用户名: 密码: 验证码:
京西石灰石采石场废弃地植被恢复效果及其评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对矿产资源的开采不可避免地会对植被和土地产生破坏,由此造成了严重的生态问题,如何进行矿山废弃地生态系统恢复,进而更好地进行生态文明建设,成为当今社会探讨的热点之一。2004年开始在北京市门头沟区妙峰山镇担礼村实施了生态恢复工程,在对其进行地形测量、整地、填客土的基础上,分别种植了火炬(Rhus typhina)、油松(Pinus tabuliformis)、银杏(Ginkgo biloba)、槐树(Sophora japonica)、连翘(Forsythia suspensa)、桃树(Amygdalus persica)、黄栌(Cotinus coggygria)、杜仲(Eucommia ulmoides)、侧柏(Platycladus orientalis)、丁香(Syringa oblata)等树种纯林及侧柏与桧柏(Sabina chinensis)混交林。2012年对不同恢复措施及自然荒坡、破坏后未治理荒坡设置标准地并进行调查,对各标准地的植物群落结构、昆虫群落结构、土壤理化性质、土壤酶及各标准地的生态功能进行了分析,并对各恢复措施标准地的综合生态功能进行了评价。本研究的主要结论如下:
     (1)树种黄栌林、银杏林、油松林、火炬林以及桃树林对京西石灰石采石场迹地环境的适应性较强。各标准地都有演替更新幼树存在,各造林地群落短期内有可能发展成以造林树种占绝对优势种,伴有少量榆树、臭椿等乡土阔叶树种的群落,种源缺失是影响各标准地林下物种演替的重要因素。银杏林、国槐林、油松林等标准地草本物种丰富度较高,侧柏林物种丰富度较低,和自然荒坡及破坏后荒坡较为相似;丁香林、黄栌林、连翘林林下草本物种多样性指数较大,破坏后荒坡、火炬林、侧柏林等值较小。
     (2)在不同标准地的昆虫亚群落中,害虫所占比例较大,天敌也相对丰盛。刺吸类害虫是害虫的主要类群,对害虫的调控捕食性天敌起主要作用。人工恢复植被的标准地中昆虫物种相对较丰富,多样性指数较高,各物种数量分布较分散,没有严重危害的类群,表现较好的生态效应。相关性分析表明草本多样性指数和昆虫丰富度呈显著相关,草本多样性指数和天敌丰富度呈极显著相关,昆虫多样性指数和天敌丰富度呈极显著正相关。
     (3)0-20cm厚度土层碱解氮、速效磷、速效钾、有机质含量、蔗糖酶、磷酸酶、过氧化氢酶和脲酶活性普遍较20cm以下土层含量高;不同植被恢复措施标准地土壤碱解氮、速效钾、有机质含量差异相对较大,速效磷含量差异不大。土壤综合肥力指数计算结果表明,土层未受破坏自然荒坡肥力最强,新造林地相差不大且较自然荒坡值低。各标准地0-20cm层土壤蔗糖酶活性差异较20cm以下层大。
     (4)植被截留能力最大的是火炬林,其次为杜仲林和连翘林,破坏后荒坡和自然荒坡植被截留能力小。火炬林和连翘林枯落物持水能力较大,侧柏林、侧柏与桧柏混交林、自然荒坡及破坏后荒坡,持水能力较小。自然荒坡的土壤蓄水能力最大,其余标准地土壤蓄水能力相差不大,都处于较低水平。火炬林植被固碳释氧能力最强,自然荒坡和破坏后荒坡最小为零。油松林吸收二氧化硫能力最大,其次依次为杜仲林、国槐林、银杏林,连翘林、桃树林、黄栌林较低。
     (5)选取涵养水源、保育土壤、固碳释氧、保育生物多样性、营养物质循环和净化大气环境等6类共18个指标,利用层次分析法和TOPSIS法对各标准地综合生态功能进行分析并排序,两种方法得分值较高的林地都为杜仲林、火炬林、国槐林、银杏林、黄栌林、丁香林和桃树林;侧柏林和破坏后荒坡得分都为最低。利用两种方法评分值进行线性回归,相关系数R2达到0.82,拟合程度比较高。
Damages caused by strip mining give rise to serious ecological problems which become one of major issues needing to be solved. Different vegetative restoration methods were applied in waste land produced by strip mining in Mentougou of Beijing, including pure forest of Cotinus coggygria Scop、 Platycladus orientalis、Rhus typhina、Eucommia ulmoides、Pinus tabuliformis、Ginkgo biloba、Sophora japonica、Forsythia suspensa、Amygdalus persica、Syringa oblata and mixed forest of Platycladus orientalis and Sabina chinensis. Plots were conducted aiming at different restoration methods as well as natural slopes and damaged ones in2012. Investigation including community structure of vegetation and arthropod animals, chemical properties of soil, enzymes and ecological functions was analyzed. Results were as follows:
     (1) Cotinus coggygria Scop forest, Ginkgo biloba forest, Pinus tabuliformis forest and Rhus typhina forest showed good Environmental adaptation in limestone Quarry Wasteland in West Beijing. There were succession species appeared in all plots forest, the succession species included Robinia pseudoacacia、Ailanthus altissima、Salix matsudana、Populus tomentosa with a low density. Species richness of herb in plots of Ginkgo biloba forest、Sophora japonica forest、Pinus tabuliformis forest was higher and Platycladus orientalis forest had a lower species richness.
