J]. Elsevier Ireland Ltd,2008.118(2):280-288.
    [33]陈书明.鹿茸醇提物抗氧化作用的实验研究[J].实验动物科学与管理.2000.17(1):22-24.
    [34]陈晓光.鹿茸提取物体外抗氧化作用[J].中药材.2003,26(10):733-734.
    [35]何刚,王本祥.张伟,等.鹿茸多肽对雄鼠黄体生成素和睾丸酮分泌的影响[J].中成药,1994,16(11):33-34.
    [36]陈晓光.鹿茸提取物体外杭氧化作用[J].中药材.2003.26(10):733-734.
    [37]陈书明.鹿茸醇提物抗氧化作用的实验研究[J].实验动物科学与管理.2000,,17(1):22-24.
    [38]李夏,段冷昕,等.鹿茸多肽对四氯化碳所致小鼠急性肝损伤的保护作用[J].中国医药杂志,2007,42(20):1864-1866.
    [39]田育璋.鹿茸对大鼠睾丸影响的形态计量[J].青海医学院学报,1997,18(3):154.
    [40]傅雷,彭岩,徐红,等.鹿茸对去卵巢小鼠子宫生长的影响[J].大连医科大学学报,2007,29(1):12-14.
    [41]段冷昕,马吉胜,翁梁,等.鹿茸总多肽对维A酸致骨质疏松大鼠的防治作用[J].中国药学杂志,2007,42(4):264-267.
    [42]罗翔丹,潘风光,张铁华,等.鹿茸多肽对小鼠耐缺氧和抗疲劳能力的影响[J].食品科学,2008,29(4):386-389.
    [43]修忠标,林建华.鹿茸多肽对人骨髓间质干细胞体外增殖的影响[J].福建中医院学报,2005,15(1):34-37.
    [44]陈书明.鹿茸醇提物对环磷酰胺所致小鼠遗传物质损伤的影响[J].山西医科大学学报,2004.31(1):24-25.
    [45]Brad Parsons MD, Elton Strauss MD. FACS. et al. Surgical management of chronic osteomyelitis [J]. The American Journal of Surgery,2004,188:57-64.
    [46]刘永光,杨玉樑,旷甫国.廖大勇.徐頔.吻合血管自体腓骨移植修复胫骨缺损[J].西南国防医药.2009.19(8):791-793.
    [47]赵治伟.程春生,马文龙.等.腓骨皮瓣移植修复股骨长段骨骨缺损的临床应用研究[J].世界中西医结合杂志.2009.4(7):514-515.
    [48]Sasso RC. Williams JI. Dimasi N. et al. Postoperative drains at the donor site Of iliac-crest bone graft [J]. J Bone and Joint Surg [Am].1998.80 (5):631-635.
    [49]van Honwelingen. Andrew P Bse, Mckee Michael D. Treatnrent of osteopenichumeral shaft nonunion with compression plating, humeral cortical allograft struts, and bone grafting [J]. Journal of Orthopaedic Trauma,2005. 19:36-42.
    [50]Sinan Karaoglu. Ali Baktir. Sevki Kabak. Husrev Arasi. et al. Experimental repair of segmental bone defects in rabbits by demineralized allograft covered by free autogenous periosteum [J]. Injury,2002.33(8):679.
    [51]陶伟伟.朱建非,张穹.等.同种异体骨植骨治疗四肢骨折临床疗效研究[J].中国骨与关节损伤杂志.2009,24(4):342-343.
    [52]Gardiner A, Weitzel PP. Bone Graft Substitutes in Sports Medicine [J] Sports-Med-Arthrosc,2007,15 (3):158.
    [53]Robert WB. Nonallograft osteoconductive bone graft substitutes [J].Clinical Othopaedics and Related Research,2003,395 (2):44-52.
    [54]Huipin Yuan, Yubao Li. JD de Bruijn, et al. Tissue responses of calcium phosphate cement:a study in dogs [J]. Biomaterials,2000.21(12):1283-1290.
    [55]Chen Hong-wei, Zhao Gang-sheng, Ye Jian. Autosolidifying calcium phosphate cement in the repair of bone defects due to different etiology among 94 cases [J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008,12 (19):3779-3781.
    [56]Uwe Joosten, Alexander Joist, G. Gosheger, Ulf Liljenqvist. Burkhard Brandt. Christof von Eiff. Effectiveness of hydroxyapatite-vancomycin bone cement in thetreatment of Staphylococcus aureus induced chronic osteomyelitis [J] Biomaterials,2005.26:5251-5258.
