用户名: 密码: 验证码:
汽轮机低压排汽系统内部流动及其气动优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽轮机低压排汽系统是汽轮机通流部分的一个重要部件,它的主要作用是对汽流扩压把汽流的余速动能部分的转化为压力能。排汽系统中产生的压力恢复使得透平末级的出口压力低于冷凝器的压力,有利于提高机组的出功能力。研究汽轮机低压排汽系统内部的流动结构和理解其内部流动损失机理为研制高性能的排汽系统提供了坚实的基础,而探讨排汽系统气动优化设计方法有利于进一步完善汽轮机的设计体系。
     实验测量和数值模拟是研究叶轮机械内部流动的两种基本方法。本文采用实验测量和数值模拟两种手段研究某型号汽轮机低压排汽系统的小尺寸模型内部的流动结构。在实验和数值研究的基础上,结合CFD和代理模型技术开发了一套气动优化系统并选择影响排汽系统气动性能的关键几何参数进行了气动优化设计。
     本文主要研究内容和研究成果如下:
     1.依据相似准则,设计加工了排汽系统小尺寸实验模型。根据实验测量工况,搭建了排汽系统测试实验台,并对测量仪器进行安装、调试,通过实验测量取得了较好的结果。
     2.采用热线风速仪在均匀来流条件下测量排汽系统扩压器出口和排汽蜗壳出口平均速度,并在导流环和轴承锥壁面上布置压力孔测量壁面压力。测试结果表明扩压器中的流动是一个压力恢复过程,而排汽蜗壳中的通道涡随着流动方向不断膨胀,降低了排汽蜗壳的压力恢复能力。采用PIV测速技术对排汽蜗壳不同周向平面和出口平面进行了流场测量,捕捉到了排汽系统内不同特征平面上的流动结构。结果表明,在排汽蜗壳顶部位置形成的涡系沿着流动方向不断减弱。
     3.在实验测量工况下,采用CFX软件对实验工况进行了数值模拟。将数值计算得到的结果与实验测量结果比较,验证计算模型的可靠性和准确性。计算结果表明排汽系统的压力恢复主要由扩压器获得,而排汽蜗壳中有较大的总压损失。随着流动向下游的发展,在排汽蜗壳顶部位置形成的复杂涡系不断掺混,在蜗壳出口位置形成了大尺度的反向涡对。通过三个典型截面上流场分析和整个排汽蜗壳内的涡系特征模式分析发现,通道涡和导流环弧背涡是排汽系统内引起能量损失的主要来源。
     4.采用小生境微种群遗传算法取代模式搜索算法对Kriging模型的似然函数进行多变量寻优得到相关参数向量,完成了对Kriging模型的改进。采用两个测试函数对改进前后Kriging模型的预测精度和鲁棒性进行了测试,结果表明改进后Kriging模型的预测精度和鲁棒性更优。优化过程中综合考虑Kriging模型的预测值与预测标准差,引入了期望提高函数得到校正点,解决了采用代理模型最优策略得到校正点带来的局部收敛问题。采用小生境微种群遗传算法,结合无惩罚因子的惩罚函数法来最大化期望提高函数,解决了选择惩罚因子难以选择困难,增强了算法的鲁棒性。
     5.把改进Kriging模型、最大化期望提高准则和小生境微种群遗传算法结合起来发展了一种自适应序列优化算法(ASKO),并在Matlab平台上开发了相应的计算程序。将ASKO算法应用于四个数值算例和两个工程算例,测试结果表明本文提出的算法收敛速度和精度更高,可以有效地提高优化效率。
     6.对排汽系统导流环和轴承锥的型线采用四阶Bezier曲线进行参数化表达,采用三维几何建模软件UG/NX建立低压排汽系统的参数化模型。在Matlab平台上开发了低压排汽系统的气动优化平台。该平台集成了四个模块:UG参数化模型,网格划分软件ICEM-CFD,气动分析软件CFX和ASKO优化算子。该平台能自动完成优化过程无需人工干预。
     7.在该平台上对模型低压排汽系统进行了气动优化设计,实验来流条件下排汽系统的压力恢复系数有了大幅度的提高,而总压损失系数有了一定程度降低。将模型排汽系统的优化结果应用于带有末三级叶片的真实排汽系统,结果表明排汽系统优化后在THA工况下,总压损失系数减少0.1,静压恢复系数提高0.1.
