用户名: 密码: 验证码:
硝化抑制剂DMPP对氮素转化的影响及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿素是我国农业生产中应用较为广泛的肥料,但在一般情况下,尿素的利用率很低。尿素施入土壤后在脲酶的作用下水解成氨,经硝化作用转化为易于移动的硝态氮,增加了氮素淋失和N20排放的风险。因此,调控硝化过程是减少氮素损失的有效途径。目前的研究表明,施用硝化抑制剂是一种有效的氮肥管理措施,能通过抑制氨的氧化,有效减少施肥导致的氮素淋失和N20排放,提高氮肥利用率。3,4-二甲基吡唑磷酸盐(DMPP)是一种新型的硝化抑制剂,具有用量低、抑制效果好的优点,并且对土壤和作物均没有毒害作用。本研究旨在调查DMPP在特定土壤上的抑制效果和影响范围,了解DMPP在土壤微生物学和酶学上的作用,探讨DMPP6勺作用机制,为DMPP的合理施用提供理论依据。具体研究结果如下:
     1、硝化抑制剂DMPP在不同土壤中的抑制效果不同。在培养期内,四种土壤的pH和铵态氮含量呈先上升后下降的趋势,硝态氮含量和表观硝化率呈逐渐上升的趋势。与单施尿素相比,施用DMPP显著增加了土壤pH和铵态氮含量,降低了硝态氮含量和表观硝化率。在水稻土和潮土中,单施尿素处理的硝化过程到第14天时基本完成,施用DMPP使硝化过程延长了28天完成。在黑土和红壤中,尤其是红壤,硝化过程相对缓慢,施用抑制剂虽然降低了土壤的表观硝化率,但降低的程度低于水稻土和潮土。
     2、硝化抑制剂DMPP改变了土壤微域环境(包括水平和垂直方向)中的氨氧化细菌群落结构,这种改变与土壤pH和无机氮的变化有关。在施肥区内,施用DMPP显著提高了土壤pH、铵态氮含量和无机氮总量,同时显著降低了土壤中硝态氮的含量,表现出强烈的抑制作用。在0-5cm范围内(包括水平和垂直方向),DMPP的抑制作用随着与施肥区距离的增加而逐渐减弱。单施尿素时,DGGE条带数量在水平和垂直方向上均是从施肥区开始逐渐减少,与铵态氮含量的变化趋势一致。相反,施用DMPP时,DGGE条带数量在水平和垂直方向的0-5cm内均呈增加趋势。两个处理相比,施用DMPP处理的条带数量在0-3cm内低于单施尿素处理,而在3-5cm内则高于单施尿素处理。DGGE条带的DNA序列分析表明本试验中氨氧化细菌的主要种类属于亚硝酸螺菌。
     3、硝化抑制剂DMPP通过抑制氨氧化细菌的生长有效延缓了土壤中的硝化过程。施用DMPP显著减少了氨氧化细菌的数量,提高了土壤pH和铵态氮含量,降低了亚硝态氮和硝态氮含量,而对氨氧化细菌群落结构无明显影响。随着培养时间的延长,DMPP的抑制效果逐渐减弱。在培养的前35天,不同用量DMPP处理之间的氨氧化细菌数量无显著差异,从第35天起0.5%DMPP处理的氨氧化细菌数量显著高于1%DMPP和2%DMPP处理。
     4、施用硝化抑制剂DMPP对尿素水解过程和硝态氮的还原过程无显著影响。在整个培养期内,土壤脲酶、硝酸还原酶、亚硝酸还原酶和羟胺还原酶活性在单施尿素处理和施用DMPP的处理之间均无显著差异,且在不同用量的DMPP处理之间也无显著差异。
     5、施用DMPP显著减少了温室气体N2O和C02的排放量,但是增加了氨的挥发。与单施尿素相比,施用DMPP延长了氨挥发的持续时间,显著增加了氨挥发总量。不同处理土壤中的N2O和C02释放趋势相似,二者的释放高峰在单施尿素处理中处于培养前期(1-7天),而在施用DMPP的处理中处于培养后期(20-35天)。与单施尿素相比,施用DMPP显著减少了N20和C02的排放总量。不同用量的DMPP对氨挥发量无显著影响,但是1%DMPP处理的N20和CO2排放量显著低于0.5%DMPP处理,且与2%DMPP处理无显著差异,因此推断DMPP在潮土中的适宜用量为施肥氮量的1%。
Urea is widely used in agricultural production as a convenient source of nitrogen. However, when applied to soil, urea has been reported to have low N response efficiencies due to volatilization, nitrification, denitrification, erosion, runoff, and leaching. Previous studies indicate that nitrification inhibitors are useful in improving N use efficiency which can inhibit the oxidation of ammonium. Nitrification inhibitors have also been shown to be effective in reducing nitrate leaching and nitrous oxide emissions. More recently, the nitrification inhibitor,3,4-dimethylpyrazole phosphate (DMPP), has become available and was reported can be used at low application rate with high efficiency, and is also environmentally friendly.
     The objective of this study was to determine the inhibitory effect of DMPP on particular soil. The effect of DMPP on soil microbes and soil enzymes were also examined in order to demonstrate the mechanism of DMPP on nitrification inhibition. The outcome of this research may help formulate management decisions that aid in improving N application efficiency.