    [57]刘永静.廖建兴.刘昌胜,等.三种骨替代材料修复犬下颌种植体周围骨缺 损的实验研究[J].口腔颌面外科杂志,2009,19(49):248-252.
    [58]陈建民,刘方刚,金大地.可降解复合人工骨修复骨缺损的实验研究[J].中国矫形外科杂志,2007,15(19):1494-1497.
    [59]Kim JY, Cho BC. Effect of calcium sulfate pellets on early bone mineralization in distraction osteogenesis for craniofacial microso-mia in adults[J]. J Craniofac Surg,2007,18(6):1309-1321.
    [60]张杜娟,张丽芳,张志萍.等.骨修复复合材料CSH /BGs的制备及其性能研究[J].合成化学.2008.16(6):624-627.
    [61]Tami AE, LeitnerMM, BauckeMG. et al. Hydroxyapatite particles maintain peri-imp lant bonemantle during osseointegration in osteo-porotic bone[J]. Bone Biology,2009,45 (6):1117-1124.
    [62]唐晓军,归来,吕晓迎.等.天然羟基磷灰石与壳聚糖复合材料骨相容性研究[J].中国美容医学,2007,16(1):31-34.
    [63]Leatherman, Bryan D Domhoffer, John L. Bioactive glass ceramic particles as an alternative for mastoid obliteration:results in an animal model[J] American Journal of Otology,2002.23 (5):657-660.
    [64]孙广智,杨志平,李建民.骨缺损修复材料的研究进展[J].生物骨科材料与临床研究.2005,12(1):35-37.
    [65]王勇,孙俊英,杨兴,等.生物活性玻璃在跟骨关节内骨折治疗中的应用[J]实用骨科杂志、2009.15(1):54-55.
    [66]殷浩,孙俊英,李喜功,等.生物活性玻璃在四肢骨不连及骨缺损中的应用[J].苏州大学学报(医学版),2007,27(4):629-630.
    [67]Tielens S, Declercq H, Gorski T, et al.Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering:an invitro study [J] Biomacromolecules,2007,8 (3):825-832.
    [68]Li X, Feng Q, Wang W, et al. Chemical characteristics and cytocompatibility of collagen -based scaffold reinforced by chitin fibers for bone tissue engineering [J]. Biomed Mater Res B Appl Biomater,2006,77 (2):219-226.
    [69]张建新.徐展望.常峰.组织化人工骨修复骨缺损的实验研究[J].中国矫形外科杂志、2009,17(16):1258-1260.
    [70]王明海.董有海.洪洋.等.纳米组织工程骨对骨缺损修复区骨密度及生物 力学的影响[J].中国临床医学,2007,14(5):678-680.
    [71]Garcia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation [J]. J Dent Res,2005.84 (5):407-413.
    [72]李秀兰.高承志.纤维粘连蛋白影响成骨细胞增殖和Ⅰ型胶原表达的研究[J].现代口腔医学杂志.2008.22(4):392-394.
    [73]杨玉生,孙俊英,朱国兴.生物活性玻璃对鼠成骨细胞体外增殖的形态学研究[.J].生物医学工程学.2007.26(2):146-150.
    [74]Boset tiM. C annasM. The effect of bioactive glasses on bone marrow stromal cells differentiation [J]. Biomaterials,2005.26 (18):3873-3879.
    [75]Deliloglu-Gurhan I. Tuglu I. Vatansever HS. et a.l The effect of osteogenic medium on the adhesion of rat bone marrow stromal cell to the hydroxyapatite [J]. Saudi Med J,2006,27(3):305-311.
    [76]Bae C J. Kim HW. Koh YH, et a.l Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores[J]. J Mater Sci Mater Med,2006.17(6):517 521.
    [77]Ngiam M, Liao S. Patil AJ. et a.l The fabrication of nano -hydroxyapatite on PLGA and PLGA/collagen nano fibrous composite scaffo Ids and their effects in osteoblastic behavior for bone tissue engineering[J].Bone,2009.45 (1): 4-16.
    [78]许卫兵,贾连顺,卢建熙,等.兔骨髓基质干细胞体外培养复合磷酸三钙进行胸椎后侧融合实验研究[J].中国矫形外科杂志.2005.13(22):1736-1738.
    [79]Isaac J, Hornez JC, Jian D, et a.l beta-TCP microporosity decreases the viability and osteoblast differentiation of human bone marrow strom al cells[J]. J Biomed Mater ResA,2008,86(2):386-393.