The low pressure exhaust hood is an important through-flow component of a steam turbine. Its main function is to partially recover the turbine leaving kinetic energy into potential energy. This pressure recovery gives the turbine an effective back pressure that is lower than the condenser pressure, thus increasing the turbine work. Studying the flow structure and understanding the flow loss mechanism of the steam turbine low pressure exhaust hood provides a firm foundation for developing high performance low pressure exhaust hoods. The investigation on aerodynamic optimization method of low pressure exhaust hood perfects the design system of steam turbines.
     Experimental measurement and numerical simulation are the two basic methods to study the internal flow of turbo machinery. The flow structure in a low pressure exhaust hood scaled model is investigated through the experimental measurement and numerical simulation in this paper. On the basis of the experimental and numerical studies, the key geometric parameters are optimized with the aerodynamic optimization system developed based on CFD and surrogate model technique.
     Main contents and conclusions of the investigation are described in the following:
     1. According to similarity criterion, an experimental scaled exhaust hood model is designed and manufactured. The test rig is constructed at the experimental condition, and the measurement equipments used for the experiment are installed and adjusted. The satisfactory results are gained from the experimental measurement.
     2. HWA is used to measure the mean velocity at the diffuser and exhaust volute outlet locations at the uniform inlet condition. Static pressure tabs are located on the flow guide and bearing cone to measure wall static pressure. Results show that the flow in the diffuser is a process of pressure recovery, and the passage vortices in the volute gradually expand reducing the pressure recovery capability of the volute. PIV is used to measure the flow field at the different circumferential planes and the outlet plane, and the vortices structure is captured. Result shows that the strength of vortices formed in the upper part of the hood is weakened along the flow direction.
     3. The numerical simulation with CFX software is carried out at the same condition of the experimental measurement. The reliability and accuracy of numerical simulation is validated by the comparison of results between CFD and experimental measurement. The results of numerical simulations indicate that pressure recovery is mainly achieved in the diffuser, and most of the total pressure loss occurs in the volute. Complicated vortices formed in the upper part of the hood are mixed along the flow direction, and a pair of large vortices is formed at the volute outlet. According to the flow field at three typical planes and vortex character analysis, passage vortex and vortex behind the flow guide is the main contributor of the energy loss in the exhaust hood.
     4. The niching micro genetic algorithm instead of the pattern search algorithm is used to get the correlation vector of Kriging model by optimizing the like-hood function. The original and modified Kriging models are used to approximate two non-linear functions to study the approximation accuracy and robustness of the models. Test result indicates that the modified Kriging model is more accurate and robust. In the optimization process, Expected Improvement (EI) function is introduced to identify the next sampled point by considering the prediction and mean squared error of the prediction to avoid the risk of trapping into the local optimum when the optimal strategy is used. Niching micro genetic algorithm coupled penalty function approach which does not require any penalty parameter is introduced to optimize EI function. This method reduces the difficulty of finding appropriate penalty parameters and increased the robustness of the algorithm.
     5. The modified Kriging model、maximizing EI criterion and niching micro genetic algorithm are coupled to develop an adaptive sequential optimization algorithm(ASKO), and the corresponding code is developed on the Matlab platform. Four numerical and two engineering optimization problems are tested using the ASKO algorithm. Results show that the algorithm proposed in this paper is more accurate and efficient.
     6. The profile of the flow guide and bearing cone are parameterized using cubic Bezier curve, respectively. A parameterized geometry model is constructed with the UG/NX software. An aerodynamic optimization system for the low pressure exhaust hood has been developed on the Matlab platform. The system integrates four modules. These are the geometry parameterization modelling module, the commercial mesh generator ICEM-CFD, the aerodynamic simulator CFX, and the ASKO optimizer. The aerodynamic optimization is automatic performed without any human intervention.
     7. Shape optimization of the low pressure turbine exhaust hood scaled experimental model is performed. The mass averaged pressure recovery coefficient is largely improved at the experimental inlet condition, and the mass averaged total pressure loss coefficient is slightly decreased. The optimized geometry is used in the real exhaust hood with the last three stages turbine. At the THA work condition, the total pressure loss coefficient is reduced by 0.1 and the pressure recovery coefficient is improved is by 0.1.
引文
[1]赵小平.中国电力工业实现了历史性跨越,广西电力,2009,10:4-5.