     The results of this research are as follows:
     The effect of nitrification inhibitors3,4-dimethylpyrazole phosphate (DMPP) on soil nitrogen transformation in different soils was investigated in a laboratory incubation experiment. During the incubation, soil pH and NH4+-N increased at the beginning of the experiment and then decreased, soil NO3--N and the apparent nitrification rate (ANR) increased throughout the incubation process. The concentration of NH4+-N and the soil pH were significantly higher in the treatments with DMPP compare to the urea-only treatment, which also possessed low concentration of NO3--N and low ANR. In the treatments of paddy soil and fluvo-aquic soil, nitrification was observed from the urea-only treatment until day14. After the addition of DMPP, this process was extended to28days. Nitrification was also found to be slower in black and red soils compare to paddy and fluvo-aquic soils, especially in red soil. The addition of DMPP affected the soil ANR, but this effect was found to be as strong in paddy and fluvo-aquic soils.
     The effect of the nitrification inhibitor3,4-dimethylpyrazole phosphate (DMPP) on N transformations and composition of ammonia-oxidizing bacteria (AOB) communities was investigated, at centimeter scale in a microcosm experiment under laboratory conditions. After28days samples were collected from soil treated with urea or urea and DMPP at increasing distance from the fertilizer zone; this distance ranged from0to5cm in both horizontal and vertical directions. The results showed that DMPP application significantly increased soil pH, NH4+-N and mineral N (NH4+-N, NO3--N and NO2--N) concentrations but decreased (NO3-+NO2O-)-N concentration and such effect was decreased by increasing the distance from the fertilizer zone. Fingerprint profiles of denaturing gradient gel electrophoresis (DGGE) showed that the number of bands decreased by increasing the distance from the fertilizer zone due to decreasing NH4+-N concentrations in the urea treatment. Compared to urea applied alone, DMPP application increased NH4+-N concentrations and decreased AOB diversity from0to3cm but promoted diversity from3to5cm distance from the fertilizer zone. A phylogenetic analysis showed that the AOB communities were dominated by Nitrosospira cluster3. Therefore, the nitrification inhibitor DMPP modified the composition of AOB communities by increasing the distance from the fertilizer zone and this probably was related to the changes in soil pH and inorganic N concentration.
     Nitrification was delayed due to the inhibitory effect on the reproduction of AOB when DMPP was applied. Although the addition of DMPP significantly decreased N02--N and N03"-N concentrations, and increased the soil pH and NH4+-N concentration, no significant effect was observed on the AOB community structure. Based on the RT-PCR results, the quantity of AOB was significantly lower in the DMPP treatments compared to the urea-only treatment.
     Compared to the urea-only treatment, no significant effect was observed on urea hydrolysis and the prosess of nitrate reduction to ammonium when the DMPP was added. There was no significant difference in the activity of soil urease, nitrate reductase, nitrite reductase and hydroxylamine reductase between different DMPP application rates.
     The addition of DMPP significantly reduced the emission of N2O and CO2compare to the urea-only treatment, however, ammonia volatilization was increased during the incubation period due to the high concentration of NH4+-N inside the soil. The same trends of N2O and CO2emissions were observed from different treatments of soil. In the urea-only treatment, N2O and CO2peak emissions were observed in the first week, whereas N2O and CO2peak emissions in the DMPP treatments occurred after20days of incubation. The cumulative emissions of N2O or CO2were significantly lower in the DMPP treatments compared to the urea-only treatment. There was no significant effect of DMPP application rate on ammonia volatilization. However, N2O and CO2emissions were increased when the DMPP application rate was lower than1%. Hence, we suggested that1%of N is the best application rate of DMPP.
引文
1 Abbasi MK, Adams WA. Estimation of simultaneous nitrification and denitrificati on in grassland soil associated with urea-N using 15N and nitrification inhibitor. Biol Fertil Soils,2000,31:38-44
    2 Abdelmagid HM, Tabatabai MA. Nitrate reductase activity of soils. Soil Biol Biochem,1987,19: 421-427
    3 Akiyama H, Tsuruta H, Watanabe T. N2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere:Global Change Sci,2000,2:313-320
    4 Asman WAH, Sutton MA, Schjorring JK. Ammonia:emission, atmospheric transport and deposition. New Phytol,1998,139:27-48
