用户名: 密码: 验证码:
相渗透率改善剂驱油效果的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱时驱油效率的提高是不增加宏观压力梯度的微观力引起的,驱替液的弹性会改变孔隙中的微观流线,从而增加作用于残余油团突出部位的微观作用力,使突出部位移动,从而增加了聚合物驱的驱油效率。
     微观力具有以下特点。粘弹性流体可以产生比牛顿流体更大的微观力,只要有少部分突出部位被微观力推动就可能可观地提高采收率,即使微观力比宏观压力梯度小也可能使残余油团移动,由流线改变而产生的微观力不影响宏观压力梯度,宏观力不变条件下,微观力可以变化,粘弹性流体驱时,微观力为独立变量
     表征流体弹性的参数,如第一法向应力差、松弛时间、德博拉数、威森博格数等等,用不同的参数表征的效果不同。在简化的二维非等径孔隙模型中,粘弹性流体流线的变化程度是由威森博格数(We)决定的,We越大,粘弹性流体流线改变的幅度越大,“可变直径活塞效应”应该更加显著,使黏弹性流体的驱油效率更大。因此在本实验中,采用威森博格数We定量表征影响驱油效率的聚合物溶液黏弹性的大小。威森博格数越大,聚合物溶液的黏弹性越大,驱油效率也增加。
     通过水溶性的醋酸铬-HPAM凝胶在亲水岩心和亲油岩心中的驱替过程,观察不同大小的孔隙中流体饱和度的变化规律,并对不同孔隙中油、水的驱替进行分析,从而得到亲水岩心和亲油岩心在宏观状态下,在不同驱替过程中的驱替结果的机理认识。
     在凝胶驱前的油水驱过程中,含水饱和度改变对于贝雷砂岩的孔隙大小是不敏感的,在较小的聚乙烯孔隙中,油大部分是不可移动的;在凝胶驱后的油和水驱,油的注入减少了贝雷砂岩中的凝胶的体积,贝雷砂岩中的残余水饱和度在凝胶驱后比之前高,在后续的水驱过程中,油被圈闭在贝雷砂岩中,在聚乙烯岩心中,在后续水驱中没有圈闭额外的油。胶凝液的注入使两种多孔介质中的油发生流动,即使在胶凝液驱替的过程中压力梯度比在前面的驱替过程中的压力梯度要小。
     在贝雷砂岩或者是聚乙烯岩心中,在凝胶驱后立刻产生了水相流动的极高阻力(Frrw>10000),推测起来是因为不可渗透凝胶占据了几乎所有的亲水孔隙空间。在贝雷砂岩凝胶驱后的油的流动过程中,许多凝胶被破坏了或者是体积减少,因此导致了相对高的油相渗透率(Frro=15)。
     为了筛选适合现场岩心的RPM,通过对不同浓度、注入量、注入压力驱油效果比较,结果注入浓度为1000mg/l、注入量为0.4PV改善剂,注入压力为0.3MPa的采收率和累积产油量提高幅度最大,最终采收率最高。在水驱基础上,在该条件下注入改善剂:非均质岩心注入改善剂驱油效果明显好于均质岩心。改善剂驱油中压力变化、流出水中善剂浓度,可增加改善剂的流动性。
     本研究中利用不同聚合物质量浓度的RPM,在不同润湿性的岩心上,在水驱使产出液含水达到98%以后,又进行了以延迟交联的胶凝液模拟的聚合物驱,注入胶凝液的过程在产出液含油少于2%后停止,然后等待胶凝液胶凝后,进行凝胶驱的后续水驱,结果如下:
     亲水岩心的水驱阶段采收率比亲油岩心的高,这是因为亲油岩心中小的孔隙中的油没有受到影响,而亲水岩心中无论大小孔隙中都有水进入驱替孔隙中的油。
     在亲油岩心中,由于不同聚含量的RPM黏弹性的不同,随着威森伯格数的增加,其聚驱的采收率随聚含量增加而增加,最低含水率也随之发生变化;后续的凝胶驱由于受到前期聚驱采出程度的影响,随着RPM聚含量增加,采收率增大后减小。累积产油量的变化趋势与采收率变化相近;
     在亲水岩心中,在不同聚含量条件下,聚驱采收率效果与亲油岩心中的一致,而凝胶驱采收率比较低,这是由于注入的凝胶圈闭了大量的残余油。累积产油量变化趋势与采收率变化相近;
     通过注入RPM前后渗透率以及相对渗透率曲线的变化,我们看到了实验中所采用的RPM的DPR效果。这是因为在油注入过程中打开了一条流动通道,是通过凝胶的脱水打开的。在后续的注入水的过程中,在凝胶重新水化的过程中,通道可能会部分关闭。
The increase in displacement efficiency of polymer flooding can only be caused by micro forces which do not increase the macro pressure gradient, the elasticity of driving fluid can change the microflow lines in porous media, the increase the micro force which acting on the protruding part of residual oil blob and mobilize the protruding part, so the displacement efficiency of polymer flooding increase.