    [80]刘广鹏,赵莉,刘波,等.新型磷酸三钙的制备与成骨能力的实验研究[J].中华创伤骨科杂志,2006,8(8):755-759.
    [81]Aunoble S. Clement D. Frayssinet P. et a.l Biological performance of a new beta-TCP /PLLA composite material for applications in spine surgery:in vitro and in vivo studies[J]. J Biomed Mater Res A,2006,78(2):416-422.
    [82]Koranteng RD, Swindle EJ, Davis BJ. et al. Differential regulation of mast cell cytokines by both dexamethasone and the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. Clin Exp Immunol[J].2004.137(1):81.
    [83]罗杨,刘一,张科强.MAPK信号传导通路在间充质干细胞向成骨细胞分化中的作用[J].吉林医学.2008.29(6):443-445.
    [84]廖清船.肖洲生,秦艳芳.等.p44/42和p38MAPK在骨髓间充质干细胞向成骨细胞分化中发挥不同的功能[J].中国骨质疏松杂志,2004.10(3):267.
    [85]SuzukiA. Guicheux J. Palmer G. et al. Evidence for a role of p38MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation[J]. Bone,2002.30(1):91.
    [86]Jaiswal RK. Jaiswal N. Bruder P. et al.Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase[J]. J Bio Chem.2000.275(13):9645.
    [87]Raingeaud J. Gupta S. Rogers JS. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine[J]. J Bio Chem.1995,270(13): 7420.
    [88]Chen Z. Gibson TB, Robinson F. et al. MAP kinases[J]. Chem Rev,2001.101: 2449.
    [89]廖清船.肖洲生,秦艳芳,等.植物雌激素金雀异黄酮通过p38MAPK通路促进骨髓间充质干细胞向成骨细胞分化[J].中国药理学通报.2006,22(6):683.
    [90]Hua Zhou, XiYang, NailiWang, et al.Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells[J]. Molecular and Cellular Endocrinology.2007,270:17.
    [91]李定宇,郑诚功,裘正健.剪切应力诱导成骨相关基因表达的研究[J].中华创伤骨科杂志,2006,8(10):911.
    [92]OyamaM, Chiba J, Kato Y. et al. Distribution and expression of mRNAs for the proto-oncogenes c-fos and c-jun in bone cells in vivo[J]. Histology&Histopathology.1998,13(3):671.
    [93]孟亚强,张柳.成骨细胞分化过程中相关信号传导途径的研究进展[J].华北煤炭医学院学报,2007,9(4):490-492.
    [94]朱赴东,赵士芳.成骨细胞中即刻早期基因c-fos启动子表达的调控[J].国外医学口腔医学分册.2006,33(1):32-35.
    [95]Joseph MD. Maier, Ronald V. Mitogen-activated protein kinase (MAPK). Critical Care Medicine. Cellular and Molecular Biology for Intensivists[J].2005. 33(12) Suppl:S417.
    [96]Hotokezaka H. Sakai E. Kanaoka K. et al. U0126 and PD98059. specific inhibitors of MEK. accelerate differentiation of RAW264.7 cells into osteoclast-like cells[J]. Journal of Biological Chemistry,2002.277(49):47366.
    [97]GeraldesP. SiroisMG. BematchezPN. et al. Estrogen regulation of endothelial and smooth muscle cell migration and proliferation:role of p38 and p42/44 mitogen activated protein kinase[J]. Arterioscler ThrombVasc Boi. 2002.22:1585.
    [98]Mao KY. Hao LB. Tang PF. et al. Osteoblast MC3T3-El culture on a fast- setting carbonated hydroxyapatite bone- like material [J]. The Journal of Bioactive and Compatible Polymers.2005.20(6):541-555.
    [99]毛克亚.郝立波.唐佩服.等.碳酸化羚基磷灰石水泥修复骨缺损的实验研究[J].生物医学工程与临床.2004.8(3):129-132.
    [100]Khan SN. Tomin E. Lane JM.Clinical applications of bone graft substitutes[J].Orthop Clin North Am.2000.31(3):389-398.
    [101]Pollok JK. Vacanti JP.Tissue engineering[J]. Seminars in Pediatric Surgery. 1996.5:191-196.
    [102]Sittinger M.Tissue engineering:artificial tissue replacement containing vital components [J].Laryngo-rhino-otologie,1995.74:695-699.
