用户名: 密码: 验证码:
个体化组织工程骨修复长骨缺损实验与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     日本骨科学会(JOA)自1985年起每5年就开展一次全国性的有关骨移植材料使用情况的调查,发现随着现代医疗条件的改善,骨移植材料的使用每年都在增加,2007年最新一次发布的结果显示2000年至2004年5年间的163,564例组织移植病例中82.4%为骨移植,其中植骨材料的选择自体骨依然是首选,占56.4%;各种合成骨移植替代物占40%;骨库同种异体骨仅占3.6%,但与前五年同期比较三者各自所占移植总量的比值却表现为自体骨移植所占比例不断下降,人工骨移植比例持续上升,骨库同种异体骨增速最快,三者平均每年较前年递增倍数分别为1.32, 1.68,和1.72倍1,故而部分专家建议对于小儿骨缺损修复则不再首选自体骨移植。其原因主要是考虑:自体骨移植局部效果虽好,但仍属于“拆东墙补西墙”,且儿童青少年往往骨量有限,无法满足大量植骨的需要,造成术中困难,对较大骨囊肿造成囊腔内残留死腔而致术后复发,而且取自体骨增加手术时间、费用和感染几率,造成取骨区疼痛,影响儿童骨骼发育2。而亲属骨作为同种异体骨也并非临床植骨的最优选择,且难以保证其确切的疗效3。各国的研究者们曾经尝试采用多种人工替代材料修复这些骨缺损4,如各种人工合成材料、同种异体骨、人同种异体的脱钙骨基质等,虽然这些材料分别从某些特定的方面一定程度上弥补了自体骨植骨的缺点,但其固有缺陷决定了这些材料在骨需求量大,患者自身情况差时均不能较好地满足临床的需要及患者的要求。鉴于以组织工程骨修复大动物长骨缺损的实验研究已取得了突破性的进展5,有必要在此工作基础上谨慎地进行一部分临床试用性研究为今后组织工程骨正式走上临床,形成对长骨缺损的正规化、规模化地治疗模式完成临床观察数据的初步积累,进一步完善以组织工程骨修复长骨缺损治疗及随访的标准化操作规程6。然而目前我们所研制的组织工程骨构建需要花费较长的时间7且保存条件苛刻,不能达到“随取随用”的最终要求8。早期的研究发现,部分蛋白制品通过冷冻干燥技术处理后的真空包装可以达到在室温下保存2年而不发生变质的良好效果9,从最早应用于处理生物学材料直到今天Philip J.等使用冻干同种异体骨成功修复牙周骨缺损10,冻干技术在骨组织保存方面的研究走过了近六十年的发展历程,且还有研究表明,长期深低温保存对于骨组织组织学以及力学性能的影响可以忽略不计11,这无疑为组织工程骨这种对成骨效能和力学强度同时均有较高要求的组织工程产品的保存乃至产业化指出了今后的发展方向。
     此项研究的临床试用是在获得了第三军医大学西南医院伦理委员会批准后进行的,实施本项试用的西南医院骨科已成为全军首家获得总后勤部卫生部批文的单位。
     方法
     1.本课题按照组织工程骨修复长骨缺损临床试用标准化操作规程(SOP)为特定的患者于术前3-4周开始构建个体化的组织工程骨,并在此过程中按规程中预定的检验项目对构建过程中的每个阶段的目标细胞或组织进行严格的筛选和测定,始终信守首先保障受试者人身安全的承诺。
     2 .组织工程骨构建成功后由指定医师按照SOP中预定的临床路径展开对受试者围手术期的各项诊疗、随访观察和与受试者之间进行对其康复进程的长期动态交流,以便及时发现可能出现的问题,给予受试者有益的建议和帮助。临床疗效评价主要通过对受试者影像学及血液学各项指标的持续监测进行。
     3.将当天手术预留的组织工程骨同期植入6周龄BALB/C裸鼠皮下,通过对其定期行X线检查、CT扫描以及取植入骨组织行切片、组织化学染色的方法评价植入骨的成骨情况,同时向裸鼠皮下注射与植入骨内等量的种子细胞混悬液,通过观察其生活习性有无改变及定期称重、取其重要脏器行切片、HE染色观察的方法初步评价种子细胞的致瘤性。
     4.将个体化的组织工程骨按标准程序冻干后与未冻干的组织工程骨一并提取其中的成骨相关蛋白后通过western-blotting技术对其中BMP-2、TGF-β1以及IGF-1的表达进行测定,初步对个体化组织工程骨成骨机制和冻干对组织工程骨成骨能力的影响做一探索性研究。
     结果
     1.按照组织工程骨临床试用标准化操作规程构建个体化工程骨的过程中,种子细胞增殖迅速,诱导分化效率高,构建的骨组织内细胞基质分泌旺盛,几乎充满支架材料的每个孔隙。
     2.严格按照组织工程骨SOP成功完成了30例试用者所需组织工程骨的构建,所有试用者手术过程顺利并获得了较完备的临床随访资料。资料显示腔隙性骨缺损植骨区于术后平均3月左右均可见较高密度的钙化影,术后12月左右病灶获得基本修复,CT检查发现髓腔样结构。术后随访1.5年的病例可发现完全的髓腔再通,抽血检查结果显示各项指标基本正常,符合术前对组织工程骨成骨效能较高且安全性良好的预测。
     3.裸鼠皮下异位成骨实验中,术后1、2、3月复查X线片可观察到植骨区逐渐出现高密度影的同时对照侧DBM始终未显影;术后3月组织学HE及Masson染色切片可观察到组织块内部及外部均有编织骨形成,并有较多的成骨细胞及小血管长入;皮下注射种子细胞混悬液实验过程中,实验裸鼠未见明显生活习性改变,切取其心、肺、肝、肾做HE染色观察未见组织破坏或肿瘤样组织形成。
     4.个体化组织工程骨内BMP-2、TGF-β1以及IGF-1三种抗体均呈阳性表达,细胞上架后电泳灰度值经统计学分析均与上架前有显著差异(P<0.01),表示细胞分泌蛋白量较未上架时有显著意义的增加,同一样本不同时间点电泳灰度值比较显示上架第5、7、9天与上架3、12、15天相比较有显著差异(P<0.05)表示三种蛋白的表达高峰时段为上架后5-9天。
     结论
     1.构建的个体化组织工程骨用于临床修复骨缺损未见明显的排斥反应,提示个体化的组织工程骨具有良好的组织相容性好和较为广泛的临床应用前景。动物实验和临床应用均观察到体外构建的组织工程骨具有良好的诱导成骨和促进骨愈合作用。
     2.通过对组织工程骨临床试用者较长期的血清学持续监测和放射学动态观察,初步证实了组织工程骨用于修复各类长骨缺损有较强的生物安全性。
     3.个体化的组织工程骨修复小儿长骨缺损显示出了可喜的临床效果,这为治疗各种病因造成的小儿骨缺损的这一临床难题提供了新的思路和方法。
     4.根据我科制定并已提交SFDA讨论审定的组织工程骨构建标准操作规程所制备的个体化组织工程骨可分泌较多的BMP-2、TGF-β1以及IGF-1,且冻干后的个体化组织工程骨依然存在较高的成骨活性,为组织工程骨产品的较长期保存提供了可行性技术支持。
Background and objective
     The Japanese Orthopaedic Association Committeeon Tissue Transplantation and Regenerative Medicinehas conducted a nationwide survey of the status of bone graftingin Japan every 5 years from 1985. In the most recently research in 2007 they found that with the improvement of the modern medical conditions, the employment of the bone grafts kept increasing by each year, a total of 163,564 tissue transplantations were performed, and 134 782 (82.4%) of them were bone grafts. Of the bone grafts, 76,015 (56.4%) were autografts, 53,735 (40%) used a synthetic bone substitute, and 4886 (3.6%) were banked bone allografts. The proportion of synthetic bone substitutes increased, and the proportion of autografts decreased compared to the past 5 years, with the number of autografts, synthetic bone substitutes, and banked bone allografts increased 1.32, 1.68, and 1.72 times, respectively, during this period. Most significantly, the results suggest that Japanese orthopedic surgeons are tending to use synthetic bone substitutes largely as a replacement for autografts especially in the bone transplantations on children. In spite of the predominant properties of osteoinduction and osteoconduction autografts may have, there are limitations to the volume, shape, and size of autografts that can be excised. Excision of autogenous bone is also an invasive procedure. Furthermore, the bone mass of the autografts used to be deficient in children, in addition, this kind of operations may cause the pain in the donor site, the increase of the operation time, cost and probability of infections, even lead to the impediment of the adolescents’bone development. Same to some allografts, bones from the patients’relatives are not the optimum selection due to the indeterminateness of their curative effects. Scientists all over the world have tried many artificial substitutes to repair the bone defects such as the artificial synthetic materials, allografts, demineralized bone matrices from allografts, but none of them could fix the problems when the amount of the bones required are too large or the conditions of the patients are not sound. As we have gained so many breakthroughs on the research of repairing large bone defect of big animals using tissue-engineered bone(TEB), it is necessary to carry out some clinical experiments restrainedly for the sake of the TEB's formal clinical applications and the accumulation of rudiment data in order to form an orthonormal therapy mode for long bone defect. But the application of TEB is limited for the harsh demands of its conservation and transportation. To meet the final desire of the ideal tissue-engineered bone grafts“reach on demand”, literatures were reviewed by us and we found that in early research of William H’s group, the tissue they froze-dried and sealed in vacuum may be stored at room temperature for periods of at least two years without detectable change. In 2007 Philip J. declared they got successful result on the treatment of periodontal intrabony defects using freeze-dried bone. In addition to the conclusion Moshe Salai drew in 2001 that prolonged cryopreservation on the biomechanical properties of bone allografts came out insignificant, all the information give us a hint that the preservation even the full scale operation of our TEB should go well in this way.