     Micro forces have the following characteristics. Viscoelastic fluid can produce more micro forces than the Newtonian fluid, it can largely increase the displacement efficiency of polymer flooding that the micro forces mobilize the small protruding part. Even if the micro forces is smaller the macro pressure gradient, it can move the residual oil blob,the micro forces that are created by the change in flow lines can’t impact macro pressure gradient; it can change but macro forces don’t change, and it is independent variable in viscoelastic fluid flooding.
     The parameters characterizing fluid elastic are First normal stress difference, Relaxation time,Deborah number,Storage module, and Weissenberg number, and different parameters have different effects. In the simplified two-dimensional model of the non-equant diameter pore, the degree of change in flow lines for viscoelastic fluid is determined by weissenberg number, weissenberg number is larger and the range of degree is biger, and the piston effect of variable diameter is more significant, and it has larger displacement efficiency of viscoelastic fluid. Then in this research, it is quantitatively characterized the size of the viscoelastic polymer solution that impact on oil displacement efficiency by Weissenberg number. weissenberg number is larger, the viscoelastic polymer solution is bigger, and displacement efficiency increase.
     By the placement of water-soluble Cr(Ⅲ)-acetate-HPAM gel in water-wet and oil-wet cores, we research variation of fluid saturation in different size pores, and analyze the oil and water flooding in defferent pores, then recognize the flooding mechanism of water-wet and oil wet cores that is in macroscopic state in different flooding course.
     During water and oil flooding before gel placement, pores of all size rages in Berea experienced significant gains in water saturation, in contrast in polyethylene, oil was largely immobile in smaller pores; During oil flow after gel placement in Berea, much of the gel was destroyed or experienced a reduction in volume, Swr after gel placement is higher than that before gel placement, oil was traped in Berea in follow-up water flooding, and in polyethylene. extra oil wasn’t traped in follow-up water flooding. Injection of gelant mobilized oil in both porous media even though the pressure gradients during gelant placement were less than those during previous floods.
     In Berea or polyethylene, immediately after gel placement,an extremely high resistance to water flow occurs, presumably because impermeable gel occupies nearly all of the aqueous pore space. During oil fow after gel placement in Berea, much of the gel was destroyed or experienced a reduction in volume, thus leading to a relatively high permeability to oil. In order to select suitable RPM for-on site core, efficiency that is in different polymer concentration, injection volume, injection pressure was contrasted, the result was that the displacement efficiency and cumulative oil production were largest margin of increase while polymer concentration was 1000mg/l, injection volume was 0.4PV, injection pressure was 0.3MPa. On the basis of water flooding, RPM was injected In the above conditions. Displacement effeciency was better in heterogeneous cores than in homogeneous cores. The result of pressure change in RPM flooding and HPAM and Cr concentration in effluent demonstrated that the RPM is illiquid, but if polymer concentration is lower, the RPM fluidity will increase.
     This research adopted the RPM of different concentration, carried out polymer displacement that was simulated by delayed crosslined gelation in defferent wettability cores after the effluent in water flooding contained more than 98% water and the experiment was stopped. Injecting gelation process was stopped when the effluent contained less than 2% oil, and after the gel formed, follow-up water flooding carried on. The result is below.