    [2]吴敬儒,邱言文.确保国内生产总值翻两番的2001-2020年电力工业发展研究,电网技术,2003,27(4):1-6.
    [3] Cho S.Y,Yoon E.S,Choi B.S. A Study of 2-D Turbine Blade Profile to Minimize the Pressure Loss,Proceedings of Aircraft Symposium,2001,39(1):87-91.
    [4] Zhao H.L,Wang S.T,Han W.J,et al. Aerodynamic Design by jointly Applying S2 Flow Surface Calculation and Modern Optimization Methods on Multistage Axial Turbine, Frontiers of Energy and Power Engineering in China ,2008,2(1):93-98.
    [5] Howell R.J,Roman K.M. Loss Reduction on Ultra High Lift Low-Pressure Turbine Blades using Selective Roughness and Wake Unsteadiness, The Aeronautical Journal,2007,111(1118):257-266.
    [6]王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势,中国工程科学,2000, 2(6):40-48.
    [7] Chen F,Li S.B,Su J.X,et al. Experimental Study of Bowed-twisted Stators in an Axial Transonic Fan Stage, Chinese Journal of Aeronatuics,2009,22(4):364-370.
    [8] Lu H.W,Chen F,Wan J.L,et al. Flow Field Improvement by Bowed Stator Stages in a Compressor with Different Axial Gaps Under Near Stall Condition, Chinese Journal of Aeronatuics,2008,21(3):215-222.
    [9] Wang Z.Q,Han W.J,Xu W.Y. Experimental Studies on the Mechanism and Control of Secondary Flow Losses in Turbine Cascades, Journal of Thermal Science,1992,1(3):149-159.
    [10] Zakhorav B.S. Leakage in Mechanical Seal,Chemical and Petroleum Engineering,2007,43(1):27-33.
    [11] Anker J.E,Mayer J.F,Casey M.V. The Impact of Rotor Labyrinth Seal Leakage Flow on the Loss Generation in an Axial Turbine,Journal of Power and Energy,2005,219(6)::481-490.
    [12] Liu Z,Liu Y,Liu X.F. Optimization Design of Main Parameters for Double Spiral Grooves Face Seal,Science in China Series E Technological Sciences,2007,50(4):448-453.
    [13] Schramm V,Denecke J,Kim S,et al. Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method,International Journal of Rotating Machinery,2004,10(5):365-371.
    [14]王平子. 300MW汽轮机通流部分的进一步优化,东方电气评论,1996,10(3):135-144.
    [15] Liu J.J. The Calculation of Asymmetric Flow in Turbine Exhaust Systems,PHD Thesis,University of Cambridge,1998.
    [16]李殿玺,樊轶,金洁敏等.汽轮机排汽缸的气动研究进展,热能动力工程,2006,21(5):445-449.
    [17]徐旭,康顺,蒋洪德.低压蒸汽透平排汽缸内三维粘性流动的数值模拟,工程热物理学报,2007,21(4):431-433.
    [18]徐建中.叶轮机械气动热力学的回顾与展望,西安交通大学学报,1999,33(9):1-4.
    [19] Chan V.S.S,Turner J.T. Velocity Measurement inside a Motored Internal Combustion Engine Using Three-component Laser Doppler Anemometry , Optics & Laser Technology, 2000,32(7):557-566.
    [20] Cutbirth J.M,Boqard D.G. Thermal Field and Flow Visualization within the Stagnation Region of a Film-cooled Turbine Vane , Journal of Turbomachinery , 2002 ,124(2):200-206.
    [21] Xiao X,Lakshminarayana B. Experimental Investigation of End-wall Flow in Turbine Rotor,Journal of Propulsion and Power,2002,18(5):1122-1123.
    [22] Jia R,Sunden B,Miron P,et al. A Numerical and Experimental Investigation of the Slot Film-cooling Jet with Various Angles,Journal of Turbomachinery,2005,127(3):635-645.
    [23] Spence S.W.T,Oneil J.W,Cunningham G. An Investigation of the Flow Field through a Variable Geometry Turbine Stator with Vane Endwall Clearance,Journal of Power and Energy,2006,220(8):899-910.
    [24] Schennach O , Woisetschlaqer J , Marn A , et al. Laser-Doppler-Velocimetry Measurements in a One and a Half Stage Transonic Test Turbine with Different Angular Stator-Stator Positions,Experiments in Fluids,2007,43(2):385-393.