     (2) Pest accounted for a larger proportion among plots of arthropod animal communities. Natural enemy was rich due to large number of pests. Sucking pests are the main groups, playing an important role in regulating predatory natural enemy. The arthropod species are relatively rich, with higher diversity index and scattered species distribution in plots undergone vegetation restoration. These plots had no serious pest communities, performing a better ecological effect. Correlation analysis showed that there was a significant positive relation between the herb diversity index and insects richness. Arthropod diversity index was significantly related with natural enemy richness.
     (3) Alkali-hydrolysable nitrogen, available phosphorus and available potassium, organic matter content, sucrase, phosphatase, catalase and urease activity in soil with thickness of0~20cm is higher that thickness below20cm. Soil alkaline hydrolysis n, available k, organic matter content in plots with different vegetation restoration measures showed a larger difference. Calculation results showed that natural slope had the strongest soil fertility in all plots. Sucrase in soil of0~20cm was higher than below20cm, catalase activity was similar between both soil layers.
     (4) The largest Vegetation retaining capacity happened in Rhus typhina forest, followed by Eucommia ulmoides forest and Forsythia suspensa forest. Damaged slope and natural slope had the smaller vegetation retaining capacity. Rhus typhina and Forsythia suspensa had the larger litter water-holding capacity but Platycladus orientalis forest, mixed forest of Platycladus orientalis and Sabina chinensis forest, natural slope and damaged slope had smaller water-holding capacity. Water holding capacity of the natural slope was the largest, followed by damaged slope. Rhus typhina forest had the strongest carbon fixation and oxygen release ability, and smallest in natural slope and damaged slope. Pinus tabuliformis forest had the largest sulfur dioxide absorption capacity followed by Eucommia ulmoides forest、Sophora japonica forest、Ginkgo biloba forest, Forsythia suspensa forest、 Amygdalus persica forest、Cotinus coggygria Scop forest.
     (5) Selection of Analytic hierarchy process (AHP) and TOPSIS methods were used to analyze and sort the comprehensive ecological function of each plot by selecting a total of18indicators, including water conservation, soil conservation, carbon fixation and oxygen release, biodiversity conservation, nutrient cycle and purification of atmospheric environment. Results showed that plots with higher scores using two methods was as follows:Eucommia ulmoides forest, Sophora japonica forest, Rhus typhina forest, Ginkgo biloba forest, Cotinus coggygria Scop forest, Syringa oblata forest and Amygdalus persica forest. Scores using AHP to calculate the comprehensive function had a higher correlation coefficient R2of0.82with that through the TOPSIS method.