     The efficiency of water flooding in water-wet cores was higher than that in oil-wet cores, the cause was that the oil in the smallest cores wasn’t affected in oil-wet cores, in contrast, water entered all size cores and placed the oil out in water-wet cores.
     In oil-wet cores, because of the different viscoelasticity of RPM in different polymer concentration, with the increase of Weissenberg number, efficiency of polymer placement increased and the lowest water content changed; follow-up gel flooding were affected by the recovery level of early polymer flooding and the recovery inceased then reduced with the increase of of polymer concentration of RPM. Cumulative oil production had the similar trend as recovery.
     In water-wet cores, polymer recovery trends were same as that in oil-wet cores for different polymer concentration, in contrast, gel recovery were smaller because the gel traped large volume residual oil. Variation trend of cumulative oil production were similar as that of recovery.
     Due to permeability change before and after gelation injection, and relative permeability curve change, DPR effect of RPM were indicated. The cause was that flow lines were opened during oil injection by gel dehydrating. During follow-up water injection, gel re-hydrated and the open lines closed.
引文
[1].韩大匡.我国三次采油提高采收率技术发展展望.中国石油天然气总公司油气田开发工作会议文集.北京:石油工业出版社,1996. 135~138
    [2].中国石油天然气总公司科技发展局开发生产局编.改善高含水期油田开发效果实例.北京:石油工业出版社,1996
    [3].李宇乡,唐孝芬,刘双成.我国油田化学堵水调剖剂开发和应用.油田化学,1995,12(1):88-94
    [4].韩大匡.深度开发高含水油田提高采收率问题的探讨.石油勘探与开发,1995,22(5):47-55
    [5].王启民,冀宝发,隋军等大庆油田三次采油技术的实践与认识.大庆石油地质与开发,2001,20(2):5-12
    [6].刘一江,王香增.化学调剖堵水技术.石油工业出版社,2002.2
    [7].刘翔鄂,李宇乡.中国油田堵水技术综述.油田化学,1992,9(2):180-187
    [8].肖传敏,王正良.油田化学堵水调剖综述.精细石油化工进展,2003,4(3):43-46
    [9].周林然,卢渊,伊向艺.聚合物冻胶类堵剂在油田堵水中的应用.内蒙古石油化工,2005,10:87-90
    [10].白宝君,李宇乡,刘翔鄂.国内外化学堵水调剖技术综述.断块油气田,1998,5(1):1-4
    [11].白宝君,刘翔鄂,李宇乡.我国油田化学堵水调剖新进展.石油钻采工艺,1998,20(3):64-68
    [12]. Dhafeeri, A.M., Seright, R.S., Nasr-El-Din, H.A., and Sydansk, R.D. High-permeability carbonate zones (Super-K) in Ghawar Field (Saudi Arabia): Identified, characteried, and evaluated for gel treatments, SPE 97542 presented at the SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, 5-6 December, 2005
    [13]. Eoff, L., Dalrymple, D.,Reddy, B.R., Morgan, J., and Frampton, H. Development of hydrophobically modified water-soluble polymer as a selective bullhead system for water-production problem. SPE 80206 presented at the SPE International Symposium on Oilfield Chemistry, Houston, 5-7 February, 2003
    [14]. Kalfayan, L.J. and Dawson, J.C. Successful implementation of resurgent relative permeability modifier (RPM) technology in well treatments requires realistic expectations. SPE 90430 presented at the SPE Annual Technical Meeting and Exhibition, Houston,26-29 September, 2004
    [15]. R.S. Seright. Impact of permeability and lithology on gel performance. SPE 24190 presented at the SPE/DOE Eighth Symposium on Enhanced Oil Recovery held in Tulsa, Oklahome, April 22-24,1992
    [16]. Clive Cornwall, Adam Boughey. Relative permeability modifier(RPM):suitability screening with reservoir core under reservoir conditions. SPE112503 presented at the 2008 SPE Intermational Symposium and Exhibition on Formation Damage Control held in Lafayette, Louisiana, U.S.A
    [17]. Len Fry, Don Everett, Mark Moody, Brad Hina, Jim Gessel, Steve Gessel, Successful Application of Relative-Permeability Modifiers to Control Water Production in Rose Run Fracturing, SPE 104572
    [18]. Ali A. Al-Taq, Hisham A. Nasr-El-Din, Mohammed M. Saudi, et al. Potential damage due to relative permeability modifiers: laboratory studies and a case history. SPE 112458 presented at the 2008SPE International Symposium and Exhibition on Formation Damage Control held in Lafayette, Louisiana, U.S.A
    [19]. A. Stavland, K.I.Andersen, T.Tjomsland, et al. How to apply a blocking gel system for bullhead selective water shutoff: from laboratory to field. SPE 99729 presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, Oklahoma. U.S.A.22-26 April 2006
    [20]. R.S.Seright, R.H.Lane, R.D.Sydansk. A strategy for attacking excess water production. SPE 70067 presented at the SPE Permian Basin Oil and Gas Recovery Conference held in Midiand, Texas, 15-16 May 2001.