    5 Avrahami S, Bohannan BJM. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol, 2007,73:1166-1173
    6 Azam F, Benckiser G, Muller C, Ottow JCG. Release, movement and recovery of 3,4-dimethylpyrazole phosphate (DMPP), ammonium, and nitrate from stabilized nitrogen fertilizer granules in a silty clay soil under laboratory conditions. Biol Fertil Soils,2001,34:118-125
    7 Ball-Coelho BR, Roy RC. Enhanced ammonium sources to reduce nitrate leaching. Nutr Cycl Agroecosystem,1999,54:73-80
    8 Barth G, Tucher SV, Schmidhalter U. Effectiveness of 3,4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor concentration, application form, and soil matric potential. Pedosphere,2008,18:378-385
    9 Barth G, Tucher SV, Schmidhalter U. Influence of soil parameters on the efficiency of the new nitrification inhibitor DMPP (ENTEC(?)). Horst WJ et al. (Eds) Plant nutrition-Food security and sustainability of agro-ecosystems. Kluwer Academic Publishers, Netherland,2001:756-757
    10 Bedard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbial Rev,1989,53:68-84
    11 Bolan NS, Saggar S, Luo JF, Bhandral R, Singh J. Gaseous emissions of nitrogen from grazed pastures:processes, measurements and modeling, environmental implications, and mitigation. Adv Agron,2004,84:37-120
    12 Bollmann A and Laanbroek HJ. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol Ecol,2001,37:211-221
    13 Bouwman AF. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In Bouwman AF (Ed) Soils and greenhouse effect. Chichester:Wiley and sons, Wiley, NY,1990: 61-127
    14 Bouwman AF. Environmental science:Nitrogen oxides and tropical agriculture. Nature,1998,392: 866-867
    15 Bremner JM. Inorganic forms of nitrogen. In:Black CA (Ed) Methods of soil analysis. American society of agronomy, Madison, WI,1965:1179-1237
    16 Bronson KF, Touchton JT, Hauck RD, Kelley KR. N-15 recovery in winter wheat as affected by application timing and dicyandiamide. Soil Sci Soc Am J,1991,55:130-135
    17 Burns LC, Stevens RJ, Smith RV. The occurrence and possible sources of nitrite in a grazed, fertilized, grassland soil. Soil Biol Biochem,1995,27:47-59
    18 Cabrera ML, Kissel DE, Bock BR. Urea hydrolysis in soil:Effects of urea concentration and soil pH. Soil Biol Biochem,1991,23:1121-1124
    19 Cai GX, Chen DL, Ding H, Pacholski A, Fan XH, Zhu ZL. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosys,2002,63:187-195
    20 Carneiro J, Cardenas LM, Hatch DJ, Trindade H, Scholefield D, Clegg CD, Hobbs P. Effect of the nitrification inhibitor dicyandiamide on microbial communities and N2O from an arable soil fertilized with ammonium sulphate. Environ Chem Lett,2010,8:237-246
    21 Chalk PM, Victoria RL, Muraoka T, Piccolo MC. Effect of a nitrification inhibitor on immobilization and mineralization of soil and fertilizer nitrogen. Soil Biol Biochem,1990,22: 533-538
    22 Chaves B, Opoku A, De Neve S, Boeckx P, Van Cleemput O, Hofman G. Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues. Boil Fertil Soils,2006,43: 62-68
    23 Chen D, Suter HC, Islam A, Edis R. Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem,2010,42: 660-664
    24 Chen X, Zhang LM, Shen JP, Wei WX, He JZ. Abundance and community structure of ammonia-oxidizing archea and bacteria in an acid paddy soil. Biol Fertil Soils,2011,47:323-331
    25 Chu HY, Fujii T, Morimoto S, Lin XG, Yagi K. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management. Soil Biol Biochem,2008, 40:1960-1963
    26 Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, N2O, and NO). Microbiol Rev,1996,60:609-640
    27 Dawar K, Zaman M, Rowarth JS, Blennerhassett J, Turnbull MH. Urea hydrolysis and lateral and vertical movement in the soil:effects of urease inhibitor and irrigation. Biol Fertil Soils,2011,47: 139-146
    28 Di HJ, Cameron KC. Treating grazed pasture soil with a nitrification inhibitor, eco-n (TM), to decrease nitrate leaching in a deep sandy soil under spray irrigation-a lysimeter study. New Zeland J Agric Research,2004,47:351-361
    29 Di H J, Cameron KC. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agric Ecosyst Environ,2005,109:202-212
    30 Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience,2009,2:621-624
    31 Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol,2010,72:386-394
    32 Di HJ, Cameron KC. Inhibition of ammonium oxidation by a liquid formulation of 3,4-Dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in six new Zealand grazed grassland soils. J Soils Sediments,2011,11:1032-1039
    33 Di HJ, Cameron KC. How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures? Soil Use Manage,2012,28: 54-61
    34 Ding WX, Yu HY, Cai ZC. Impact of urease and nitification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain. Biol Fertil Soils,2011,47:91-99