引文
[1]白静,田有亮,韩照日格图.油松人工林地上生物量、叶面积指数与林分密度关系的研究[J].干旱区资源与环境,2008a,22(3):183-187.
    [2]白顺江.雾灵山森林生物多样性及生态服务功能价值仿真研究[M].北京林业大学博士学位论文,2006.
    [3]白中科,吴梅秀.矿区废弃地复垦中的土壤学与植物营养学问题[J].煤矿环境保护,1996,10(5):39-42.
    [4]曹波,刘菊芳,孙保平.北京市废弃矿山工程绿化技术模式研究[J].水土保持应用技术,2008(5):38-40.
    [5]陈炳浩.世界生物多样性面临危机及其保护的重要性[J].世界林业研究,1993,6(4):1-6.
    [6]陈兵,曹子龙,杨望涛,等.客土喷播在霍林河矿山植被恢复中的应用[J].山西建筑,2009,35(30):346-348.
    [7]陈波,包志毅.国外采石场的生态和景观恢复[J].水土保持学报,2003,(5):71-73.
    [8]陈俊松,方向京,李贵祥,等.矿区废弃地生态恢复研究[J].安徽农业科学,2012,40(1):326-328.
    [9]陈振金,郑大增,陈轶.煤矸石山无土植被恢复技术[J].福建环境,2001,1:11-14.
    [10]陈忠全.关于矿区环境综合治理的实践和政策研究[J].当代经济,2008(7):74-75.
    [11]崔龙鹏.对淮南矿区采煤沉陷地生态环境修复的思考[J].中国矿业,2007,16(6):46-52.
    [12]邓国春,朱建新.谈煤矿矿区生态修复规划[J].资源环境与工程,2008,22(2):254-256.
    [13]段永红,白中科,赵景達.阳泉煤矸石山浅层矸石风化物水分特性初探[J].煤炭学报.1999,24(5):533-537.
    [14]方华,林建平,莫江明.采石场生态重建的有关问题[J].生态环境,2006,(3):654-655.
    [15]樊登星.北京山区栎类林生态系统结构与功能研究[D].北京林业大学硕士学位论文,2009.
    [16]高荣鑫.石灰岩矿山生态环境恢复治理的综合评述[J].科技创新导报,2014,(1):240.
    [17]高英旭.矿区废弃地植被恢复进展情况及对策[J].辽宁林业科技,2013,(6):41-44.
    [18]高占平,何永,龙壕,等.北京寨口矿区生态修复规划[J].矿业快报,2008,(4):70-73.
    [19]谷金锋,蔡体久,肖洋,等.工矿区废弃地的植被恢复[J].东北林业大学学报,2004,(5):19-22.
    [20]郭世华.矿区植被恢复方式和施肥处理对土壤酶活性的影响[D].太原:山西大学,2012.
    [21]郝蓉,白中科,赵景達,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报,2003,(8):1470-1476.
    [22]何斌,张若泉.采煤塌陷区复垦与矿业城市生态经济发展战略研究—以安徽省淮北市为例[J].资源与产业,2003,5(5):59-62.
    [23]何金祥,周浩,郭伦发,等.荔枝果园植物群落动态变化及其对昆虫多样性的影响[J].广西植物,2009,29(3):337-341.
    [24]胡振琪.半干旱地区煤矸石山绿化技术研究[J].煤炭学报.1995,20(3):322-327.
    [25]胡振琪,杨秀红,鲍艳,等.论矿区生态环境修复[J].资源与环境,2005,(1):38-41.
    [26]胡振琪,赵艳玲,毕银丽.美国矿区士地复垦[J].中国土地,2001,13(6):43-44.