    [21]. R.S.Seright, J.Liang, W.Brent Lindquist. Characterizing disproportionate permeability reduction using Synchrotron X-Ray Computed Microtomography. SPE 79717.
    [22]. R.S.Seright, R.H.Lane, R.D.Sydansk. A strategy for attacking excess water production. SPE 84966.
    [23]. Jenn-Tai Liang, R.S.Seright. Further investigations of why gels reduce water permeability more than oil permeability. SPE 37249 presented at the SPE Intemational Symposium on Oilfield Chemistry, Houston, February 18-21, 1997.
    [24]. R.S.Seright, J.Liang, W.Brent. Characterizing disproportionate permeability reduction using Synchrotron X-Ray Computed Microtomography. SPE 71508 presented at the 2001 SPE Annual Technical Conferrence and Exhibition held in Orieans, Lousiana, 30 September-3 October 2001.
    [25]. Zaitoun A, Kohler N. Thin Polyacrylamide Gels for Water Control in High-Permeability Production Wells SPE 22785, 1991
    [26]. Kohler, N. et al. Weak gel formulations for selective control of water production in high-permeability and high-temperature production wells. SPE 25225 presented at the 1983 International Symposium on Oilfield Chemistry, New Orleans, Louisiana, 2-5 March
    [27]. Dawe, R.A. and Zhang, Y. Mechanistic study of the selective action of oil and water penetrating into a gel emplaced in a porous medium, J. of Pet. Sci. and Eng. 12(1994)113-125
    [28]. Lullo G.D., Rae P., Curtis J. New insights into water control-a review of the state of the art-part [R]. SPE 79012,2002
    [29]. Nelson S.G. Kalfayan L.J., Rittenberry W.M. The application of a new and unique relative permeability modifier in selectively reducing water production[R]. SPE 84533, 2003
    [30]. A. Stavland, S.Nilsson. Segregated flow is the governing mechanism of disproportionate permeabiltity reduction in water and gas shutoff. SPE 71510 presented at the 2001 SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana,30 September-3 October 2001
    [31]. Lullo G.D., Rae P. New insights into water control-A review of the state of the art[R].SPE 77963 presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia,8-10 October 2002.
    [32]. Zaitoun A., Kohler N., Montemurro M.A. Control of water influx in heavy oil horizontal wells by polymer treatment. SPE 24661,1992.
    [33]. Zaitoun A., Kohler N., Bossie-Codreanu D., et al. Water shutoff by relative permeability modifiers: Lessons from several field applications[R]. SPE 56740.
    [34].王德民,韩松,李庆松.利用相渗透率改善剂提高采收率的压裂方法[M]. CN1614193.
    [35].王德民,韩松,李庆松.相渗透率改善剂和利用其提高原油采收率的方法[M]. CN1632042.
    [36].韩松.高含水厚层层内控水提高采收率压裂技术研究[D].大庆石油学院博士论文,2006
    [37]. Baojun Bai, Yuzhang Liu, Liangxiong Li. Preformed particle gel for conformance control: transport mechanism through porous media. SPE 89468 presented at the 2004 SPE/DOE Symposium on Improved Oil Recovery, Tulsa, 17-21 April,2004
    [38]. Liang J, Sun H, Seright RS. Why Do Gels Reduce Water Permeability More Than Oil Permeability? SPE/DOE 27829,1994.