    35 Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA. Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agron J,2002,94: 153-171
    36 Dittert K, Bol R, King R, Chadwick D, Hatch D. Use of a novel nitrification inhibitor to reduce nitrous oxide emission from N-15-labelled dairy slurry injected into soil. Rapid Commun Mass Spectrom,2001,15:1291-1296
    37 Fangueiro D, Fernandes A, Coutinho J, Moreira N, Trindade H. Influence of two nitrification inhibitors (DCD and DMPP) on annual ryegrass yield and soil mineral N dynamics after incorporation with cattle slurry. Commun Soil Sci Plant Anal,2009,40:3387-3398
    38 Fettweis U, Mittelstaedt W, Schimansky C, Fuhr F. Lysimeter experiments on the translocation of the carbon-14-labelled nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in a gleyic cambisol. Biol Fertil Soils,2001,34:126-130
    39 Freney JR, Chen DL, Mosier AR, Rochester IJ, Constable GA. Use of nitrification inhibitos to increase fertilizer nitrogen recovery and lint yield in irrigated cotton. Fertilizer Research,1993,34: 37-44
    40 Fu MH, Tabatabai MA. Nitrate reductase activity in soils:effect of trace element. Soil Biol Biochem,1989,21:943-946
    41 Guiraud G, Mar ol C, Fardeau JC. Balance and immobilization of (15NH4)2SO4 in a soil after the addition of Didin as a nitrification inhibitor. Biol Fertil Soils,1992,14:23-29
    42 Harrison R, Webb J. A review of the effect of N fertilizer type on gaseous emissions. Adv Agron, 2001,73:65-108
    43 Hatch D, Trindade H, Cardenas L, Carneiro J, Hawkins J, Scholefield D, Chadwick D. Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from a slurry-treated arable soil:impact of diurnal temperature cycle. Boil Fertil Soils,2005,41:225-232
    44 He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinses upland red soil under long-term fertilization practices. Environment Microbiol,2007,9: 2364-2374
    45 Hendickson LL. A bioassay to determine the effect of organic matter and pH on the effectiveness of nitrapyrin (N-Serve) as a nitrification inhibitor. Soil Biol Biochem,1979,11:51-55
    46 Hermansson A, Lindgren P. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol,2001,67:972-976
    47 Hyman MR, Kim CY, Arp DJ. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. J Bacteriology,1990,172:4775-4782
    48 Hyman MR, Russell SA, Ely RL. Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl Environ Microbiol, 1995,61:1480-1487
    49 Inubushi K, Naganuma H, Kitahara S. Contribution of denitrification and autotrophic and heterotrophic nitrification to nitrous oxide production in andosols. Boil Fertil Soils,1996,23: 292-298
    50 IPCC. Atmospheric chemistry and greenhouse gases. Climate change 2001:the scientific basis. Cambridge University press, New York,2001:248-253
    51 Irigoyen I, Muro J, Azpilikueta M, Aparicio-Tejo P, Lamsfus C. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Aust J Soil Research,2003,41:1177-1183
    52 Irigoyen I, Lamsfus C, Aparicio-Tejo P, Muro J. The influence of 3,4-dimethylpyrazole phosphate and dicyandiamide on reducing nitrate accumulation in spinach under Mediterranean conditions. J Agric Scie,2006,144:555-562
    53 Jacinthe PA, Pichtel JR. Interaction of nitrapyrin and dicyandiamide with soil humic compounds. Soil Sci Soc Am J,1992,56:465-470
    54 Jia ZJ, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol,2009,11:1658-1671
    55 Jones RD, Schwab AP. Nitrate leaching and nitrite occurrence in a fine-textured soil. Soil Sci,1993, 155:272-281
    56 Juliette LY, Hyman MR, Arp DJ. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds:thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl Environ Microbiol,1993,59:3718-3727
    57 Keener WK, Arp DJ. Transformations of aromatic compounds by Nitrosomonas europaea. Appl Environ Microbiol,1994,60:1914-1920
    58 Khasawneh FE, Soileau JM. Soil preparation and sampling techniques for studying ion movement. Soil Sci Soc Am J,1969,33:476-477
    59 Kim YM, Park D, Lee DS, Park JM. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater,2008,152:915-921
    60 Kleineidam K, Kosmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere,2011,84:182-186
    61 Knowles R. Denitrification. Microbial Rev,1982,46:43-70
    62 Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria:A model for molecular microbial ecology. Annu Rev Microbiol,2001,55:485-529
    63 Kowalchuk GA, Stephen JR, DeBoer W, Prosser JI, Embley TM, Woldendorp JW. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol,1997,63:1489-1497
    64 Kowalchuk GA, Stienstra AW, Heilig, Stephen JR, Woldendorp JW. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol,2000,2:99-110
    65 Kroeze C, Mosier AR, Bouwman AF. Closing the global N2O budget:a retrospective analysis 1500-1994. Global Biogeochem Cycles,1999,13:1-18