     This clinical research was approved by the Ethics Committee of Southwest Hospital, which made the department of orthopedics of southwest hospital come to be the first unit in PLA authorized to carry out such clinical applications of tissue-engineered bone by the ministry of health, PLA General Logistics Department.
     Methods
     1. The individualized TEB(iTEB) was constructed according to the SOP for the clinical application in the treatment of long bone defects 3-4 weeks before the admission. In this procedure, strict screening and determination based on SOP were used on the target cells or tissues in different phases of the construction. Commitments of the subject’s physical security are sticked to from the beginning to the end in this research.
     2. The patients were informed to hospitalization after the construction of TEB was accomplished, all the perioperative check-ups, follow-up visits and the long-term developmental communications between the subjects and the clinicians during the restoration were executed according to the clinical path for these patients only. An identical resident is appointed to accomplish the above work, which is responsible to find out possible problems promptly and provide helpful recommendations for the subjects. The evaluation of the curative effect was mainly through the persistent monitoring of the radiology and hemotolgy results.
     3. Nude mice of 6 weeks old (male:female=1:1) were chosen to be the host of the implantation subcutaneously and were evaluated the osteogenesis or oncogenicity by periodic check through X-ray, CT scan and pathological slice and histochemical stain of the graft and the vital organs respectively.
     4. Key proteins like BMP-2, TGF-β1 and IGF-1 which should be produced in tissue-engineered bone and freeze-dried tissue-engineered bone were detected by western-blot method in order to explore the mechanism of the individualized tissue-engineered grafts’bone formation and the possible influence of freeze-drying on our TEB.
     Results
     1. Rapid proliferation, efficient induction and differentiation of the seedling cells for the construction of TEB was documented according to the SOP, productive secretion of the cell matrix was found in almost every pore of DBM under the inverted phase contrast microscope. Strict screening and determination of the cells and tissues all through the procedure were carried out and the physical security of the subjects is confirmed at least.
     2. Thirty cases of clinical probation were accomplished according to the SOP of TEB strictly and self-contained follow-up materials were obtained simultaneously. According to the materials, comparatively high-density calcification shadows were observed 3 months after the implantation when capsular bone defect cases were analyzed, then foci almost disappeared at about 12 months after operation, furthermore, cavum pulpi were found completely recanalized in the 1.5 years case. Bone callous was found across the gap 6 months after the implantation and the recanalization of cavum pulpi was observed by CT scan throughout the cases.
     3. Ectopia osteogenesis experiment on nude mice demonstrated gradually ossification along with the extension of the time post-operation. Both the internal and the external part of the tissue have formation signs of woven bone with major osteoblasts and small vessles infiltration. No obvious change of life habit was observed and no tumor-like tissue was discovered by HE staining of the slice of heart, lung, liver and kidney taken from the mice injected with cell suspensions.
     4. The expressions of the three proteins are positive both in TEB and freeze-dried TEB, with significant difference to the pure DBM. The climax of their secretion lies in the period of 5-9 days after the cells were seeded into the scaffold.
     Conclusion
     1. No visible rejections were observed during the application of individualized TEB for the treatment of patients with long bone defects, which implies that the constructed TEB has good histocompatibility and extensive prospects for clinical application. Both the result of the clinical application and ectopia osteogenesis experiment in nude mice showed comparatively doughty bone induction and osteogenesis of TEB at the same time.
     2. The biological security and curative effect of TEB in the treatment of different kinds of long bone defects were tentatively confirmed by monitoring the serology and imageology results of the patients in differents periods of rehabilitation dynamically.
     3. Felicitous curative results were manifested in the treatments of children’s long bone defects with individualized TEB, which provided a novel path for the theraphy of juvenile bone defects casued by different etiological factors.
     4. Much osteogenic key proteins such as BMP-2, TGF-β1 and IGF-1 in the individualized tissue-engineered bone constructed according to the standard operating procedure which we preferred were confirmed within the individualized tissue-engineered bone and freeze-dried TEB by WB method.