    [39]. Zaitoun, A.and Kohler, N. Two-phase flow through porous media: effect of an adsorbed polymer layer. SPE 18085 presented at the 1988 Annual TechnicalConference and Exhibition, Houston, Texas, 2-5 October.
    [40]. Odeh, A.S. Effect of viscosity ratio on relative permeability. Petroleum transactions, AIME 216 (1959) 346-353.
    [41]. Sparlin, D.D. and Hagen, R.W., Jr. Controlling water in producing operation-part5, World Oil (June 1984) 137-142
    [42]. Seright, R.S. Reduction of gas and water permeabilities using gels. SPE 25855 presented at the 1993 Rocky Mountain Regional/Low Permeability Reservoir Symposium, Denver, April 12-14.
    [43]. Liang J, Sun H, Seright R S. Reduction of Oil and Water Permeabilities Using Gels SPE/DOE 24195,1992.
    [44]. White J.L., Goddard J.E., Phiilips H.M. Use of polymers to control water production in oil wells[J]. JPT, 1973, 25(2): 143-150.
    [45]. Jenn-Tai Liang, R.S.Seright. Further investigations of why gels reduce water permeability more than oil permeability. SPE 37249 presented at the 1997 SPE International Symposium on Oilfield Chemistry held in Houston, 18-21 Febrary,1997
    [46]. Nilsson, S., Stavland, A., and Jonsbraten, H.C. Mechanistic study on disproportionate permeability reduction. SPE39635 presented at the1998 Improve Oil Recovery Symposium,
    [47]. Liang J., Seright R.S. Wall-effect/gel-droplet model of disproportionate permeability reduction[R]. SPE 59344, 2000
    [48]. Zaitoun, A., Bertin, H., and Lasseux, D. Two-phase flow property modifications by polymer adsorption. SPE 39631 presented at the 1998 SPE/DOE Improved Oil Recovery Symposium, Tulsa, April 19-22.
    [49]. Dawn, R.A.and Zhang, Y. Mechanistic study of the selective action of oil and water penetrating into a gel emplaced in a porous medium. Journal of Petroleum Science and Engineering (1994 )12,113-125.
    [50].刘站立,宋文阁.表面润湿性对孔隙中石油分布的影响.国外油田工程,1996,2:3
    [51]. Nutting PG. Some physical and chemical properties of reservoir rocks bearing on the accumulation and discharge of oil. AAPG. 1934(12):127
    [52]. Mungan N. Interfacial effects in immicible liquid-liquid displacement in porous media. SPE J.1966(9):247
    [53].吕平.毛管数对天然岩心渗流特征的影响[J].石油学报,1987(22)::48-54
    [54]. Lake L. Enhanced Oil Recovery[M]. Printice Hall
    [55]. Demin Wang, Jiecheng Cheng, Qingyan Yang, Wenchao Gong, Qun Li, Fuming Chen. Viscous-elastic polymer can increase displacement efficiency in cores[R],SPE63227 presented at SPE Annual Technical Conference and Exhibition, 1-4 October 2000, Dallas, Texas
    [56].郭尚平.物理化学渗流微观机理[M].科学出版社
    [57]. R. Seright, et al. X-Ray computed microtomography studies of fluid partitioning in drainage and imbibition before and after gel placement: Disproportionate permeability peduction[J]. SPE Journal, June 2006
    [58].王德民,王刚,吴文祥,等.黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,23(1):43-55
    [59].刘振宇,许元泽.聚丙烯酰胺溶液微观流变特性的研究[J].油田化学,19,V01.13(2):145-148
    [60].王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(下) [M].大庆石油地质与开发.2001(8):1
    [61]. F. G. de Gennes. Coil-Stretch Transition of Dilute Flexible Polymers Under Ultrahigh Velocity Gradients[J]. J. Chem. Phys.,1974,60:5030-5037
    [62].佟曼丽.流经孔隙介质时聚合物稀溶液德博拉数的确定[J].油田化学,1992,9(1):50-53
    [63]. Shular P. J, Lerner. R. M, Kuehne D. L. Improving chemical flood with micellar/ alkaline/ polymer processes[R]. SPE14934, 1986
    [64].姜海峰.粘弹性聚合物驱提高驱油效率机理的实验研究[D].大庆石油学院博士论文,2008.