    66 Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature,2006,442:806-809
    67 Li H, Liang XQ, Chen YX, Lian YF, Tian GG, Ni WZ. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. J Environ Sci,2008,20:149-155
    68 Linzmeier W, Gutser R, Schmidhalter U. Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Boil Fertil Soils,2001,34:103-108
    69 Macadam XMB, Prado Ad, Merino P, Estavillo JM, Pinto M, Gonzalez-Murua C. Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover. J Plant Physiol,2003,160:1517-1523
    70 Maftoun M, Yasrebi J, Darbekeshti M. Comparative phytotoxicity of nitrapyrin and ATC to several leguminous species. Plant Soil,1981,63:303-306
    71 Malchair S, De Boeck HJ, Lemmens CMHM, Ceulemans R, Merckx R, Nijs I, Carnol M. Diversity-function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming. Appl Soil Ecol,2010,44:15-23
    72 Marsh KL, Sims GK, Mulvaney RL. Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of C-14-and N-15-labeled urea added to soil. Boil Fertil Soils,2005,42: 137-145
    73 Martikainen PJ. Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil. Appl Environ Microbiol,1985,50:1519-1525
    74 McCaig AE, Embley TM, Prosser JI. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett,1994,120:363-367
    75 McCarty GW, Bremner JM. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Boil Fertil Soils,1989a,8:204-211
    76 McCarty GW, Bremner JM. Laboratory evaluation of dicyandiamide as a soil nitrification inhibitor. Commun Soil Sci Plant Anal,1989b,20:2049-2065
    77 McCarty GW. Modes of action of nitrification inhibitors. Boil Fertil Soils,1999,29:1-9
    78 McSwiney CP and Robertson GP. Nonlinear reponse of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biol,2005,11:1712-1719
    79 Mendum, TA, Sockett RE, Hirsch PR. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl Environ Microbiol,1999,65:4155-4162
    80 Menendez S, Merino P, Pinto M, Gonzalez-Murua C, Estavillo JM.3,4-Dimethylpyrazol phosphate effect on nitrous oxide, nitric oxide, ammonia, and carbon dioxide emissions from grasslands. J Environ Qual,2006,35:973-981
    81 Menendez S, Merino P, Pinto M, Gonzalez-Murua C, Estavillo JM. Effect of N-(n-butyl) thiophosphoric triamide and 3,4-Dimethylpyrazol phosphate on gaseous emissions from grasslands under different soil water contents. J Environ Qual,2009,38:27-35
    82 Mian IA, Riaz M, Cresser MS. The importance of ammonium mobility in nitrogen-impacted unfertilized grasslands:A critical reassessment. Environ Pollut,2009,157:1287-1293
    83 Moir JL, Cameron KC, Di HJ. Effects of the nitrification inhibitor dicyandiamide on soil mineral N, pasture yield, nutrient up take and pasture quality in a grazed pasture system. Soil Use Management, 2007,23:111-120
    84 Molina-Roco M, Ortega-Blu R. Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate in two Chilean soils. J Plant Nutr,2006,29:521-534
    85 Mosier AR. Soil processes and global change. Boil Fertil Soils,1998,27:221-229
    86 Mosier AR, Halvorson AD, Reule CA, Liu XJ. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual,2006,35: 1584-1598
    87 Muhammad Y, Muhammad A, Abdul R. Effect of soil applied encapsulated calcium carbide on growth and yield of rice (Oryza sativa L.). Pak J Bot,2005,37:629-634
    88 Muhammad Y, Muhammad A, Azeem K. Effect of acetylene and ethylene gases released from encapsulated calcium carbide on growth and yield of wheat and cotton. Pedobiologia,2006,50: 405-411
    89 Muller C, Stevens RJ, Laughlin RJ, Azam F, Ottow JCG. The nitrification inhibitor DMPP had no effect on denitrifying enzyme activity. Soil Biol Biochem,2002,34:1825-1827
    90 Neufeld JD, Knowles R. Inhibition of nitrifiers and methanotrophs from an agricultural humisol by allysulfide and its implications for environmental studies. Appl Environ Microbiol,1999,65: 2461-2465
    91 Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol,2008, 11:2966-2978
    92 Nieder R, Benbi DK, Scherer HW. Fixation and defixation of ammonium in soils:a review. Biol Fertil Soils,2011,47:1-14
    93 O'Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem,2010,42:1425-1436
    94 Okano Y, Hristova KR, Leutenegger CM, Jackson LE. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol, 2004,70:1008-1016
    95 Osiname O. Effect of nitrification inhibitors on the fate and efficiency of nitrogenous fertilizers under simulated humid tropical condition. Trop Agric,1983,60:211-217
    96 Pasda G, Hahndel R, Zerulla W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol Fertil Soils,2001,34:85-97
    97 Phillips CJ, Harris D, Dollhopf SL, Gross KL, Prosser JI, Paul EA. Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl Environ Microbiol,2000,66: 5410-5418