引文
1. Ken Ubabe,Moritoshi Itoman,Yoshiaki Toyama,Yosshiaki Yanase,Yukihide Iwamoto,Hajime Ohgushi. Current trends in bone grafting and the issue of banked bone allografts based on the fourth nationwide survey of bone grafting status from 2000 to 2004. J Orthop Sci 2007, 12:520–525.
    2. Joshi A, Kostakis GC. An investigation of post-operative morbidity following iliac crest graft harvesting. Br Dent J. 2004, 196(3):167-71.
    3. Yao L, Chen J, Hu X. Clinical application of biological bone carrier in repair of long bone defect of femur. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1997, 11(3):136-8.
    4. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007, 1(4):245-60.
    5. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007, 28(29):4240-50.
    6. XU Jianzhong, LIU Jie, WANG Xuquan, LUO Fei, ZHOU Qiang, He Qing-yi, XIE Zhao,DAI Fei. A Pilot Study on the Clinical Research of TEB Repairing Long Bone Defects. Tissue Engineering 2006,12(4)1125.
    7.许建中,骨组织工程的研究与开发进展。第三军医大学学报。2005,27:(16),1625-27.
    8. Zhang Chunqiu, Zhang Xizheng, Dong Xin. et al. Bone modeling adaptation as a method for promoting development of bone tissue engineered construct in vitro. Medical Hypotheses, 2007, 69:(1), 178-81.
    9. William H. Sewell, Douglas R. Koth, James W. Pate, et al. Review of Some Experiments with Freeze-dried Grafts, American Journal of Surgery, 1956, 91, 358-61.
    10. Philip J. Hanes DDS,et al. Bone Replacement Grafts for the Treatment of Periodontal Intrabony Defects. Oral and Maxillofacial Surgery Clinics of North America, 2007, 19: 499-512.
    11. Moshe Salai, Tamar Brosh, Natan Keller, Marina Perelman, Israel Dudkiewitz. The effects of prolonged cryopreservation on the biomechanical properties of bone allografts: A microbiological, histological and mechanical study. Cell and TissueBanking 1, 2000, 69–73.
    12.曹谊林,张文杰.组织工程与组织器官缺损修复.临床外科杂志, 2007, 15: (1) 40-41.
    13. Robert Langer, Joseph Vacanti. Principles of tissue engineering, Third edition, Elsevier Inc, 2007, 1-11.
    14. Conejero JA, Lee JA, Nanda D, et al. Cranial defect reconstruction in a rabbit model using different mixtures of bioglass and autologous bone. Proceedings of the Plastic Surgery Research Council 49th Annual Meeting; June 9-12, 2004; Ann Arbor, MI. p. 216.
    15. Hanes PJ. Bone replacement grafts for the treatment of periodontal intrabony defects. Oral Maxillofac Surg Clin North Am. 2007 Nov;19(4):499-512.
    16. Park SA, Shin JW, Yang YI, et al. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials 2004, 25(3):527–535.
    17. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopaedic devices. Biomateri als 2000,21:2335–46.
    18.鄂征,刘流。医学组织工程技术与临床应用,北京:北京出版社,2002,390-441
    19. Cowan CM, Soo C, Ting K, Wu B. et al. Evolving Concepts in Bone Tissue Engineering. Curr Top Dev Biol. 2005,66:239-85.
    20. Deans RJ,Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000,28(8):875-84.
    21. Krampera, M., Glennie, S., Dazzi, F. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003,101(9):3722-9.
    22. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003,31(10):890-6.
    23. Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 2. Applications in bone. J Tissue Eng Regen Med. 2007, 1(2):97-109.
    24. Makino T, Hak DJ, Hazelwood SJ, et al. Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7. J Orthop Res. 2005,23(3):632-8.
    25. Mauney JR, Jaquiery C, Kaplan DL. et al. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials. 2005, 26(16):3173-85.
    26. Kasten P, Luginbuhl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite,β-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003 ,24(15):2593-603.
    27. A. P. MacKenzie, G. L. Rapatz. Freeze-drying preservation of human erythrocytes. Cryobiology, 1971, 8:4, 384.
    28. Theodore Malinin, H. Thomas Temple. Comparison of frozen and freeze-dried particulate bone allografts. Cryobiology 2007 (55) 167-70.
    29. B Bain, Bone marrow aspiration, J Clin Pathol. 2001, 54(9): 657–663.
    30. Akira Ito , Eri Hibino , Hiroyuki Honda, et al. A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles, Biochemical Engineering Journal 2004, 20 :119-125
    31. Boiret N, Rapatel C, Veyrat-Masson R, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol. 2005,33(2):219-25.
    32. Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro, J Cell Biochem. 1997, 64 (2): 295-312.
    33. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966, 16(3):381-90.
    34. Anna R. Derubeis and Ranieri Cancedda, Bone Marrow Stromal Cells (BMSCs) in Bone Engineering: Limitations and Recent Advances, Annals of Biomedical Engineering, 2004, 32: 160-65.
    35. Clark D, Frisen J. Defferentiation potential of adult stem cells. Curr Opin Genet Develop, 2001, 11:575-80.
    36. Pittenger MF., Mackay AM., Marshak DR., et al.. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284(5411):143-7.
    37. Horwitz E, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini F, DeansR, Krause D, Keating A. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005; 7: 393-95.
    38. Kortesidis A, Zannettino A, Isenmann S, et al. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood. 2005, 105(10):3793-801.
    39. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol. 2004, 32(5):414-25. Review.
    40. Ezoe S, Matsumura I, Satoh Y, et al. Cell cycle regulation in hematopoietic stem / progenitor cells. Cell Cycle, 2004, 3(3):314- 18.
    41. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp BiolMed (Maywood) 2006,231: 39-49.
    42. Luo Fei, Xu Jianzhong, Wang Xu-quan, He Qing-yi, Xie Zhao,Yin Zhi-hua. High-performance Proliferation of hMSCs in the Modeled Microgravity Environment. Tissue Engineering 2006,12(4)1123.
    43. Zhao F, Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: Dynamic cell seeding and construct development. Biotechnology and Bioengineering. 2005, 91(4), 482-93.
    44. Feng Zhao, Ravindran Chella, Teng Ma. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling, Biotechnology and Bioengineering, 2007, 96, (3) 584-95.
    45. Tatsuya Kitagawa, Tetsuji Yamaoka, Reiko Iwase, Akira Murakami, Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction, Biotechnology and Bioengineering, 2006, 93, (5) 947-54.
    46. Luis A. Ortiz, Maria DuTreil, Cheryl Fattman, Amitabh C. Pandey, German Torres, Kristina Go, and Donald G. Phinney. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury, Proc Natl Acad Sci U S A. 2007, 104(26): 11002-07.