    [65].赵颖,张华,朱金才.黄原胶溶液在油田开发中的应用[J].断块油气田,1996,13(2):237-242
    [66].李卫东,郭雄华,陈跃章,等.孤东油田黄原胶驱先导试验粘度变化及影响因素[J].石油钻采工艺,1998,20(5):75-78
    [67].张伯英,孙景民,康恒.孤东油田七区油井黄原胶驱应用效果分析[J].石油与天然气化工,1999,28(1):48-52
    [68].张伯英,孙景民,康恒.黄原胶驱现场应用效果分析[J].钻采工艺,1999,22(2):70-71
    [69].孙景民,王喜臣,张成玉,等.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000,27(5):90-92
    [70].曹宝格,驱油用疏水缔合聚合物溶液的流变性及粘弹性实验研究[D],西南石油大学博士学位论文,2006
    [71]. Wu Wenxiang, Wang Demin, Jiang Haifeng. Effect of the Visco-elasticity of Displacing Fluids on the Relationship of Capillary Number and Displacement Efficiency in Weak Oil-wet Cores[R], SPE109228
    [72]. H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯.流变学导引[M].中国石化出版社:75
    [73]. Hongjun Yin, Demin Wang, Huiying Zhong. Study of Flow Behavior of ViscoelasticPolymer Solution in Micropore with Dead End[R], SPE 101950
    [74].王德民,程杰成,夏惠芬,等.粘弹性液体平等于界面的力可以提高驱油效率[J].石油学报,2002, 5:59-63
    [75].王德民,程杰成,杨清彦,等.黏弹性聚合物溶液提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-52
    [76].夏慧芬,孔凡顺,吴军政,等.聚合物溶液的弹性效应对驱油效率的作用[J].大庆石油学院学报,2004,28(6):29-31
    [77].夏慧芬,王德民,王刚,等.聚合物溶液在驱油过程中对盲端类残余油的弹性作用[J].石油学报,2006,27(2):72-76:
    [78].夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65
    [79].夏惠芬.粘弹性聚合物溶液在油藏中的流动及提高微观驱油效率的机理[D]. :大庆石油学院博士论文, 2001
    [80].夏惠芬,王德民,侯吉瑞,等.聚合物溶液的粘弹性对驱油效率的影响[J].大庆石油学院学报,2002,21(2):108-111
    [81]. Huifen Xia, Ye Ju, Fanshun Kong. Effect of elastic behavior of HPAM solutions on displacement efficiency under mixed wettability conditions[R], SPE90234 presented ant the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Perth Australia, 17-20 October 2004
    [82]. . Seright, R.S. et al. X-Ray Computed Microtomography studies of disproportionate permeability. SPE89393
    [83]. Seright, R.S. et al. Characterizing disproportionate permeability reduction using Synchrotron X-Ray Computed Microtomography. SPEREE(October 2002)355-364.
    [84]. Seright, R.S., Liang J., Lindquist, B.W., and Dunsmuir, J.H..Use of X-Ray Computed Microtomography to under why gels reduce permeabilty to water more than that to oil. J. Petroleum Science and Engineering, 39, Nos. 3-4 (Sept. 2003) 217-230.
    [85]. Seright, R.S..Using chemicals to optimize conformance control in fractured reservoirs. Annual Technical Progress Report. U.S.DOE Contract DE-AC26-98BC15110, (Sept.1999)21-28.
    [86]. Seright, R.S..Effect of rock rermeability on gel performance in fluid-diversion applications. In Situ (1993)17, No.4,363-386.