    98 Phupaibul P, Chinoim N, Matoh T. Nitrate concentration in Chinese kale sold at markets around Bangkok, Thailand. Thai J Agr Sci,2002,35:295-302
    99 Pihlatie M, Syvasalo E, Simojoki A, Esala M, Regina K. Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sand soils under different soil moisture conditions. Nutr Cycl Agroecosys,2004,70:135-141
    100 Prakasa Rao EVS and Puttanna K. Nitrification and ammonia volatilization losses from urea and dicyandiamide-treated urea in a sandy loam soil. Plant Soil,1987,97:201-206
    101 Prasad R, Turkhede BG.2-chloro-6-(trichloromethyl) pyridine for reducing nitrogen losses from upland paddy soils. Curr Sci,1966,35:312-313
    102 Prasad R, Power J F. Nitrification inhibitors for agriculture, health and the environment. Adv Agron, 1995,54:233-281
    103 Prosser JI. Autotrophic Nitrification in Bacteria. In:Rose AH, Tempest DW (Eds) Advances in microbial physiology. Academic press, London,1990:125-181
    104 Rajbanshi SS, Benckiser G, Ottow JCG Effects of concentration, incubation temperature, and repeated applications on degradation kinetics of dicyandiamide (DCD) in model experiments with a silt loam soil. Biol Fertil Soils,1992,13:61-64
    105 Ranucci S, Bertolini T, Vitale L, Di Tommasi P, Ottaiano L, Oliva M, Amato U, Fierro A, Magliulo V. The influence of management and environmental variables on soil N2O emissions in a crop system in Southern Italy. Plant Soil,2011,343:83-96
    106 Roelcke M, Li SX, Tian XH, Gao YJ, Richter J. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils. Nutr Cycl Agroecosys,2002,62:73-88
    107 Rodgers GA, Penny A, Hewitt MV. Effects of nitrification inhibitors on uptakes of mineralized nitrogen and on yields of winder cereals grown on sandy soil after ploughing old grassland. J Sci Food Agric,1985,36:915-924
    108 Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker, molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol,1997,63:4704-4712
    109 Serna MD, Banuls J, Quinones A, Primo-Millo E, Legaz F. Evaluation of 3,4-dimethylpyrazole phosphate as a nitrification inhibitor in a Citrus-cultivated soil. Boil Fertil Soils,2000,32:41-46
    110 Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol,2008,10:1601-1611
    111 Shen WS, Lin XG, Gao N, Shi WM, Min J, He XH. Nitrogen Fertilization Changes Abundance and Community Composition of Ammonia-Oxidizing Bacteria. Soil Sci Soc Am J,2011,75:2198-2205
    112 Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A. Exchange of greenhouse gases between soil and atmosphere:interactions of soil physical factors and biological process. Eur J Soil Sci,2003,54:779-791
    113 Smith RV, Burns LC, Doyle RM, Lennox SD, Kelso BHL, Foy RH, Stevens RJ. Free ammonia inhibition of nitrification in river sediments lesding to nitrite accumulation. J Environ Qual,1997, 26:1049-1055
    114 Souri MK. Effectiveness of chloride compared to 3,4-dimethylpyrazole phosphate on nitrification inhibition in soil. Commun Soil Sci Plant Anal,2010,41:1769-1778
    115 Spratt ED, Gasser JKR. Effect of ammonium and nitrate forms of nitrogen and restricted water supply on growth and nitrogen uptake of wheat. Can J Soil Sci,1970,50:263-273
    116 Stehouwer RC, Johnson JW. Urea and anhydrous ammonia management for conventional tillage corn production. J Prod agric,1990,3:507-513
    117 Stephen JR, Kowalchuk GA, Bruns MV, McCaig AE, Phillips CJ, Embley TM, Prosser JI. Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol,1998,64: 2958-2965
    118 Suwa Y, Sumino T, Noto K. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J Gen Appl Microbiol,1997,43: 373-379
    119 Teske W, Matzel W. The influence of decomposition and translocation of dicyandiamide in the soil on its nitrification inhibiting effect. Archiv Fur Acker Und Pflanzenbau Und Bodenkunde-Arch Agro Soil Sci,1988,32:241-246
    120 Timmons DR. Nitrate leaching as influenced by water application level and nitrification inhibitors. J Environ Qual,1984,13:305-309
    121 Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol,2008,10: 1357-1364
    122 Vannelli T, Hooper AB. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol,1992,58:2321-2325
    123 Venkatesan S, Sudhahar V, Senthurpandian VK, Murugesan S. Urea hydrolysis of tea soils as influenced by incubation period, soil pH, and nitrification inhibitor. Commun Soil Sci Plant Anal, 2007,38:2295-2307
    124 Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J,2011,5:1067-1071
    125 Vilsmeier K. Turnover of 15N ammonium sulfate with dicyandiamide under aerobic and anaerobic soil conditions. Fertilizer Research,1991,29:191-196
    126 Wang JY, Wang SL, Chen Y. Study on leaching loss of nitrogen in rice fields to the environment in China. Nutr Cycl Agroecosys,1994,57:67-73