    [27]黄铭洪,骆永明.矿区土地修复与生态恢复.士壤学报.2003,40(2):161-169.
    [28]纪浩,董希斌.兴安岭低质林改造后土壤肥力综合评价[J].林业科学,2012,48(11):117-123.
    [29]姜海燕.大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究[D].呼和浩特:内蒙古农业大学,2010.
    [30]晋松,吴学峰,郑恩霞,等.铜陵狮子山铜尾矿场植被调查与土壤酶活性研究[J].生物学杂志,2007,(6):21-25.
    [31]焦居仁.生态修复的要点与思考[J].中国水土保持,2003,(2):1-2.
    [32]焦一之.华北土石山区华北落叶松生长潜力及生态功能研究[D].北京:北京林业大学,2011.
    [33]李春,李婷,王汉敢.南丹县矿山植被恢复对策及技术措施[J].中南林业调查规划,2013,32(3):26-29.
    [34]李春义,马履一,王希群,等.抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响[J].北京林业大学学报,2007,29(3):60-66.
    [35]李红月.矿区水土流失特征及生态修复[J].水土保持应用技术,2006,(5):20-22.
    [36]李杰颖,韩放,梁成华,等.浅谈矿区土地的生态复垦[J].采矿技术,2009,9(3):75-77.
    [37]李晋川,王文英,卢崇恩.安太堡露天煤矿新垦土地植被恢复的探讨[J].河南科学,1999,17(6):99-102.
    [38]李莲华,高海英.矿山开采的环境问题及生态恢复研究[J].现代矿业,2009,(2):28-31.
    [39]李闽.美国露天开采控制与复垦法及其启示[J].国土资源,2003,(11):52-53.
    [40]李亚丽.徐州市典型困难立地植被恢复效果评价[D].南京:南京林业大学,2012.
    [41]李一为.京西矿业废弃地生境特征及植被演替研究[D].北京:北京林业大学,2007.
    [42]李一为,杨文姬,赵方莹,等.矿业废弃地植被恢复研究[J].中国矿业,2010,19(1):95-100.
    [43]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [44]廖彬森.龙岩市市区—重山特殊地类快速绿化技术的探讨[J].2006,(3):113-115.
    [45]廖怡斐,康乔煌,达峰,等.古交西山矿区煤矸石山生态修复模式研究与探讨[J].山西煤炭,2009,29(3):9-10.
    [46]林晓杰.矿山植被恢复工程造林技术模式[J].现代农村科技,2011,(3):43-44.
    [47]刘国华,舒洪岚,张金池,等.南京幕府山矿区废弃地植被恢复模式研究.水土保持研究,2005,12(1):141-144.
    [48]刘国华,舒洪岚.矿区废弃地生态恢复研究进展[J].江西林业科技,2003,(2):21-25.
    [49]刘先虎.铜陵市矿山废弃地植被恢复技术[J].安徽林业科技,2013,39(3):63-65.
    [50]刘秀梅.重金属铅污染土壤的植物修复研究[D].山东农业大学.2002.
    [51]刘彦.北京山区刺槐林生态系统结构与功能研究[D].北京林业大学硕士学位论文,2009.
    [52]刘永光.北京山区关停废弃矿山人工恢复效果及评价研究[D].北京林业大学,2011.
    [53]刘永光,刘克锋,孙向阳,等.基于土壤水分特征曲线的北京市废弃关停矿山修复效果研究[J].土壤通报,2013,44(1):64-71.
    [54]卢炜丽,陈奇伯,黄鹏飞,等.金沙江金安桥水电站废弃地植被恢复研究[J].中国水土保持,2011,(2):58-61.
    [55]马克平,刘玉明.生物群落多样性的测度方法(Ⅰ)α多样性的测度方法(下).生物多样性,1994a,2(4):231-239.
    [56]马克平.生物群落多样性的测度方法(Ⅰ)α多样性的测度方法(上).生物多样性,1994b,2(3):162-168.