    [25] Weiqand P,Meier W,Duane X.R,et al. Laser-based Investigations of Thermoacoustic Instabilities in a Lean Premixed Gas Turbine Model Combustor,Journal of Engineeringfor Gas Turbines and Power,2007,129(3):664-671.
    [26] Matsunuma T. Unsteady Flow Field of an Axial-flow Turbine Rotor at a Low Reynolds Number,Journal of Turbomachinery ,2007,129(2):360-371.
    [27] Guerrato D,Nouri J.M,Stosic N. Flow Measurements in the Discharge Port of a Screw Compressor,Journal of Process Mechanical Engineering,2008,222(4):201-240.
    [28] Fischer A,Buttner L,Czarske J,et al. Measurements of Velocity Spectra Using Time-resolving Doppler Global Velocimetry with Laser Frequency Modulation and a Detector Array,Experiments in Fluids,2009,47(4):599-611.
    [29] Liu Z.C,Landreth C.C Adrian R.J,et al. High Resolution Measurement of Turbulent Structure in a Channel with Particle Image Velocimetry,Experiments in Fluid,1999,10(6):301-312.
    [30] Wernet M.P. Application of DPIV to Study both Steady State and Transient Turbomachinery Flows,Optics & Laser Technology,2000,32(7):497-525.
    [31] Wernet M.P. Planar Particle Imaging Doppler Velocimetry A 3-component Velocity Measurement Technique,AIAA Journal,2005,3(8):479-488.
    [32]阮驰,孙传东,白永林等.水流场PIV测试系统示踪粒子特性研究,实验流体力学,2006,20(2):72-76.
    [33] Meng J,Li M.Q,Du H. Particle Selection Strategy for Three-dimensional Particle Image Velocimetry,Proceedings of the 2009 2nd International Congress on Image and Signal Processing,Tianjin,China,2009:1-5
    [34] Lagun V.P,Simoyu L.L,Nakhman Y.V,et al. Power Characteristics of the Exhaust of the Modified Low-pressure Cylinder of the K-300-240 and K-800-240 Turbines,Thermal Engineering,1984,31(4):26-32.
    [35] Gray L,Sandhu S.S,Davids J,et al. Technical Consideration in Optimizing Blade-exhaust Hood Performance for Low Pressure Steam Turbines,Latest Advances in Steam Turbine Design,Blading,Repairs,Condition Assessment,and Condenser Interaction,Dallas,United States,1989:89-97.
    [36] Gudkov E.I,Konev V.A,Basov V.A. Aerodynamic Feature of the Exhaust Circuits of Low-pressure Cylinders with Hoods of a Small Axial Length,Thermal Engineering,1990,37(5):237-240.
    [37] Tajc L, Bednr L. Exhaust Hoods of Double-Flow Arrangement , 4th European Conference on Turbomachinery,Firenze,Italy,2001:161-168.
    [38] Tajc L,Bendar L,Hoznedl M. Exhaust Hood for the Steam Turbines of Single-Flow Arrangement, CMP Turbomachinery,2005,128(2):547-556.
    [39]陈洪溪,薛沐睿.大型空冷汽轮机低压排汽缸几何尺寸对气动性能的影响,动力工程,2003,23(6):2740-2743.
    [40]沈国平,王伟,范雪飞,陈洪溪.空冷300MW低压排汽缸吹风试验损失分析,热力发电,2003,(3):8-10.
    [41] Sultanian B.K,Nagao S,Sakamoto T. Experimental and Three Dimensional CFD Investigation in a Gas Turbine Exhaust System,Journal of Engineering for Gas Turbines and Power,1999,121 (2):364-374.
    [42] Zhang W,Paik B.G,Jang Y.G,et al. Particle Image Velocimetry Measurements of the Three-dimensional Flow in an Exhaust Hood Model of a Low-pressure Steam Turbine, Journal of Engineering for Gas Turbines and Power,2007,129(2):411-419.
    [43] Ubertini S, Desideri U. Experimental Performance Analysis of an Annular Diffuser with and without Struts,Experimental Thermal and Fluid Science,2000,22(3):183-195.
    [44] Pietrasch R.Z,Seume J.R. Interaction between Struts and Swirl Flow in Gas Turbine Exhaust Diffusers,Journal of Thermal Science,2005,14(4):314-320.
    [45] Fu J,Liu J,Zhou S. Experimental and Numerical Investigation of Interaction between Turbine Stage and Exhaust Hood,Journal of Power and Energy,2007,221(7):991-999.