    127 Wang SG, Hou YL, Guo W. Responses of nitrogen transformation and microbial community composition to nitrogen enrichment patch. Pedobiologia,2010,54:9-17
    128 Wang X, Mauzerall DL, Hu Y. A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmos Environ,2005,39:5917-5933
    129 Warren HL, Huber DM, Nelson DW. Stalk rot incidence and yield of corn as affected by inhibiting nitrification of fall-applied ammonium. Agron J,1975,67:655-660
    130 Webster G, Embley TM, Freitag TE, Smith Z, Prosser JI. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Environ Microbiol, 2005,7:676-684
    131 Weiske A, Benckiser G, Herbert T, Ottow JCG. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils,2001a,34:109-117
    132 Weiske A, Benckiser G, Ottow JCG. Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutr Cycl Agroecosys,2001b,60:57-64
    133 Wheatley RE, Caul S, Crabb D, Daniell TJ, Griffiths BS, Ritz K. Microbial population dynamics related to temporal variations in nitrification in three arable fields. Eur J Soil Sci,2003,54:707-714
    134 Wiesler F. Comparative assessment of efficacy of various nitrogen fertilizers. J Crop Prod,1998,1: 81-114
    135 Wilson CE, Norman RJ, Wells BR. Dicyandiamide influence on uptake of preplant-applied fertilizer nitrogen by rice. Soil Sci Soc Am J,1990,54:1157-1161
    136 Wrage N, Velthof GL, Beusichem ML van, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem,2001,33:1723-1732
    137 Wu SF, Wu LH, Shi QW, Wang ZQ, Chen XY, Li YS. Effects of a new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils. J Environ Sci,2007,19:841-847
    138 Wolt JD. A meta-evalution of nitrapyrin agromic and environmental effectiveness with emphasis on corn production in the Midwestem USA. Nutr Cycl Agroecosys,2004,69:23-41
    139 Xing GX, Yan XY. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPCC guidelines for national greenhouse gases. Environ Sci Policy,1999,2:355-361
    140 Xu C, Wu LH, Ju XT, Zhang FS. Effects of nitrogen fertilizer with nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on nitrate accumulation and quality of cabbage(Brassica campastris L. ssp. pekinesis). Agric Sci China,2004,3:622-626
    141 Xu X, Wang Y, Zheng X, Wang M, Wang Z, Zhou L, Cleemput OV. Methane emission from a simulated rice field ecosystem as influenced by hydroquinone and dicyandiamide. Sci Total Environ, 2000,263:243-253
    142 Xu XK, Zhou LK, Van Cleemput O, Wang ZJ. Fate of urea-N-15 in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant soil, 2000,220:261-270
    143 Xu X, Boeckx P, Wang Y, Huang Y, Zheng X, Hu F, Van Cleemput O. Nitrous oxide and methane emissions during rice growth and through rice plants:effect of dicyandiamide and hydroquinone. Biol Fertil Soils,2002,36:53-58
    144 Xu X, Boeckx P, Van Cleemput O, Kazuyuki I. Mineral nitrogen in a rhizosphere soil and in standing water during rice(Oryza sativa L.) growth:effect of hydroquinone and dicyandiamide. Agric Ecosyst Environ,2005,109:107-117
    145 Xu YG, Yu WT, Ma Q, Zhou H. Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years. Biol Fertil Soils,2012, (Online, DOI:10.1007/s00374-012-0677-2)
    146 Yamaji K, Ohara T, Akimoto H. Regional-specific emission inventory for NH3, N2O and CH4 via animal farming in South, Southeast, and East Asia. Atmos Environ,2004,38:7111-7121
    147 Yan X, Ohara T, Akimoto H. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Change Biology,2003,9:1080-1096
    148 Yu Q, Chen Y, Ye X, Zhang Q, Zhang Z, Tian P. Evaluation of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns. Chemosphere,2007,67: 872-878
    149 Zacherl B, Amberger A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea. Fertilizer Research,1990,22:37-44
    150 Zaman M, Nguyen M, Blennerhassett J, Quin B. Reducing NH3, N2O and NO3--N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol Fertil Soils,2008,44:693-705
    151 Zaman M, Saggar S, Blennerhassett JD, Singh J. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol Biochem,2009,41:1270-1280
    152 Zebarth BJ, Milburn PH. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Can J Soil Sci,2003,83:183-195
    153 Zerulla W, Barth T, Dressel J, Erhardt K, Horchler von Locquenghien K, Pasda G, Radle M, Wissemeier A.3,4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils,2001,34:79-84
    154 Zhang WL, Tian ZX, Zhang N, Li XQ. Nitrate pollution of groundwater in northern China. Agric Ecosyst Environ,1996,59:223-231
    155 Zou JW, Huang Y, Lu YY, Zheng XH, Wang YS. Direct emission factor for N2O from rice-wheat rotation systems in southeast China. Atmos Environ,2005,39:4655-4765
    156鲍俊丹,吴雄平,张妹婷,等.石灰性土壤中亚硝态氮的累积机理和条件.西北农林科技大学学报(自然科学版),2009,37(6):145-150
    157鲍士旦.土壤农化分析(第3版).北京:中国农业出版社,2000:47-49
    158蔡燕华.氮肥施用中的污染问题及防治对策.安徽农学通报,2007,13(18):48-50
    159茶正早,林钊沐,罗微.德国新型硝化抑制剂DMPP.安徽农学通报,2007,13(12):46-48