    [57]马履一,李春义,王希群,等.不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J].林业科学,2007,43(5):1-9.
    [58]马世骏.现代生态学透视[M].北京:科学出版社,1990,43-127.
    [59]马彦卿,李小平,冯杰,等.非煤灰在矿山复垦中用于土壤改良的试验研究[J].矿冶,2000,9(3):15-19.
    [60]孟广涛,方向京,柴勇,等.矿区植被恢复措施对土壤养分及物种多样性的影响[J].西北林学院学报,2011,26(3):12-16.
    [61]么春华.对采矿塌陷区进行生态修复的认识[J].河北林业科技,2008,(4):79-81.
    [62]莫建初.丘陵区湿地松林昆虫群落结构的初步研究[J].中南林学院学报,1993,13(2):203-208.
    [63]潘德成,邓春晖,吴祥云,等.矿山复垦区土壤水分时空分布对植被恢复的影响[J].干旱区资源与环境,2014,28(3):96-99.
    [64]彭少麟.恢复生态学[M].北京:气象出版社,2007:1-9.
    [65]邱亮亮,敬毅,刘宁宁.浅析煤矸石的治理方法[J].露天采矿技术,2009,(2):61-63.
    [66]任海,彭少麟,陆宏芳.退化生态系统与恢复生态学[J].生态学报,2004,24(8):1760-1768.
    [67]任海,彭少麟.鼎湖山森林群落的几种叶面积指数测定方法的比较[J].生态学报,1997,17(2):220-223.
    [68]任海,彭少麟.恢复生态学导论[M].北京:科学技术出版社,2001.
    [69]沈刚,李香梅,赵艳.矿山植被恢复演替研究进展[J].现代矿业,2010,26(10):70-73.
    [70]沈渭寿,曹学章,金燕.矿区生态破坏与生态重建[M].中国环境科学出版社,2004:32-46.
    [71]沈渭寿,张慧,邹长新,等.雅鲁藏布江高寒河谷流动沙地适生植物种筛选和恢复效果[J].生态学报,2012,32(17):5609-5618.
    [72]石平,魏忠义,姜莉,等.抚顺红透山铜矿废弃地植物重金属耐性研究[J].金属矿山,2010,(2):155-158.
    [73]石丽丽,王雄宾,徐成立.间伐干扰对冀北山地油松人工林群落演替趋势影响[J].东北林业大学学报,2013,41(4):43-46.
    [74]舒俭民,刘晓春.恢复生态学的理论基础、关键技术与应用前景[J].中国环境科学,1998,18(6):540-543.
    [75]束文圣,蓝崇钰,黄铭洪,等.采石场废弃地的早期植被与土壤种子库[J].生态学报,2003,23(7):1305-1312.
    [76]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科学,2002,19(2):24-30.
    [77]束文圣,杨开颜,张志权,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12.
    [78]苏宏新.全球气候变化条件下新疆天山云杉林生长的分析与模拟[D].北京:中国科学院植物研究所,2005.
    [79]孙听,李德成,梁音.南方红壤区小流域水土保持综合效益定量评价方法探讨—以江西兴国县为例[J].土壤学报,2009,46(3):373-380.
    [80]孙艳红.延庆县小流域综合治理模式及效益评价研究[D].北京:北京林业大学,2011.
    [81]谭林,庞德庆,丁静.废弃矿山植被恢复模式初探[J].中国林业,2007,(21):51.
    [82]唐世荣.植物修复技术与农业生物环境工程[J].农业工程学报.1999,15(2):27-32.
    [83]田胜尼,孙庆业,王铮峰,等.铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93.
    [84]田亚玲.银杏和茶树复合经营系统生理生态效应研究[D].南京:南京林业大学,2012.
    [85]童方平,龙应忠,易建新.冷水江锑矿区重金属污染林地土壤肥力的综合评价[J].中国农学通报,2009,25(16):120-122.