    [103]卢晓英,王秀红,屈树新,等.纳米羟基磷灰石/壳聚糖杂化材料的制备[J].无机材料学报.2008,23(2):332-336.
    [104]徐国财.张立德.纳米复合材料(第1版)[M].北京:化学工业出版社.2002.11-24.
    [105]Iain R. Gibson. Serena M. Best, William Bonfield. Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite [J]. Journal of the American Ceramic Society,2002,85:2771-2777.
    [106]Hong Cao, Noboru Kuboyama. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering [J].Bone,2010,46(2):386-395.
    [107]Zhong-Yu Cai. De-An Yang. Na Zhang, et al.Poly(propylene fumarate)/(calcium sulphate/p-tricalcium phosphate) composites:Preparation, characterization and in vitro degradation [J]. Acta Biomaterialia,2009,5(2):628-635.
    [108]Masanori K, Yoshihisa K, Takeki Y, et al. Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly (L-lactide-co-glycolide-co-s-caprolactone) composites [J]. Biomaterials,2004, 25(28):5979-5986.
    [109]Zou C, Weng W J. Deng X. et al. Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integrated structure [J]. Biomaterials,2005.26(26):5276-5284.
    [110]Jarman-Smith ML. Bodamyali T, Stevens C. et al. Porcine collagen crosslinking. degradation and its capability for fibroblast adhesion and proliferation[J]. The Journal of Materials Science:Materials in Medicine.2004,15(8):925-932.
    [111]赵峰,尹玉姬.宋雪峰.等.壳聚糖-明胶网络/羟基磷灰石复合材料支架的研究—制备及形貌[J].中国修复重建外科杂志,2001,15(5):276-279.
    [112]Richter F. Schnorr D, Deger S. et al. Improvement of hemostasis in open and laparoscopically performed partial nephrectomy using a gelatin matrix-thrombin tissue sealant (FloSeal) [J]. Urology.2003; 61(1):73-77.
    [113]彭湘红,万昆.壳聚糖/纳米多层结构羟基磷灰石/明胶复合膜的性能[J].中国组织工程研究与临床康复.2008,12(14):2777-2779.
    [114]Xu C, Inai R. Kotaki M. et al. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering [J]. Tissue Engineering 2004; 10(7-8):1160-1168.
    [115]Stevens MM, George JH. Exploring and engineering the cell surface interface[J]. Science.2005; 310(5751):1135-1138.
    [116]S, Hidaka. S. Y. Liu. Effects of gelatins on calcium phosphate precipitation:a possible application for distinguishing bovine bone gelatin from porcine skin gelatin [J]. Journal of food composition and analysis,2003,16:477-483
    [117]郭燕川,孙瑞雪,马铭.W/O乳化法制备明胶/p-磷酸三钙多孔复合微球及其热学性能[J].应用化学,2009,26(12):1391-1394.
    [118]SUN Rui-Xue, SH I Jing-Jing, GUO Yan-Chuan, CHEN L i-Juan. Studies on particle size control of gelation microspheres [J].Acta Polymerica Sinica,2008. 8:779-784.
    [119]Y.M. Park. S.C. Ryu, S.Y. Yoon, et al. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite [J], Materials Chemistry and Physics,2008.109:440-447.
    [120]Eiden-Aβmann S. Viertelhaus M. Heiβ A, et al. The influence of amino acids on the biomineralization of hydroxyapatite in gelatin [J]. Journal of Inorganic Biochemistry,2002.91:481-486
    [121]Heughebaert JC. Montel G. Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate[J]. Calcified Tissue International.1982:34 Suppl 2:103-108.
    [122]Xu J L. Khor K A. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method [J].Journal of Inorganic Biochemistry.2007.101(2):187-195.
    [123]Faming Zhang. Kaili Lin. Jiang Chang, Jianxi Lu and Congqin Ning. Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders [J]. Journal of the European Ceramic Society.2008.28: 539-545.
    [124]周秋丽.王丽娟.郭颖杰.等.鹿茸多肽对实验性骨折的治疗作用及机理研究[J].白求恩医科大学学报,1999.25(5):586-588.
    [125]张弛.纤维连接蛋白表面修饰后聚酯纤维韧带细胞相容性的变化[J].中国组织工程研究与临床康复.2007.11(31):6149-6154.
    [126]张玮,李萍,黄启福,等.几类常用外用中药成分对人皮肤成纤维细胞增殖及胶原合成的影响[J].北京中医药大学学报,2007,30(1):36-39.