    160陈利军,武志杰,姜勇,等.与氮转化有关的土壤酶活性对抑制剂施用的响应.应用生态学报,2002,13(9):1099-1103
    161董燕,王正银.尿素在土壤中的转化与植物利用效率.磷肥与复肥,2005,20(2):76-78
    162傅涛,倪九派,魏朝富,等.双氰胺在四川3种主要土壤上的硝化抑制作用.土壤与环境,2001,10(3):210-213
    163高建炳,汪敬恒,杨素芬.氮肥施用与环境污染对策探讨.河南化工,2009(2):1-3
    164耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,2001,56(1):44-53
    165关松荫.土壤酶及其研究法.北京:农业出版社,1986:296-297,332-334
    166郭继勋,姜世成,林海俊,等.不同草原植被碱化草甸土的酶活性.应用生态学报,1997,8(4):412-416
    167哈兹耶夫ΦX.土壤酶活性.郑洪元译.北京:科学出版社,1980:45-46
    168郝永俊,吴松维,吴伟祥,等.好氧氨氧化菌的种群生态学研究进展.生态学报,2007,27(3):1573-1582
    169和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状.土壤与环境,2000,9(2):139-142
    170何霞,吕剑,何义亮,等.异养硝化机理的研究进展.微生物学报,2006,46(5):844-847
    171胡勤海,傅如松.双氰胺对蔬菜硝酸盐积累抑制作用的研究.环境污染与防治,13(1):6-8
    172华建峰,蒋倩,施春健,等.脲酶/硝化抑制剂对土壤脲酶活性、有效氮及春小麦产量的影响.土壤通报,2008,39(1):94-99
    173黄益宗,冯宗炜,张福珠.硝化抑制剂硝基吡啶在农业和环境保护中的应用.土壤与环境,2001,10(4):323-326
    174黄益宗,冯宗炜,王效科,等.硝化抑制剂在农业上应用的研究进展.土壤通报,2002,33(4):310-315
    175侯彦林,王曙光,郭伟.尿素施肥量对土壤微生物和酶活性的影响.土壤通报,2004,35(3):303-306
    176栗铁申.我国氮肥施用现状、问题和对策.农民科技培训,2010,7:23-24
    177蒋永忠,吴金桂,娄德,等.氮素化肥对农业生态环境的污染及其控制措施.江苏农业科学,1998,(6):48-50
    178解开治,徐培智,陈建生,等.施用缓控释配方肥对水稻田面水氮浓度动态变化及土壤脲酶活性的影响研究.广东农业科学,2010,(9):23-26
    179金相灿.中国湖泊环境.北京:海洋出版社,1995:267-322
    180隽英华,陈利军,武志杰,等.脲酶/硝化抑制剂在土壤N转化过程中的作用.土壤通报,2007,38(4):773-780
    181李贵桐,李保国,黄元仿,等.较高浓度乙炔对秸秆还田土壤硝化作用的抑制.中国农业大学学报,2002,7(2):57-62
    182李辉信,胡锋,刘满强,等.红壤氮素的矿化和硝化作用特征.土壤,2000,32(4):194-197
    183李志博,王起超,陈静.农业生态系统的氮素循环研究进展.土壤与环境,2002,11(4):417421
    184梁东丽,吴庆强,李生秀,等.旱地反硝化作用和N20排放影响因子的研究.西北农林科技大学学报:自然科学版,2007,35(12):94-98
    185刘广深,徐东梅,许中坚,等.用通径分析法研究土壤水解酶活性与土壤性质的关系.土壤学报,2003,40(5):756-762
    186刘秋丽,马娟娟,孙西欢,等.土壤的硝化-反硝化作用因素研究进展.农业工程,2011,1(4):79-83
    187刘涛,梁永超,褚贵新,等.三种硝化抑制剂在石灰性土壤中的应用效果比较.土壤,2011,43(5):751-757
    188刘志培,刘双江.硝化作用微生物的分子生物学研究进展.应用与环境生物学报,2004,10(4):521-525
    189鲁如坤.“微域土壤学”——个可能的土壤学的新分支.土壤学报,1999,36:287-288
    190吕殿青,同延安,孙本华,等.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15
    191吕耀.苏南太湖地区水稻土中硝态氮淋溶定位研究.土壤通报,1999,30(3):113-114
    192皮荷杰,曾清如,蒋朝晖,等.两种硝化抑制剂对不同土壤中氮素转化的影响.水土保持学报,2009,23(1):68-72
    193冉炜,沈其荣,郑金伟,等.土壤硝化作用过程中亚硝态氮的累积研究.土壤学报,2000,37(4):274-481
    194任祖淦,邱孝煊,蔡元呈,等.氮肥施用与蔬菜硝酸盐积累的相关研究.生态学报,1998,18(5):523-528
    195石美,张妹婷,沈锋,等.石灰性土壤中不同硝化抑制剂的抑制效果及其对亚硝态氮累积的影响.中国农业科学,2011,44(3):500-506
    196史奕,黄国宏.土壤中反硝化酶活性变化与N20排放的关系.应用生态学报,1999,10(3):329-331
    197舒冬妮,齐鑫山,阚建军.双氰胺抑制蔬菜硝酸盐的试验研究.农业环境保护,1992,11(4):176-178
    198宋勇生,范晓晖.稻田氨挥发研究进展.生态环境,2003,12(2):240-244
    199孙昌禹,贾永国,王淑芬.氮肥施用对生态系统的影响及措施的研究.河北农业科学,2009,13(3):60-63
    200孙克君,毛小云,卢其明,等.几种控释氮肥减少氨挥发的效果及影响因素研究.应用生态学报,2004,15(12):2347-2350
    201孙庆瑞,王美蓉.我国氨的排放量和时空分布.大气科学,1997,21(5):590-598
    202孙志梅,武志杰,陈利军,等.农业生产中的氮肥施用现状及其环境效应研究进展.土壤通报,2006,(4):782-785
    203孙志梅,武志杰,陈利军,等.3,5-二甲基吡唑对尿素转化及N03--N淋溶的影响.应用生态学报,2007,28(1):176-181
    204孙志梅,武志杰,陈利军,等.土壤硝化作用的抑制剂调控及其机理.应用生态学报,2008a,19(6):1389-1395
    205孙志梅,武志杰,陈利军,等.硝化抑制剂的施用效果、影响因素及其评价.应用生态学报,2008b,19(7):1611-1618
    206王文兴,卢筱凤,庞燕波,等.中国氨的排放强度地理分布.环境科学学报,1997,17(1):2-7
    207谢建昌.世界肥料使用的现状与前景.植物营养与肥料学报,1998,4(4):321-330
    208许超,吴良欢,张福锁.DMPP农业应用研究进展.土壤通报,2003,34(5):478-482
    209许超,吴良欢,巨晓棠,等.含DMPP硫硝铵不同基追肥比例对小青菜硝酸盐累积及品质的影响.科技通报,2004,25(5):464-467
    210许超,吴良欢,张立民,等.过量施用含DMPP氮肥对小白菜硝酸盐累积的影响.中国环境科学,2005a,25:106-110
    211许超,吴良欢,张立民,等.含硝化抑制剂DMPP氮肥对小白菜硝酸盐累积和营养品质的影响.植物营养与肥料学报,2005b,11(1):137-139
    212徐星凯,周礼恺,Oswald VC.脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响.土壤学报,2000,37(3):339-345
    213叶家颖.土壤脲酶的活性研究.广西农业科学,1988,(3):29-31
    214余光辉,张杨珠,万大娟.几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响.应用生态学报,2006,17(2):247-250
    215余泺,高明,慈恩,等.不同耕作方式下土壤氮素矿化和硝化特征研究.生态环境学报,2010,19(3):733-738
    216俞巧钢,符建荣,马军伟,等.DMPP对菜地土壤氮素径流损失的影响.环境科学,2009,30(3):870-874
    217俞巧钢,符建荣.含DMPP抑制剂尿素的氨挥发特性及阻控对策研究.农业环境科学学报,2009,28(4):744-748
    218余志敏,袁晓燕,施卫明.面源污染水治理的人工湿地治理技术.中国农学通报,2010,26(3):264-268
    219张丽莉,陈利军,张玉兰,等.土壤氧化还原酶催化动力学研究进展.应用生态学报,2005,16(2):371-374
    220张美双,栾胜基.NARSES模型在我国种植业氮肥施用氨排放估算中的应用研究.安徽农业科学,2009,37(8):3583-3586
    221张妹婷,石美,梁东丽,等.不同硝化抑制剂对尿素转化的影响.西北农林科技大学学报,2011,39(2):178-184
    222张庆忠,陈欣,沈善敏.农田土壤硝酸盐累积与淋失研究进展.应用生态学报,2002,13(2):233-238
    223章燕,徐慧,夏宗伟,等.硝化抑制剂DCD、DMPP对褐土氮总矿化速率和硝化速率的影响.应 用生态学报,2012,23(1):166-172
    224张友杰,刘国顺,叶协锋,等.烤烟不同生育期土壤酶及微生物活性的变化.土壤,2010,42(1):39-44
    225张志明,李继云,冯元琦,等.长效碳酸氢铵理化特性及增产机理的研究.中国科学(B辑),1996,6(5):452-459
    226赵言文,刘常珍,胡正义,等.元素硫和双氰胺对蔬菜地土壤硝态氮淋失的影响.应用生态学报,2005,16(3):496-500
    227周礼凯.土壤的酶活性.土壤学进展,1980,(4):9-15
    228周礼凯,张志明,曹承绵.土壤酶活性的总体评价在土壤肥力水平中的作用.土壤学报,1983,20(4):413-418
    229朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1990:97-99
    230朱兆良.施肥与农业和环境.科学中国人,1999,(6):2-4
    231朱兆良.我国土壤氮素研究中的某些进展,面向农业与环境的土壤科学(综述篇).北京:科学出版社,2004:7-12
    232朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施.科技导报,2005,23(4):47-51
    233朱兆良.中国土壤氮素研究.土壤学报,2008,45(5):778-783

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700