    [46] Sieker O,Seume J.R. Influence of Rotating Wakes on Separation in Turbine Exhaust Diffusers,Journal of Thermal Science,2008,17(1):42-49.
    [47] Kerrebrock J.L. Review of Research on Turbomachinery at MIT Traceable to Support from Mel Hartmann,Journal of Turbomachinery,1994,116(4):570-580.
    [48] Lacovides.H,Launder B.E. Computational Fluid Dynamics Applied to Internal Gas-turbine Blade Cooling: a review,International Journal of Heat and Fluid Flow,1995,16(6):454-470.
    [49] Denton J.D,Dawes W.N. Computational Fluid Dynamics for Turbomachinery Design,Journal of Mechanical Engineering,1999,213(2):107-124.
    [50]陶文铨.数值传热学(第二版),西安,西安交通大学出版社,2001.
    [51] Horlock J.H,Danton J.D. A Review of Some Early Design Practice Using CFD and a Current Perspective,Journal of Turbomachinery,2005,127(1):5-13.
    [52] Hansen M.O.L,Srensen J.N,Voutsinas S,et al. State of the Art in Wind TurbineAerodynamics and Aeroelasticity, Progress in Aerospace Sciences,2006,42(4):285-330.
    [53] Keck H , Sick M. Thirty Years of Numerical Flow Simulation in Hydraulic Turbomachines,Acta Mechanica,2008,201(1):211-229.
    [54]李红梅.大型空冷汽轮机末级及扩压管气动性能分析,硕士学位论文,西安交通大学,1995.
    [55]黄伟东,孙弼,丰镇平.汽轮机排汽缸扩压管几何形状对气动性能影响的分析,动力工程,1998,18(3):17~21.
    [56] Tindell R.H,Alston T.M,Sarro C.A,et al. Computational Fluid Dynamics Analysis of a Steam Power Plant Low Pressure Turbine Downward Exhaust Hood,Journal of engineering for gas turbine and power,1996,118(1):214-224.
    [57] Xu X,Kang S,Hirsch C. Numerical Simulation of the 3D Viscous Flow in the Exhaust Casing of a Low Pressure Steam Turbine,ASME Paper,2001-GT-0487.
    [58]刘建军.用多块多网格方法数值模拟三维粘性流动,工程热物理学报,2002,23(4):46~48.
    [59]张荻,周屈兰,谢永慧等.不同进口条件对排汽缸气动性能的影响,汽轮机技术, 1999,41(3):141-145.
    [60]张荻,杜占波,孙弼.大功率汽轮机低压排汽缸的数值分析系统,汽轮机技术,1999,41(4):203-206.
    [61]张荻,周屈兰,谢永慧等.大功率汽轮机低压排汽缸流场的数值模拟,热力发电, 1999,(3):28-30.
    [62]杜占波,张荻,孙弼.透平低压排气缸流场的数值模拟,西安交通大学学报,2000,34(3):37-39.
    [63] Stastny M,Tajc L,Kolar P,et al. Effects of Inlet Swirl on the Flow in a Steam Turbine Exhaust Hood,2000,Journal of Thermal Science,9(4):326-333.
    [64]刘建军,蒋洪德.汽轮机低压排汽系统气动性能分析,工程热物理学报,2002,23(4):425-428.
    [65] Liu J.J,Cui Y.Q,Jiang H.D. Investigation of Flow in a Steam Turbine Exhaust Hood With/Without Turbine Exit Conditions Simulated,Journal of Engineering for Gas Turbines and Power,2003,125(1):292-299.
    [66]李欣,徐星仲,严明等.汽轮机排汽缸模型的数值模拟与结果分析,汽轮机技术,2003,45(6):361-363.
    [67]付经伦,陈川,刘建军.进口漩流对透平排汽缸内部流动的影响,工程热物理学报, 2007,增刊(6):73-76.
    [68]付经伦,刘建军.来流条件对排汽缸内非轴对称流动的影响,动力工程,2007,27(5):707-712.
    [69] Benim A.C,Geiqer M,Doehler S,et al. Modeling the Flow in the Exhaust Hood of Steam Turbines under Consideration of Turbine-Exhaust Hood Interaction,VDI Berichte,1995,(1185):359-373.
    [70] Liu J.J. Numerical Simulation of Asymmetric Exhaust Flows Using an Actuator Disc Blade Row Model,ASME Paper,PVP2002-1591.