    [127]Dey J, Xu H, Shen J, et al. Development of biodegradable crosslinked urethane-doped polyester elastomers [J]. Biomaterials,2008.29(35):4637-4649.
    [128]侯春林,顾其胜,王大新.等.儿丁质与医学[M].上海:上海科学技术出版社,2001:39-40.
    [129]王晓芹,李晓辉.王贵波,等.壳聚糖胶原生物敷料的安全性研究[J].中国临床康复,2002.6(7):1030-1031.
    [130]国家药品监督管理局.YY/T 0268-2001牙科学——用于口腔的医疗器械生物相容性临床前评价——第1单元:评价与试验项目选择//中华人民共和国医药行业标准.北京:中国标准出版社.2001:70-82.
    [131]励永明.孙皎.顾国珍.等.评价生物材料不同给予方法致急性全身毒性 作用的实验初探[J].口腔材料器械杂志,2000,9(2):83-85.
    [132]张士杰,裴庆国,潘可风,等PLGA/HA支架材料生物相容性的动物实验研究[J].口腔颌面外科杂志,2007,17(1):40-45.
    [133]国家药品监督管理局.YY/T 0127.9-2001口腔材料生物学评价——第2单元:口腔材料生物试验方法——细胞毒性试验:琼脂覆盖法及分子滤过法//中华人民共和国医药行业标准.北京:中国标准出版社,2001:46-52.
    [134]Vallet-Regi M, Balas F, Colilla M, et al. Bone-regenerative bioceramic implants wivejith drug and protein controlled delivery capability[J]. Progress in Solid State Chemistry,2008,36(3):163-191.
    [135]Pek YS, Gao S, Arshad MS. et al. Porous collagen-apatite nanocomposite foams as bone regeneration scaff olds[J]. Biomaterials,2008,29(32):4300-4305.
    [136]翁梁,周秋丽,王丽娟,等.鹿茸多肽促进表皮和成纤维细胞增殖及皮肤创伤愈合[J].药学学报.2001,36(11):817-820.
    [137]李立军.路来金,陈雷鹿.等.鹿茸多肽促进大鼠坐骨神经再生的实验研究[J].辽宁中医杂志,2004,31(4):343-344.
    [138]陈东,孟晓婷,刘佳梅,等.鹿茸多肽对胎大鼠脑神经干细胞体外诱导分化的实验研究[J].解剖学报,2004,35(3):240-243.
    [139]林建华,修忠标,吴朝阳,等.鹿茸多肽对软骨表型化骨髓间充质干细胞凋亡的影响[J].中国修复重建外科杂志,2006,20(4):427-430.
    [140]王克利,路来金,宫旭,等.鹿茸多肽-PLGA复合膜促进大鼠周围神经再生[J].吉林大学学报:医学版,2006,32(2):199-202.
    [141]王日雄,林建华,修忠标,等.鹿茸多肽诱导自体骨髓间质干细胞移植修复兔膝关节软骨缺损[J].中国骨与关节损伤杂志,2007,22(11):916-918.
    [142]Williams DF. On the mechanisms of biocompatibility[J]. Biomaterials,2008, 29(20):2941-2953.
    [143]郝和平,奚廷斐,卜长生.医疗器械监督管理和评价.北京:中国医药科技出版社,2000:221-227.
    [144]国家医疗器械生物学评价标准化技术委员会,GB/T16886.1-2001医疗器械生物学评价——第1部分:评价与试验.北京:中国标准出版社,2001:304-309.
    [145]Brown IG, Anders A. Dickinson MR. et al. Recent advances in surface processingwith metalplasma and ion beams [J]. Surf Coat Technol 2009;112: 271-7.
    [146]Wilda H, Gough JE. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglasss composite films [J].Biomaterials,2006:27:5220-5229.
    [147]Zhang K. WangYB, Hillmyerb MA. Francisa LF. Processing and properties of porous poly(1-lactide)/bioactive glass composites [J].Biomaterials,2008:25: 2489-2500.
    [148]毕树雄.戴魁荣.汤亭亭.同种异体与异种骨移植免疫反应的比较研究[J].中华骨科杂志.2009.24(10):609-614.
    [149]刘玉增,李琪文.王继芳.冻干同种异体骨与冻干异种骨移植治疗骨缺损的比较实验研究[J].中国骨伤.2009.18(5):282-284.
    [150]曹谊林.组织工程学理论与实践[M].上海:上海科学技术出版社.2005:204.