    47. Naresh Polisetty, Anees Fatima, Soundarya Lakshmi Madhira, Virender Singh Sangwan, and Geeta K Vemuganti. Mesenchymal cells from limbal stroma of human eye. Mol Vis. 2008, 14: 431-42.
    48. LIU Jie, XU Jianzhong, An experimental study of Tissue-engineered bone constructed with DBM scaffold, Tissue engineering, 2006, Vol12,No.4, 1123.
    49. Lisigonoli G, Zini N, et al. Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on nonwoven hyaluronic acid based polymer scaffold. Biomaterials, 2001, 22: 2095-105.
    50. Damoulis PD, Drakos DE, Gagari E, Kaplan DL. Osteogenic differentiation of human mesenchymal bone marrow cells in silk scaffolds is regulated by nitric oxide. Ann N Y Acad Sci. 2007, 1117:367-76.
    51. Arndt S, Itthichaisri C, Maier W, Gellrich NC, Schipper J. Proliferation rate of human osteoblast-like cells on alloplastic biomaterials and their clinical application for the transnasal duraplasty procedure. J Cell Mol Med. 2006, 10(3):749-57.
    52. Maniatopoulos C , Soderek J, Melcher A H. Bone formation in vitro by stromal cell obtained from bone marrow of young adults rats. Cell Tissue Res, 1995, 254 (3):207.
    53. Long M W, Robison J A , Ashcraft E A , et al. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factor. Clin Investigation, 1995, 95:881-87.
    54. Goodwin H S, Bickness A R, et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of none fat and neural markers . Biol Blood Marrow Trasplant , 2001,7 (11) :581-88.
    55. Phillips JE , Gersbach CA , Wojtowicz AM, et al. Glucocorticoid-induced osteogenesis is negatively regulated by Runx2PCbfa1 serine phosphorylation. J Cell Sci, 2006, 119:581-91.
    56. Xudong Li , Li Jin , Quanjun Cui . Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporosis , 2004, 16: 101-08.
    57. Arinzeh TL, Peter SJ, Archambault MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am. 2003, 85-A(10):1927-35.
    58.秦辉,许建中,王序全等。组织工程用大段负重骨缺损动物模型的建立中国临床康复. 2004, 8(20).-3974-3975.
    59. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stromapromote breast cancer metastasis. Nature. 2007, 449(7162):557-63.
    60. Hakkarainen T, S?rkioja M, Lehenkari P, Miettinen S, Ylikomi T, Suuronen R, Desmond RA, Kanerva A, Hemminki A. Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum Gene Ther. 2007, 18(7):627-41.
    61. Tao ZW, Li LG. Cell therapy in congestive heart failure. J Zhejiang Univ Sci B. 2007, 8(9):647-60.
    62. Guo J, Lin GS, Bao CY, Hu ZM, Hu MY. Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation. 2007, 30(3-4):97-104.
    63. Braun S, Vogt S, Imhoff AB. Stage oriented surgical cartilage therapy. Current situation. Orthopade. 2007, 36(6):589-99.
    64. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis.Arthritis Rheum. 2007, 56(4):1175-86.
    65. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, Mantegazza R, Frassoni F, Mancardi G, Pedotti R, Uccelli A. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol. 2007, 61(3):219-27.
    66. Kawate K, Yajima H, Ohgushi H, Kotobuki N, Sugimoto K, Ohmura T, Kobata Y, Shigematsu K, Kawamura K, Tamai K, Takakura Y. Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs. 2006, 30(12):960-2.
    67. Molina EJ, Palma J, Gupta D, Torres D, Gaughan JP, Houser S, Macha M. Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy. J Thorac Cardiovasc Surg. 2008, 135(2):292-9.
    68. Van Laar J. M. and Tyndall A. Adult stem cells in the treatment of autoimmune diseases. Rheumatology, 2006, (45): 1187-93.
    69. Fang B., Song Y., Zhao R. C., Han Q. and Lin Q. Using human adipose tissue-derived mesenchymal stemcells as salvage therapy for hepatic graft-versus-host diseaseresembling acute hepatitis. Transplant. Proc. 2007, (39):1710-13.
    70. Kuo Ching Chao, Kuo Fang Chao, Yu Show Fu, and Shing Hwa Liu, Islet-Like Clusters Derived from Mesenchymal Stem Cells in Wharton's Jelly of the Human Umbilical Cord for Transplantation to Control Type 1 Diabetes, PLoS ONE. 2008, 3(1): e1451.
    71. Risbud MV, Guttapalli A, Tsai TT, Lee JY, Danielson KG, Vaccaro AR, Albert TJ, Gazit Z, Gazit D, Shapiro IM. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine. 2007, 32(23):2537-44.
    72. De Bari C, Dell'Accio F, Karystinou A, Guillot PV, Fisk NM, Jones EA, McGonagle D, Khan IM, Archer CW, Mitsiadis TA, Donaldson AN, Luyten FP, Pitzalis C. A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum. 2008, 58(1):240-50.
    73. Delorme B, Charbord P. Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol Med. 2007, 140:67-81.
    74. Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, Kyurkchiev S. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int. 2008, [Epub ahead of print]
    75. De Bari C, Dell'Accio F, Karystinou A, Guillot PV, Fisk NM, Jones EA, McGonagle D, Khan IM, Archer CW, Mitsiadis TA, Donaldson AN, Luyten FP, Pitzalis C. A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum. 2008,58(1):240-50.
    76. Nixon AJ, Goodrich LR, Scimeca MS, Witte TH, Schnabel LV, Watts AE, Robbins PD. Gene therapy in musculoskeletal repair. Ann N Y Acad Sci. 2007, 1117:310-27.
    77. Trubiani O, Isgro A, Zini N, Antonucci I, Aiuti F, Di Primio R, Nanci A, Caputi S, Paganelli R.Functional interleukin-7/interleukin-7Ralpha, and SDF-1alpha/CXCR4 are expressed by human periodontal ligament derived mesenchymal stem cells. J Cell Physiol. 2008, 214(3):706-13.
    78. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth:a pilot study. J Endod. 2008, 34(2):166-71.
    79. Meyerrose TE, De Ugarte DA, Hofling AA, Herrbrich PE, Cordonnier TD, Shultz LD, Eagon JC, Wirthlin L, Sands MS, Hedrick MA, Nolta JA. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells. 2007, 25(1):220-7.
    80. D’Ippolito G, Howard GA, Roos BA, Schiller PC. Sustainedstromal stem cell self-renewal and osteoblastic differentiationduring aging. Rejuv Res, 2006, 9: 10-19.
    81. Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem, 2006, 97: 744-54.
    82. Maddalena Soncini, Elsa Vertua, Lucia Gibelli, Fausto Zorzi, Marco Denegri, Alberto Albertini, Georg S. Wengler, and Ornella Parolini. Isolation and characterization of mesenchymal cells from human fetal membranes, J Tissue Eng Regen Med 2007, 1: 296–305.