    [86]王兵,宋庆丰.森林生态系统物种多样性保育价值评估方法[J].北京林业大学学报,2012,34(2):155-160.
    [87]王改玲,王小利,李东方,等.安太堡露天煤矿复垦地土壤养分相关研究[J].煤矿环境保护.2001,15(5):25-27.
    [88]汪贵斌,曹福亮,程鹏,等.不同银杏复合经营模式土壤肥力综合评价[J].林业科学,2010,46(8):1-8.
    [89]王林,曹珂,车轩,等.矿山废弃地生态修复研究进展[J].现代矿业,2013,(12):170-172.
    [90]王江,张崇邦.重金属污染士壤植被恢复过程中的土壤微生物特征[J].生态学报,2009,29(3):1636-1644.
    [91]王霖琳,胡振琪,赵艳玲,等.中国煤矿区生态修复规划的方法与实例[J].金属矿山,2007,(5):17-20.
    [92]王姗姗,白雪松.废弃矿山生态植被恢复技术与实践—以菱镁矿矿山植被恢复为例[J].辽宁林业科技,2012,(3):41-43.
    [93]王希华,宋永昌.天童国家森林公园废弃采石场植被自然恢复早期阶段的种群动态及生物量的研究[J].应用生态学报,1999,(5):545-548.
    [94]王笑峰.矸石废弃地生态恢复机制及优化模式研究[D].东北林业大学.2009.
    [95]王雄宾.华北士石山区主要针叶树种人工林基于生态功能优化的密度调控研究[D].北京:北京林业大学,2010:34.
    [96]王雄宾,余新晓,徐成立,等.间伐对华北落叶松人工林边缘效应的影响[J].北京林业大学学报,2009,31(5):29-34.
    [97]王应刚,张秋华,张峰.黄土高原北部地区生态退化与恢复研究进展[J].水土保持研究,2007,14(1):57-59.
    [98]王友保,安雷,蒋田华.草坪草生长对铜尾矿废弃地土壤酶活性的影响[J].中国矿业大学学报,2009,38(4):595-600.
    [99]王治国.关于生态修复若干概念与问题的讨论(续)[J].中国水土保持,2003,(11):20-22.
    [100]王岩.铁尾矿不同植被恢复模式的效益分析[D].保定:河北农业大学,2012.
    [101]韦翠珍,张佳宝,周凌云.沿黄河下游湖泊湿地植物群落演替及其多样性研究[J].生态环境学报,2011,20(1):30-36.
    [102]魏敏,罗俊杰,张仁陟.高泉小流域生态恢复的水土效益评价研究[J].农业系统科学与综合研究,2009,25(3):347-349.
    [103]魏远,顾红波,薛亮,等.矿山废弃地土地复垦与生态恢复研究进展[J].中国水土保持科学,2012,10(2):107-114.
    [104]魏永平.黄土高原苹果园植物多样性对果园昆虫群落的影响[D].杨凌:西北农林科技大学,2010.
    [105]魏永平,张雅林,汪晓光.黄土高原苹果园植物多样性及其对昆虫群落的影响[J].西北植物学报,2010,30(12):2517-2523.
    [106]温庆忠.废弃石灰岩矿上植被恢复方法探讨[J].林业资源管理.2008,(4):108-111.
    [107]吴祥云,孙广树,卢慧,等.阜新矿区矸石废弃地立地质量的研究[J].辽宁工程技术大学学报.2006,25(2):30-303.
    [108]武冬梅,张建红,吕珊兰,等.山西矿区矸石山复垦种植施肥策略[J].自然资源学报.1998,13(4):333-336.
    [109]肖辉杰,魏自刚,王庆,等.北京山区小流域生态经济效益评价-以雁栖河小流域为例[J].应用生态学报,2012,23(12):3479-3487.