    [87]. R.S.Seright. Optimizing disproportionate permeability reduction. SPE 99443 presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, U.S.A. 22-26 April 2006
    [88].兰州大学化学系,中国科学院上海药物研究所.有机微量定量分析[M].科学出版社:395
    [89].张春光,李干左,王果庭.几种测定微量聚丙烯酰胺方法的比较.石油钻采工艺,8(3),1981
    [90].张祥云,胡靖邦,侯强华,等.聚丙烯酰胺浓度检测技术研究.大庆石油学院学报, 12(3),1988:28-34
    [91].徐德恒等,GPC法测定聚丙烯酰胺水溶液中的残留单体量及聚合物量.石油化工,11(1),1982:24
    [92].陈彬,何焕杰,王永红.几种水解聚丙烯酰胺及其相似物浓度测定方法分析.钻井液与完井液, 22(3),2005:66-69
    [93].胡俊明,毛维友,何勤功.碘-淀粉比色法测定微量聚丙烯酰胺.石油化工,12(7),1983:430-434
    [94].杨一超,吴飞,王钦源,等. PVC尼龙6-树脂-二苯碳酰二肼分光光度法测定三价铬和六价铬.江苏预防医学,1997,2:64-65
    [95].吴怀德,周机明,王根凤.原子吸收光谱法中表面活性剂作用的研究及其应用-铬(Ⅲ)和铬(Ⅵ)的同时测定[J].分析化学,1987,15(3):211-215
    [96].朱春霞,高凤燕.滴定法及光度法联合快速测定高碳铬铁氮化铬铁中铬、硅、锰、磷及其理论探讨.冶金标准化与质量,2008,2:20-23
    [97].梁云生,杨毅,毛文剑.硫酸亚铁铵滴定法快速测定铬铁矿中铬.岩矿测试,2007,1:73-74
    [98]. Ali A. Al-Taq, Nasr-El-Din, Ridha A. Lajami. Effective acid diversion and water control in carbonate reservoirs using an associative polymer treatment : case histories from Saudi Arabia. SPE 109714 presented at the 2007 SPE Annual Technical Conference and Exhibition held in Anaheim, California, U.S.A., 11-14 November 2007
    [99]. A. Torres, J. Peano, E. Lopez, et al. Conformance while fracturing: technology used to reduce water production in North Mexico. SPE 104053 presented at the First Intermational Oil Conference and Exhibition in Mexico held in Cancun, Mexico, 31 August-2 September 2006
    [100].Robert D.Sydansk, Randall S. Seright. When and where relative permeability modification water-shutoff treatments can be successfully applied. SPE 99371 presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, 22-26 April 2006
    [101].鄢捷年.油藏岩石润湿反转与储层损害.油田化学,1991,8(4):342-350
    [102].陈蓉,曲志浩,赵阳.油层润湿性研究现状及对采收率的影响.中国海上油气(地质),2001,15(5):350-355
    [103].Rao N.D. Is there a correlation between wettability from corefloods and contact angles. SPE 37234, 1997
    [104].Amott, E. Observations relating to the wettability of porous rock. Trans. AIME, 1959, 216: 156-162
    [105].吴迪祥,张继芬,李虎君.油层物理[M].石油工业出版社:154-155
    [106].姚同玉.油层润湿性反转及其对渗流过程的影响[D].中国科学院研究生院博士学位论文,2005
    [107].陈文芳.非牛顿流体力学[M].北京:科学出版社,1984
    [108].刘春泽,程林松,夏惠芬.聚合物溶液在波纹管中的流动规律.西安石油大学学报(自然科学版),2006,21(2):37-40
    [109].Jing Ti-qing. Industry Rheology[M]. Beijing: China Chemical Industry Press, 1993.(in Chinese).
    [110].Huifen Xia, Dan Li, Wenguo Ma, et al. Experiments research of polymer solution viscoelasticity. J. Cent. South Univ. Technol. 2007,14(s1):206-209
    [111].Chang Dae Han. Rheology in Polymer processing[M].XU Xi, WU Da-cheng, trans. Beijing: Academic Press, 1976.
    [112].Jing Ti-qing. Industry Rheology[M]. Beijing: China Chemical Industry Press, 1993.(in Chinese).
    [113].A. Stavland, K.I. Andersen, B. Sanday, et al. How to apply a blocking gel system for bullhead selective water shutoff: from laboratory to field. SPE 99729 presented at the 2006 SPE/DOE Symposium on Improved Oil Recovery held in Tulsa, Oklahome, U.S.A.,22-26 April 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700