    83. Shyam A. Patel, Lauren Sherman, Jessian Munoz and Pranela Rameshwar. Immunological properties of mesenchymal stem cells and clinical implications. Arch. Immunol. Ther. Exp., 2008, 56, 1-8.
    84. Tremoleda JL, Forsyth NR, Khan NS, Wojtacha D, Christodoulou I, Tye BJ, Racey SN, Collishaw S, Sottile V, Thomson AJ, Simpson AH, Noble BS, McWhir J. Bone tissue formation from human embryonic stem cells in vivo. Cloning Stem Cells. 2008, 10(1):119-32.
    85. Sze S. K., de Kleijn D. P., Lai R. C., Tan E. K., Zhao H., Yeo K. S., Low T. Y., Lian Q., Lee C. N., Mitchell W., ElOakley R. M. and Lim S. K. Elucidating the secretionproteome of human embryonic stem cell-derived mesenchymalstem cells. Mol. Cell. Proteomics, 2007, (6):1680-89.
    86. Nakajima T, Iizuka H, Tsutsumi S, Kayakabe M, Takagishi K. Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation. Spine. 2007, 32(22):2432-6.
    87. Orii H, Sotome S, Chen J, Wang J, Shinomiya K. Beta-tricalcium phosphate (beta-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. J Med Dent Sci. 2005, 52(1):51-7.
    88. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogenic bone marrow-derived mesenchymal stem cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone, Proc Natl Acad Sci U S A. 2002, 99(13):8932-7.
    89. Pisati F., Bossolasco P., Meregalli M., Cova L., BelicchiM., Gavina M., Marchesi C., Calzarossa C., Soligo D.,Lambertenghi-Deliliers G., Bresolin N., Silani V.,Torrente Y. and Polli E. Induction of neurotrophinexpression via human adult mesenchymal stem cells: impli-cation for cell therapy in neurodegenerative diseases. Cell Transplant., 2007, (16): 41-55.
    90. XU Jianzhong, LIU Jie, WANG Xuquan, et al. A pilot study on the clinical research of TEB repairing long bone defects, Tissue engineering, 2006, Vol12,No.4, 1125.
    91. Fu YC, Nie H, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng. 2008, 99(4):996-1006.
    92. Matsushita N, Terai H, Okada T, Nozaki K, Inoue H, Miyamoto S, Takaoka K. Accelerated repair of a bone defect with a synthetic biodegradable bone-inducing implant. J Orthop Sci. 2006, 11(5):505-11.
    93. Awad HA, Zhang X, Reynolds DG, Guldberg RE, O'Keefe RJ, Schwarz EM. Recent advances in gene delivery for structural bone allografts. Tissue Eng. 2007, 13(8):1973-85.
    94. Dallari D, Fini M, Stagni C, Torricelli P, Nicoli Aldini N, Giavaresi G, Cenni E, Baldini N, Cenacchi A, Bassi A, Giardino R, Fornasari PM, Giunti A. In vivo study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination. J Orthop Res., 2006, 24(5):877-88.
    95. Arnord I. Caplan. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 2007, 213(2) : 341-47.
    96.许建中,骨组织工程的研究与开发进展,第三军医大学学报,2005,27(16):1625-27.
    97. Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 2. Applications in bone. J Tissue Eng Regen Med. 2007, 1(2):97-109.
    98. Borden M, El-Amin SF, Attawia M, Laurencin CT. Structural and human cellularassessment of a novel microspherebased tissue engineered scaffold for bone repair. Biomaterials. 2003, 24(4):597-609.
    99. Jones JR, Lee PD, Hench LL. Hierarchical porous materials for tissue engineering. Philos Transact A Math Phys Eng Sci. 2006, 364(1838):263-81.
    100. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by meltmolding particulate-leaching method. Biomaterials. 2003, 24(22):4011-21.
    101. Yoshitake Takahashi, Masaya Yamamoto, Yasuhiko Tabata, Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and b-tricalcium phosphate Biomaterials, 2005,26: 4856–65.
    102. Rodrigues CV, Serricella P, Linhares AB, Guerdes RM, Borojevic R, Rossi MA, Duarte ME, Farina M. Characterization of a bovine collagen–hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials. 2003, 24(27):4987-97.
    103. Link DP, van den Dolder J, Jurgens WJ, Wolke JG, Jansen JA. Mechanical evaluation of implanted calcium phosphate cement incorporated withPL GA microparticles. Biomaterials. 2006, 27 (28) :4941-47.
    104. Hsu FY, Tsai SW, Lan CW, Wang YJ. An in vivo study of a bone grafting material consisting of hydroxyapatite and reconstituted collagen. J Mater Sci Mater Med., 2005, 16 (4) :341-45.
    105.陈富林,毛天球,丁桂聪,等.钛网-珊瑚复合支架材料的组织工程骨研究.中国创伤骨科杂志, 2000, 2(4) : 304-305,307.
    106. Srouji S, Kizhner T, Livne E. 3D scaffolds for bone marrow stem cell support in bone repair. Regen Med. 2006, 1(4):519-28.
    107. Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs. 2005, 8(3):131-6.
    108. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004, 32(3):477-86.
    109. El Haj AJ, Wood MA, Thomas P, Yang Y. Controlling cell biomechanics in orthopaedic tissue engineering and repair. Pathol Biol (Paris). 2005,53(10):581-9.
    110. Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques. J Cell Mol Med. 2007, 11(4):654-69.
    111. Chen LQ, Li NY, Yuan RT, Sun J, Jin XM, Liu BY. Study of MSCs in vitro cultured on demineralized bone matrix of mongrel. Shanghai Kou Qiang Yi Xue. 2007, 16(3):255-8.
    112. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res 1970; 4:443.
    113.奚廷斐,生物医用材料现状和发展趋势,中国医疗器械信息,2006, 12(5), 1-4.
    114. Li D, Liu XD, Chai G, Shu CF, Liu W, Cui L, Cao YL. Experimental study of construction of tissue engineered bone ectopically by human bone marrow mesenchymal stem cells. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007, 23(5):409-11.
    115. Kang FW, Tang XF, Wen YM, Wu ZH, Huang X. Experimental studies on ectopic osteogenesis by seeding human mesenchymal stem cell on human natural bone derived scaffold materials. Hua Xi Kou Qiang Yi Xue Za Zhi. 2006, 24(4):357-61.
    116. Shi PL, Gu XM, Chen FL. Experimental study of tissue engineered bone with coralline hydroxyapatite as scaffolds. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2001, 15(6):373-6.
    117. Li T, Wang J, Yang H. A research on ectopic osteogenesis and vascularization of tissue engineered bone promoted by 1,25-(OH)2D3. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007, 21(10):1142-6.
    118. Shi-Jiang Zhu, Byung-Ho Choi, Jin-Young Huh, Jae-Hyung Jung, Byung-Yong Kim and Seoung-Ho Lee. A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006, 101(2): 164-69.
    119. Qian Y, Shen Z, Zhang Z. Reconstruction of bone using tissue engineering and nanoscale technology. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006, 20(5):560-4.