    [71] Liu J.J,Hynes T.P. The Investigation of Turbine and Exhaust Interactions Asymmetric Flow-blade-row Models Applied,Journal of Turbomachinery,2003,125(1):121-127.
    [72]樊涛,谢永慧,张荻,孙弼.基于多块网格技术的排汽缸与低压级组耦合流动分析,汽轮机技术,2007,49(4):246-249.
    [73]樊涛,谢永慧,张荻,孙弼.汽轮机低压排汽缸与末两级耦合流动的三维数值模拟,中国电机工程学报,2007,27(26):90-95.
    [74]杜占波,王科军.汽轮机低压排汽缸和末两级流场的联合数值模拟,发电设备,2007,(1):12-16.
    [75]杨科,李宇峰,康顺. 30万千瓦空冷汽轮机组低压排汽缸数值模拟,热力透平,2005,35(2):69-72.
    [76]张晓丽.联合循环汽轮机轴向排汽缸蒸汽流场的数值模拟研究,热力透平,2008,37(3):188-191.
    [77] Kral L D. Active Flow Control Technology,ASME Paper,FEDSM2001-18196.
    [78] Filippov G A,Wang Z.Q. The Calculation of Axial Symmetric Flow in an Turbine Stage with Small Ratio of Diameter to Blade Length, Journal of Moscow Power Institute,1963,(47):63-78.
    [79]冯国泰,王松涛,顾中华等.弯扭掠三维叶片综合流型与流场结构优化的设计思想及应用--弯扭掠叶片设计体系与设计思想研究之二,航空发动机,2002,(4):5-11.
    [80] Rose M.G,Harvey N.W,Seaman P,et al. Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part 1 Turbine Design,ASME Paper,2001-GT-0444.
    [81] Harvey N.W,Rose M.G,Taylor M.D,et al. Nonaxisymmetric Turbine End WallDesign : Part I - Three-dimensional Linear Design System,Journal of Turbomachinery,2000,122(2):278-285.
    [82] Lakshminarayana B,Sitaram N,Zhang J. End-Wall and Profile Losses in a Low-Speed Axial Flow Compressor Rotor,ASME Paper,85-GT-174.
    [83]蒋洪德,陆永良,周凡吉等.亚音速复合倾斜透平静叶栅的理论与实验研究,航空动力学报,1993,8(1):41-46.
    [84] Howell R.J,Ramesh O.N,Hodson H.P. Hight Lift and Aft-loaded Profiles for Low-pressure Turbines,Journal of Turbomachinery,2001,123(2):181-188.
    [85]徐星仲,朱斌,蒋洪德等.一种“后部加载”型透平静叶的设计,工程热物理学报,1997,18(1):48-51.
    [86] Wennerstorm A.J. Highly Loaded Axial Flow Compressor: History and Current Development,Journal of Turbomachinery,1990,112(4):567-578.
    [87]王松涛,潜纪儒,冯国泰等.壁面吸气抑制分离减少流动损失的研究,工程热物理学报,2006,27(1):48-50.
    [88]张华良,王松涛,王仲奇.采用壁面吸气改善叶栅性能的数值模拟,动力工程,2006,26(6):795-798.
    [89] Rao N.M,Camci C. Axial Turbine Tip Desensitization by Injection from a Tip Trench PartⅠ: Effect of Injection Mass Flow Rate,ASME Paper,GT2004-53256.
    [90] Rao N.M,Camci C.. Axial Turbine Tip Desensitization by Injection from a Tip Trench artⅡ: Leakage Flow Sensitivity to Inject ion Location,ASME Paper,GT2004-53258.
    [91]李伟,乔渭阳,许开富等.涡轮叶尖间隙泄漏流动主动控制数值模拟,航空动力学报,2008,23(7):1260-1265.
    [92] Waitz I.A,Brookfield J.M,Sell J,et al. Preliminary Assessment of Wake Management Strategies for Reduction of Turbomachinery Fan Noise,Journal of Propulsion and Power,1996,12(5):958-66.
    [93] Sell J. Cascade Testing to Assess the Effectiveness of Mass Addition/Removal Wake Management Strategies for Reduction of Rotor-Stator Interaction Noise,PHD thesis,MIT,1996.