    [151]CHEN Gang. ZHAO Shi-jie.Study on bone regeneration in critical bone defects[J].Foreign Medical Sciences(Stomatology),2001.28(2):71-73.
    [152]LI Zu-bing, YU Shi-bin, DONG Yao-jun. et al.Retrospective study on the materials used in the reconstruction of mandibular defects[J].J Pract Stomatol. 2003,19(1):37-39.
    [153]Bauer TW, Muschler GF.Bone graft materials.An overview of the basic science[J].Clin Orthop Relat Res,2000, (371):10-27.
    [154]JOHN PS, JEFFERY OH.The critical size defect as perimental model for craniomandibulofacia Nonunion[J].Clini Orthop Rel Res,1986,20(5):299-230.
    [155]吴军正,丁鸿才.异体脱钙骨移植的实验研究[J].中华口腔科杂志,1984.19(1):13-15.
    [156]MAXIMILIAN R.Histological evaluation of osteochondral defects:Consider ration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods[J].Cells Tissues Organs,2002,171(4):229-240.
    [157]MURATA M. HUANG BZ, SHIBATA T. et al. Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone[J]. Int J Oral Maxillofac Surg,1999,28(3):232-237.
    [158]郭尚春.王金武.范存义,等.探讨生物活性接骨板研制的动物实验模型[J]. 上海生物医学工程,2006,27(3):143-146.
    [159]陈系古.实验动物学与比较医学[M].昆明:云南科学技术出版社,2004
    [160]李春明,杨春艳,刘宝林,等.骨髓基质细胞复合多孔矿化Bio-Oss骨胶原移植修复下颌骨缺损的实验研究[J].实用口腔医学杂志,2005,21(3):352-355.
    [161]刘星纲,翁文剑.邓旭亮,等.纳米p—磷酸三钙/胶原复合体修复兔颌骨缺损的研究[J].口腔医学.2005,25(4):196-197.
    [162]吴景泉.刘俊,柳大烈等.自体骨粉移植修复下颌骨部分缺损的组织学检测[J]中国组织工程研究与临床康复.2007.11(29):5661-5664.
    [163]JiangY, ZhaoJ, LiaoEY, et al.Application of micro- CT assessment Of 3-D bone microstructure in preclinical and clinical studies[J]. Bone Miner Metab.2005. 23Suppl:122-131.
    [164]TangSY, VashishthD.A non-invasive invitro technique for theThree-dimensional quantification of microdamage in trabecular bone[J].Bone,2007.40(5): 1259-1264.
    [165]Bolotin HH. DXA in vivo BMD methodology:an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling [J]. Bone,2007,1:138-154.
    [166]AkhterMP, Lappe JM, DaviesKM, et al.Transmenopausal changes in the trabecular bone structure[J].Bone,2007,41:111-116.
    [167]Wilensky A, GabetY, YumotoH, et al.Three-dimensional quantification of alveolar bone loss in porphyromonas gingivalis-infected mice using micro-computed tomography[J]. Periodonto,2005,76:1282-1286.
    [168]A SUZUKI, J GUICHEUX, G PALMER, et al. Evidence for role of p38 MAP kinases in expression of alkaline phosphatase during osteoblastic cell differentiation[J]. Bone,2002,30(1):91-98.
    [169]HU Y, CHAN E, WANG SX, LI B. Activation of p38 mitogenactivated protein kinase is required for osteoblast differentiation [J]. Endocrinology,2003.144(5): 2068-2074.
    [170]XUEYING WANG, CHOON HONG GOH, BAOJIE L I. p38Mitogen-Activated Protein Kinase Regulates Osteoblast Differentiation through Osterix [J] Endocrinology,2007.148 (4):1629-1637.
    [171]赵斌,葛金芳,朱娟娟.小议在MTT法测细胞增殖抑制率中IC50的计算方法 [J].安徽医药,2007,11(9):834-836.
    [172]金冬梅,陈莉丽,严杰.联合应用胰岛素样生长因子-Ⅰ和骨形成蛋白-2促小鼠成骨样细胞及成纤维细胞增殖和分化的效应[J].口腔医学,2006.26(3):193-196.
    [173]龙丽.李灵芝.刘开泰,等.氟化钠对成骨样细胞功能表达影响的研究[J].中国预防医学杂志,2004,5(3):168-171.
    [174]黄少慧.张娟.李娟.等.骨灵片通过p38 MAPK信号通路影响成骨细胞功能的机制[J].南方医科大学学报.2008,28(7):1148-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700