    120. Zigang Ge, Sophie Baguenard, Lee Yong Lim, Aileen Wee and Eugene Khor. Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004, 25:(6) 1049-58.
    121. Cao X, Liu C, Chen J. Experimental studies on the porous calcium phosphate cement combined with recombinant human bone morphogenetic protein 2 for bone defectsrepair. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006, 20(9):916-19.
    122. Akihiko Yamamoto, Seiji Yano, Minoru Shiraga, Hirohisa Ogawa, Hisatsugu Goto, Toyokazu Miki, Helong Zhang, Saburo Sone. A third-generation matrix metalloproteinase (MMP) inhibitor (ONO-4817) combined with docetaxel suppresses progression of lung micrometastasis of MMP-expressing tumor cells in nude mice. International Journal of Cancer, 1 March 2003, 103(6): 822-28.
    123. He Y, Zhang ZY, Zhu HG, Qiu W, Jiang X, Guo W. Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. J Craniofac Surg. 2007, 18(4):800-5.
    124. Botchwey EA, Dupree MA, Pollack SR, Levine EM, Laurencin CT. Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. J Biomed Mater Res A. 2003 Oct 1;67(1):357-67.
    125. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D, Vunjak-Novakovic G.. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials. 2006, 27(36):6138-49.
    126. Janssen FW, Hofland I, van Oorschot A, Oostra J, Peters H, van Blitterswijk CA. Online measurement of oxygen consumption by goat bone marrow stromal cells in a combined cell-seeding and proliferation perfusion bioreactor. J Biomed Mater Res A. 2006, 79(2):338-48.
    127. Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J. A Microcarrier-Based Cultivation System for Expansion of Primary Mesenchymal Stem Cells. Biotechnol Prog. 2007, 23(1):187-93.
    128.刘杰,许建中.骨冻干技术研究进展,华南国防医学杂志,2008,22:(2), 60-62.
    129. F奥斯伯,R布伦特等编著,颜子颖,王海林译《精编分子生物学实验指南》科学出版社1998第一版.
    130. B.Wildemann, A. Kadow-Romacker, N. P. Haas, G. Schmidmaier. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007, 81(2):437-42.
    131. Akihiko Yamamoto, Seiji Yano, Minoru Shiraga, Hirohisa Ogawa, Hisatsugu Goto,Toyokazu Miki, Helong Zhang, Saburo Sone. A third-generation matrix metalloproteinase (MMP) inhibitor (ONO-4817) combined with docetaxel suppresses progression of lung micrometastasis of MMP-expressing tumor cells in nude mice. International Journal of Cancer, 1 March 2003, 103(6): 822-28.
    132. Otaki S, Ueshima S, Shiraishi K, Sugiyama K, Hamada S, Yorimoto M, Matsuo O. Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int. 2007, 31(10):1191-7.
    133.刘杰,许建中,王序全等.脱钙骨基质支架构建组织工程骨的实验研究.第三军医大学学报, 2005, 27 (9):888-91.
    134. Mendonca A. Expression of metalloproteinase 2 in the cell response to porous demineralized bovine bone matrix. J Mol Histol,2005, 36 :311-16.
    135. D. Rubio, J. Garcia-Castro, M.C. Martin, R. de la Fuente, J.C. Cigudosa, A.C. Lloyd and A. Bernad, Spontaneous human adult stem cell transformation, Cancer Res. 2005, (65) 3035–39.
    136. Minamide A, Yoshida M, Kawakami M, Okada M, Enyo Y, Hashizume H, Boden SD. The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion. Spine. 2007, 32(10):1067-71.
    137.刘杰,许建中,刘曦明等,个体化组织工程骨成骨机制探讨。华南国防医学杂志,2008,22(2)5-8.
    138. Wildemann B, Kadow-Romacker A, Haas NP, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007 May;81(2):437-42.
    139. Lee-Chuan C, Yeh John C, Lee. Co-transfection with the osteogenic protein (OP)-i gene and the insulin-like growth factor ( IGF)-1 gene enhanced osteoblastic cell differentiation. Biochimica et Biophysica Acta, 2006, 1763: 57-63.
    140. Karin A. Corsi, Edward M. Schwarz, David J. Mooney, Johnny Huard. Regenerative Medicine in Orthopaedic Surgery. J Orthop Res, 1261-68.
    141. Gordon SL, Oppenheimer SR, Mackay AM, Brunnabend J, Puhlev I, Levine F. Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology. 2001, 43(2):182-7.
    142.袁捷;刘广鹏;柴岗;刘波;许锋;崔磊;刘伟;曹谊林.自体骨髓基质干细胞复合珊瑚修复犬下颌骨节段缺损的初步研究,中华整形外科杂志, 2007, 1, 51-55.
    143. Canter HI, Vargel I, Mavili ME. Reconstruction of mandibular defects using autografts combined with demineralized bone matrix and cancellous allograft. J Craniofac Surg. 2007, 18(1):95-100.
    144.徐万鹏,冯传汉.主编.骨科肿瘤学.第1版北京:人民军医出版社, 2001, 320- 327.
    145.张金钟,王晓燕主编,医学伦理学,北京大学医学出版社。2007,第2版,114-125.
    146. Lucarelli E, Donati D, Cenacchi A, Fornasari PM. Bone reconstruction of large defects using bone marrow derived autologous stem cells. Transfus Apheresis Sci. 2004, 30(2):169-74.
    147. Crow SA, Chen L, Lee JH, et al. Vascularized bonegrafting from the base of the second metacarpal for persistent distal radius nonunion: a case report. J Orthop Trauma. 2005, 19(7): 483- 86.
    148. Sawaizumi T, Nanno M, Nanbu A, Ito H. Vascularised bone graft from the base of the second metacarpal for refractory nonunion of the scaphoid. J Bone JointSurg Br. 2004, 86(7): 1007-12.
    149. El-Amin SF, Lu HH, Khan Y, et al. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials. 2003, 24(7):1213-21.
    150. Stute N, Holtz K, Bubenheim M, et al. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol. 2004, 32 (12):1212-25.
    151. Wexler SA, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich source of human mesenchymal‘stem’cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003, 121(2):368-74.
    152. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003, 75(3):389-97.
    153. Bianchi G, Banfi A, Mastrogiacomo M, et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res. 2003, 287(1):98-105.
    154. Dimitrios Mastellos,John D. Lambris Complement: more than a‘guard’againstinvading pathogens? TRENDS in Immunology, 2002, (23) 10:485-91
    155. Pettway GJ, Schneider A, Koh AJ, et al. Anabolic actions of PTH (1-34): Use of a novel tissue engineering model to investigate temporal effects on bone. Bone. 2005, 36(6):959-70.
    156. Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G, et al. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res. 2005, 29(2):215-24.
    157. Rai B, Teoh SH, Hutmacher DW, et al. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005, 26(17):3739-48.
    158. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002, 39(1-2):237-46.