    [94] Brookfield J.M,Waitz I.A. Trailing-edge Blowing for Reduction of Turbomachinery Fan Noise,Journal of Propulsion and Power,2000,16(1):57-64.
    [95] Kasilov V.F. An Investigation of Facilities Acting on Swirl Flow in the Collection Chamber of the Exhaust Hoods for the Low-pressure Cylinders in Steam Turbines,Thermal Engineering,2000,47(11):984-990.
    [96] Zaryankin A.E,Paramonov A N,Chusov S.I,et al. Methods for Dampering Vortex Flows and Experience in Using Vortex Dampers,Thermal Engineering,2000,47(11):978-983.
    [97] Linhart J.R,Hoznedl M. Properties and Improvements of Flow in Steam Turbine Exhaust Hood , Proceedings of International Conference on Energy and the Environment,Shanghai,China,2003:453-460.
    [98] Tajc L,Bednar L,Sikova I,et al. The Experimental Investigation of the Influence of the Flow Swirl and the Tip Clearance Jet on Aerodynamic Characteristics of Exhaust Hoods,Proceedings of the 12th Engineering Mechanics conference,Svratka,Czech,2006: 238-248.
    [99]竺晓程,王红涛,周代伟等.汽轮机低压排汽缸内辅助板块对其性能影响的数值研究,热力透平,2007,36(1):8-10.
    [100] Lee Y.T,Luo L,Bein T.W. Direct Method for Optimization of a Centrifugal Compressor Vaneless Diffuser,Journal of Turbomachinery,2001,123(1):73-80.
    [101] Lampart P. Numerical Optimization of a High Pressure Steam Turbine Stage,Journal of Computational and Applied Mechanics,2004,5(2):311-321.
    [102]丰镇平,李军,沈祖达.遗传算法及其在透平机械优化设计中的应用,燃气轮机技术,1997,10(2):13-22.
    [103] Trigg M.A,Tubby G.R,Sheard A.G. Automatic Genetic Optimization Approach to Two-dimensional Blade Profile Design for Steam Turbines , Journal of Turbomachinery,1999,121(1):11-17.
    [104] Oyama A,Liou M.S,Obayashi S. Transonic Axial Flow Blade Optimization: Evolutionary Algorithms/Three Dimensional Navier-Stokes Solver , Journal of Propulsion and Power,2004,20(4):612-619.
    [105]汪文光,周正贵,胡骏.基于优化算法的压气机叶片气动设计,航空动力学报,2008,23(7):1218-1224.
    [106]刘小民,张文斌.采用遗传算法的离心叶轮多目标自动优化设计,西安交通大学学报,2010,44(1):31-35.
    [107] Schmit L.A. Approximation Concepts for Efficient Structural Synthesis,NASA CR-2552.
    [108] Jin R,Chen W,Simpson T.W. Comparative Studies of Metamodeling Techniques underMultiple Modeling Criteria,Structural and Multidisciplinary Optimization,2001,23(1):1-13.
    [109] Simpson T.W,Peplinski J.D,Koch P.N,et al. Metamodels for Computer-based Engineering Design, Survey and Recommendations,Engineering with Computers,2001,17(2):129-150.
    [110] Queipo N.V,Haftka R.T,Shyy W,et al. Surrogate-based Analysis and Optimization,Progress in Aerospace Science,2005,41(1):1-28.
    [111] Wang G.G.,Shan S. Review of Metamodeling Techniques in Support of Engineering Design Optimization,Journal of Mechanical Design,2007,129(4):370-380.
    [112]席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用,西安交通大学学报,2007,41(2):125-135.
    [113]韩永志,高行山,李立州,岳珠峰.基于Kriging模型的涡轮叶片多学科设计优化,航空动力学报,2007,22(7):1055-1059.
    [114] Samad A,Kim K.Y. Multi-objective Optimization of an Axial Compressor Blade,Journal of Mechanical Science and Technology,2008,22(5):999-1007.
    [115]虞跨海,杨茜,倪俊,岳珠峰.基于响应面的涡轮叶片冷却通道设计优化,航空学报,2009,30(9):1630-1634.
    [116]凌志光,金娟倩.透平轴径式环形排气扩压器优化设计分析与试验比较,工程热物理学报,1985,6(3):245-248.
    [117]茂声闿,魏雨臻,梅永林.汽轮机排汽缸气动性能优化的正交试验法,动力工程, 1987,7(6) :23-26.
    [118]霍文举.田口方法优化设计透平排汽缸的应用,汽轮机技术,1993,35(1):48-55.
    [119]秦骁程,高雷,王长生.低压汽缸排汽道改进设计的试验研究,热能动力工程,2000,15(7):379-381.
    [120] Zaryankin A,Arianov S,Zaryankin V,et al. Optimization of Steam Flow in Exhaust Duct of Steam Turbine,6th World Congress on Structural and Multidisciplinary Optimization,Rio de Janeiro,Brazil,2005:121-129.
    [121]张荻,李思琦,杜占波,孙弼.大功率汽轮机低压排汽缸的数值试验,汽轮机技术,40(2):98-103.
    [122]杜占波,张荻,孙弼.汽轮机低压排汽缸结构优化设计分析系统及其应用,汽轮机技术,1999,41(6):325-329.
    [123]何平,胡丹梅,周鸿强.汽轮机低压排汽缸优化设计研究,中国动力工程学会透平专业委员会2009年学术研讨会论文集,北京,2009 :28-31.
    [124]林智荣,石坂浩一,袁新.燃气透平末级叶片及扩压器的联合优化,工程热物理学报,2005,26(1):47-50.
    [125]陈川,付经伦,刘建军.汽轮机排汽系统优化设计与性能分析,工程热物理学报, 2009,30(8):1295-1298.
    [126] StreamWare Inatallation and User’s guide,Dantec,2000.
    [127] Muller R,On the Accuracy of Turbulence Measurement with Inclined Hot Wires,Journal of Fluid Mechanics,1982,119:155-172.
    [128] Jorgensen F.E. How to Measure Turbulence with hot-wire Anemometer,Dantec,2002.
    [129] Russ S,Simon T.W. On the Rotating,Slanted,Hot-wire Technique,Experiments in Fluid,1991,12:76-80.
    [130] Sentker A,Riess W. Experimental Investigation of Turbulent Wake-blade Interaction in Axial Compressors,International Journal of Heat and Fluids Flow,2000,21(3):285-290.
    [131]王凯建,单一倾斜热线探头在三维湍流流场测量中的应用,力学学报,2002,34(1):18-28.
    [132]田杰,陈旭,郝辉等.选择单斜丝热线测量叶轮机出口流场,流体机械,2003,31(7):25-28.
    [133]马宏伟,蒋浩康.压气机转子尾迹三维紊流特性分析,工程热物理学报,1997,1(4):423-428.
    [134] Matlab User Guide,Version 6.5,Mathworks,2002.
    [135] ANSYS CFX User Guide,Version 11.0,ANSYS Ltd,2007.
    [136] Sasena M.J. Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations,PHD Thesis,University of Michigan,2002.
    [137]游海龙,贾新章.基于遗传算法的Kriging模型构造与优化,计算机辅助设计与图形学学报,2007,19(1):64-68.
    [138] Lophaven.S.N, Nielsen.H.B, Sondergaard.J. DACE---A Matlab Kriging Toolbox,version 2.0,http://www2.imm.dtu.dk/~hbn/dace/dace.pdf.
    [139] Samad A,Kim K.Y,Goel T,et al. Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization,Journal of Propulsion and Power,2008,24(2):302-310.
    [140]王晓峰,席光.基于Kriging模型的翼型气动性能优化设计,航空学报,2005,26(5):545-549.
    [141] Schonlau M. Computer Experiments and Global Optimization,PHD Thesis ,University of Waterloo, 1997.
    [142] Jones.D.R, Schonlau.M, Welch.W.J . Efficient Global Optimization of Expensive Black Box Functions,Journal of Global Optimization,1998,13(4):455- 492.
    [143] Carroll D.L. Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers,Developments in Theoretical and Applied Mechanics,1996,18:411-424..
    [144] Sasena M.J,Papalambros P.Y,Goovaerts P. Metamodeling Sampling Criteria in a Global Optimization Framework,AIAA 2000-4921.
    [145] Wang G.G. Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points,Journal of Mechanical Design,2003,125(2):210-220.
    [146] Buice C.U,Eaton J.K. Experimental Investigation of Flow through an Asymmetric Plane Diffuser,Journals of Fluids Engineering,2000,122(2):433-435.
    [147] Shahrokhi.A , Jahangirian.A. Airfoil Shape Parameterization for Optimum Navier–Stokes Design with Genetic Algorithm,Aerospace Science and Technology,2007,11(6):443-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700