    159. Saito N, Takaoka K. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials. 2003, 24(13):2287-93.
    160. Charbord P, Oostendorp R, Pang W, et al. Comparative study of stromal cell lines derived from embryonic, fetal, and postnatal mouse blood-forming tissues. Exp Hematol. 2002, 30(10):1202-10.
    1. M. Vallet-Reg′, Bone repair and regeneration possibilities, Mat.-wiss. u. Werkstofftech, 2006,37 :478–84.
    2.许建中,骨组织工程的研究与开发进展。第三军医大学学报。2005,27:(16),1625-27.
    3. Zhang Chunqiu, Zhang Xizheng, Dong Xin. et al. Bone modeling adaptation as a method for promoting development of bone tissue engineered construct in vitro. Medical Hypotheses, 2007, 69:(1), 178-81.
    4. William H. Sewell, Douglas R. Koth, James W. Pate, et al. Review of Some Experiments with Freeze-dried Grafts, American Journal of Surgery, 1956, 91, 358-61.
    5. Audry U. Smith, Freezing and Drying Biological Materials. Nature. 1958, 21; 181(4625):1694-6.
    6. Briggs A.,et al. A new freeze-drying technique for processing biological materials. Dev Biol Stand. 1976; 36:251-60.
    7. Philip J. Hanes DDS,et al. Bone Replacement Grafts for the Treatment of Periodontal Intrabony Defects. Oral and Maxillofacial Surgery Clinics of North America, 2007, 19: 499-512.
    8. Jeffry S. Nymana, Anuradha Royc, Xinmei Shen, et al. The influence of water removal on the strength and toughness of cortical bone. Journal of Biomechanics, 2006, 39: 931-38.
    9. C. Brynko, W. R. Smithies, et al. Rapid vacuum freeze-drying of meat. Journal of the Science of Food and Agriculture, 1958, 9:9, 576-83.
    10. S. C. Tsinontides, P. Rajniak, D. Pham, et al. Freeze drying-principles and practice for successful scale-up to manufacturing, International Journal of Pharmaceutics, 2004, 280:(1-2), 1-16.
    11. Jin Hyun Nam, Chi Sung Song. Numerical simulation of conjugate heat and mass transfer during multi-dimensional freeze drying of slab-shaped food products. International Journal of Heat and Mass Transfer, 2007, 50:23-24, 4891-4900.
    12. Fernandez-Seara, M.A., Wehrli, S.L., Takahashi, M., Wehrli, F.W., Water contentmeasured by proton–deuteron exchange NMR predicts bone mineral density and mechanical properties. Journal of Bone and Mineral Research, 2004, 19, 289-96.
    13. Ander Abarrategi, María C. Gutiérrez, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes, Biomaterials, 2008, 29:1, 94-102.
    14. P. MacKenzie, G. L. Rapatz. Freeze-drying preservation of human erythrocytes. Cryobiology, 1971, 8:4, 384.
    15. Theodore Malinin, H. Thomas Temple. Comparison of frozen and freeze-dried particulate bone allografts. Cryobiology 2007 (55) 167-170.
    16. William H. Sewell, Douglas R. Koth, James W. Pate, et al. Review of Some Experiments with Freeze-dried Grafts, American Journal of Surgery, 1956, 91, 358-61.
    17. Stanley WL, Bernhard G, Peter E. Comparison of homogenous freeze-dried and fresh autogenous bone grafts in the monkey mandible. J Oral Surgery, 1972, 30 :649-655.
    18. H Burchardt, H Jones, F Glowczewskie, et al. Freeze-dried allogeneic segmental cortical-bone grafts in dogs. J Bone Joint Surg Am.1978, 60:1082-90.
    19. Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am, 2001, 83A:971 -986.
    20. Ellis E 3rd, Sinn DP. Use of homologous bone in maxillofacial surgery. J Oral Maxillofacial Surg, 1993, 51:1181-1193.
    21. Cornu O, Libouton X, Naets B, et al. Freeze-dried irradiated bone brittleness improves compactness in an impaction bone grafting model. Acta Orthop Scand, 2004, 75 (3) : 309~314.
    22. Hofmann, L. Konrad, M. H. Hessmann, et al. The influence of bone allograft processing on osteoblast attachment and function. Journal of Orthopaedic Research, 2005, 23:4, 846-54.
    23. Iwata H, Sakano S, Itoh T, et al. Demineralized bone matrix and native bone morphogenetic protein in orthopedic surgery. Clinical Orthopedics and Related Research. 2002, 395: 99~109.
    24. Fideler BM, Vangsness Jr CT, Moore T, et al. Effects of gamma irradiation on the human immunodeficiency virus, a study in frozen human bone-patellar ligament-bone grafts obtained from infected cadavera. J Bone Joint Surg Am., 1994; 76(7): 1032-5.
    25. Bo Han, Zhi Yang, Marcel Nimni. Effects of gamma irradiation on osteoinduction associated with demineralized bone matrix. Journal of Orthopaedic Research. 2008, 26:1, 75-82.
    26. Thomas E. Mroz, Eric L. Lin, Matthew C. Summit, et al. Biomechanical analysis of allograft bone treated with a novel tissue sterilization process. The Spine Journal, 2006, 6:1, 34-39.
    1. Liu W, Cui L, Cao YL. Recent advances in tissue engineering of cartilage, bone, and tendon. Curr Opin Orthop. 2004, 15(5): 364-368.
    2. Borden M, Attawia M, Khan Y, et al. Tissue engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg Br. 2004, 86(8):1200-1208.
    3. Akamaru T, Suh D, Boden SD, et al. Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine. 2003, 28(5):429-434.
    4. Suh DY, Boden SD, Louis-Ugbo J, et al. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine. 2002, 27(4): 353-360.
    5. Ahn SH, Kim CS, Suk HJ, et al. Effect of recombinant human bone morpho- genetic protein-4 with carriers in rat calvarial defects. J Periodontol 2003, 74(6): 787-797.
    6. Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002, 48(2):142-148.
    7. Lucarelli E, Donati D, Cenacchi A, et al. Bone reconstruction of large defects using bone marrow derived autologous stem cells. Transfus Apheresis Sci. 2004, 30(2):169-174.
    8. Colter DC, Class R, Digirolanmo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 2000, 97(7):3213-3218.
    9. Barry F, Boynton R. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun. 2001, 289(2):519–524.
    10. Arinzeh TL, Peter SJ, Archambauh MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg(Am). 2003, 85-A(10):1927-1935.
    11. Frank O, Heim M, Jakob M, et al. Real-time quantitative RT-PCR analysis of human bone marrowstromal cells during osteogenic differentiation in vitro. J Cell Biochem.2002, 85(4):737-746.
    12. Mendes SC, Tibbe JM, Van Blitterswijk CA. et al. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng. 2002, 8(6 ):911-920.
    13. Declercq H, Van den Vreken N, De Maeyer E, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004, 25 (5):757-768.
    14. Zuk PA, Zhu M, Mizuno H, et al. Mutilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering. 2001, 7(2):211-224.
    15. Laurencin CT, Attawia MA, Lu LQ, et al. Poly(lactide-co-glycolide)/ hydroxyapatite delivery of BMP-2-producing cells: a regional gene therapy approach to bone regeneration. Biomaterials. 2001, 22(11):1271-1277.
    16. Montjovent MO, Burri N, Mark S, et al. Fetal bone cells for tissue engineering. Bone. 2004, 35(6):1323-1333.
    17.单建林,许建中,王序全,等.微载体技术体外扩增人骨髓间充质干细胞.中国矫形外科杂志. 2004, 12(15):1158-1160.
    18. Fugazzotto PA. GBR using bovine bone matrix and resorbable and nonresorbable membranes. Part 1: histologic results. Int J Periodontics Restorative Dent. 2003, 23(4):361-369.
    19. Tadjoedin ES, de Lange GL, et al. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorpho- metrical study of five cases. J Clin Periodontol. 2003, 30(3):261-270.
    20. Valentini P, Abensur DJ. Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results. Int J Oral Maxillofac Implants. 2003, 18(4):556-560.
    21. Trentz OA, Hoerstrup SP, Sun LK, et al. Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials, 2003, 24(20):3417-3426.
    22. Kon E,Muraglia A,Corsi A,et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000, 49(3):328-337.
    23. Maeda H, Kasuga T, Nogami M, et al. Preparation of bonelike apatite composite for tissue engineering scaffold. Science and Technology of Advanced Materials. 2005, 6(1):48-53.
    24. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Rel Res. 2002, (395):81-98.
    25. Kwon SH, Jun YK, Hong SH, et al. Synthesis and dissolution behavior of b-TCP and HA/b-TCP composite powders. J Eur Ceram Soc. 2003, 23(7):1039-1045.
    26. Hatter S, Asselin A, Greenspan D, et al. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomaterials. 2005, 26(8): 839-848.
    27. Luginbuehl V, Meinel L, Merkle HP, et al. Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm. 2004, 58(2):197-208.
    28. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002, 84-A(6):1032-1044.
    29. Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng. 2003, 9(Suppl 1):S5-15.
    30. Kirker-Head CA. Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev. 2000, 43(1):65-92.
    31. Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone. 2004, 4(3): 402-411.
    32. Sumner DR, Turner TM, Urban RM, et al. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res 2004, 2(1):58-65.
    33. Liu HH, Kofron MD, El-Amin SF, et al. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices. Biochem Biophys Res Commun. 2003, 305(4):882-889.
    34. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002, 84-A(12):2123-2134.
    35. Sumner DR, Turner TM, Urban RM, et al. Locally delivered rhTGF-b2 enhances bone ingrowth and bone regeneration at local and remote sites of skeletal injury. J Orthop Res. 2001, 19(1):85-94.
    36. Kanematsu A, Marui A, Yamamoto S, et al. Type I collagen can function as a reservoir of basic fibroblast growth factor. J Control Release. 2004, 99(2): 281-292.
    37. Yoneda A, Asada M, Oda Y, et al. Engineering of an FGF-proteoglycan fusion protein with heparin-independent, mitogenic activity. Nat Biotechnol. 2000, 18(6):641-644.
    38. Akaogi H, Akimoto T, Tanaka J, et al. Basic fibroblast growth factor supports in vitro chondrogenesis of bone marrow-derived mesenchymal stem cells from patients with osteoarthritis. Materials Science and Engineering C. 2004, 24 (3) :403-406
    39. Mandl EW, Jahr H, Koevoet JL, et al. Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix Biol. 2004, 23(4):231-241.
    40. Shen FH, Visger JM, Balian G, et al. Systemically administered mesenchymal stromal cells transduced with insulin-like growth factor-I localize to a fracture site and potentiate healing. J Orthop Trauma. 2002, 16(9):651-659.
    41. Quarto R, Kutepy SM, Kon E, et al. Repair of large bone defects by autologous bone marrow stromal cells. N Engl J Med. 2001, 344(5):385-386.
    42. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000 Feb;(371):10-27.
    43. Mauney JR, Jaquiery C, Volloch V, et al. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials. 2005, 26 (16): 3173-3185.
    44. Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005, 26 (19): 4139-4147.
    45.刘杰,许建中,王序全等.脱钙骨基质支架构建组织工程骨的实验研究.第三军医大学学报, 2005, 27 (9):888-891.
    1. Barker KL, Lamb SE, Simpson AH. Functional recovery in patients with nonunion treated with the Ilizarov technique. J Bone Joint Surg Br 2004;86:81–85.
    2. Balshi TJ, Wolfinger GJ, Petropoulos VC. Quadruple zygomatic implant support for retreatment of resorbed iliac crest bone graft transplant. Implant Dent. 2003; 12(1):47-53.
    3. Wang JW, Chen LK, Chen CE. Surgical treatment of fractures of the greater trochanter associated with osteolytic lesions. Surgical technique. J Bone Joint Surg Am. 2006; 88 Suppl 1 Pt 2:250-8.
    4. Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. J Tissue Eng Regen Med. 2007; 1(2):97-109.
    5. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007; 28(29):4240-50.
    6. Siddappa R, Fernandes H, Liu J, van Blitterswijk C, de Boer J. The response of human mesenchymal stem cells to osteogenic signals and its impact on bone tissue engineering. Curr Stem Cell Res Ther. 2007; 2(3):209-20.
    7. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007; 1(4):245-60.
    8. Vaccaro AR, Stubbs HA, Block JE. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics. 2007; 30(7):567-70.
    9. Pansky A, Roitzheim B, Tobiasch E. Differentiation potential of adult human mesenchymal stem cells. Clin Lab. 2007; 53(1-2):81-4.
    10. XU Jianzhong, LIU Jie, WANG Xuquan, et al. A pilot study on the clinical research of TEB repairing long bone defects,Tissue engineering, 2006, Vol12,No.4, 1125.
    11. B Bain, Bone marrow aspiration, J Clin Pathol. 2001, 54(9): 657–663.
    12. Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro, J Cell Biochem. 1997, 64 (2): 295-312.
    13. An experimental study of Tissue-engineered bone constructed with DBM scaffold,Tissue engineering, 2006, Vol12,No.4,1123.
    14. Vacanti CA, Bonassar LJ. An overview of tissue engineered bone. Clin Orthop Relat Res. 1999, (367 Suppl):S375-81.
    15. Patterson TE, Kumagai K, Griffith L, Muschler GF. Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am. 2008, 90 Suppl 1:111-9.
    16. Hui Qin; Jian Zhong Xu; Xu Qian Wang, et al. Preparation of animal model of long bone defect used in tissue engineering. Chinese Journal of Clinical Rehabilitation, 2004, 8(20)3974-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700