    [110]徐成立.冀北山地经营干扰对森林生态系统结构与功能影响研究[M].北京林业大学博士学位论文,2011.
    [111]徐海顺,卞新民,汤国辉.城郊矿区废弃地观光农业生态规划[J].中国农学通报,2006,22(2):275-279.
    [112]徐升华,孔维健,刘跃平,等.石灰岩矿山植被复绿技术分析[J].湖北农业科学,2011,50(22):4636-4638.
    [113]许晓伟,万福绪,杨东,等.3种中山杉种植模式对上海沿海土壤肥力的影响[J].南京林业大学学报,2013,37(1):163-167.
    [114]徐友宁.关于解决煤矿塌陷区社会矛盾的对策建议[J].中国矿业,2006,15(8):18-22.
    [115]颜景红.人工林土壤退化原因及防治对策[J].农业科技与装备,2012,21(1):17-19.
    [116]杨涛,彭立君,武富强,等.石灰岩矿山生态恢复方法和实践[J].矿产保护与利用,2009(2):37-42.
    [117]阳承胜,蓝崇任,束文圣.矿业废弃地生态恢复的土壤生物肥力[J].生态科学,2000,19(3):73-79.
    [118]杨翠霞,赵廷宁,刘育成,等.基于DEM的废弃矿山小流域地形特征分析[J].水上保持通报,2013,33(3):170-175.
    [119]杨海燕,崔龙鹏.潘集矿区采煤沉陷地生态修复模式研究[J].能源技术与管理,2008,(2):69-72.
    [120]杨期和,刘德良,李姣清,等.粤东北矿山废弃地植被恢复模式探讨[J].亚热带植物科学,2012,41(1):10-14.
    [121]杨主泉,胡振琪,王金叶,等.煤矸石山复垦的恢复生态学研究[J].中国水土保持,2007,(6):35-37.
    [122]姚国征,杨婷婷.矿区土地复垦与生态修复研究综述[J].西部资源,2006,(3):34-36.
    [123]于海兵,胡海波,裘涛,等.废弃宕口6种水土保持植物抗旱性研究[J].安徽农业科学,2011,39(16):9761-9764.
    [124]于玲红,宋存义,崔振华.矿区污染地下水的生物修复[J].冶金能源,2005,24(4):48-50.
    [125]袁剑刚,周先叶,陈彦,等.采石场悬崖生态系统自然演替初期土壤和植被特征[J].生态学报,2005,6:1517-1522.
    [126]岳永杰.北京山区防护林优势树种群落结构研究[D].北京林业大学博士学位论文,2008.
    [127]张鼎华,叶章发,范必有,等.抚育间伐对人工林土壤肥力的影响[J].应用生态学报,2001,12(5):672-676.
    [128]张锋,陈志杰,张淑莲,等.纸房沟流域植被恢复区乔木林昆虫群落结构及动态分析[J].环境昆虫学报,2010,32(4):445-452.
    [129]张光灿,刘霞,王燕.煤矿区生态重建过程中矸石山植被生长及土壤水文效应[J].水土保持学报,2002,16(5):20-23.
    [130]张桂玲,陆春光,郭江.核桃在矿山植被恢复工程中的应用效果及配套栽培技术[J].中国果蔬,2011,(1):18.
    [131]张宏芝.陕北黄土坡面微地形土壤质量研究[D].北京:北京林业大学,2011.
    [132]张宏芝,白庆红,徐成立,等.间伐对华北落叶松人工林林下植被的短期影响[J].林业资源管理,2011,(6):40-44.
    [133]张洪生,刘金铜,刘慧涛,等.河北省太行山区石灰石矿区生态环境问题与生态复垦工程技术分析[J].中国农学通报,2009,25(3):236-239.
    [134]张玉虎,于长青,宋百敏.遥感与地面调查的废弃采石场生态恢复监测评估[J].东北林业大学学报,2007,(12):21-24.
    [135]张霞,郑郁,王亚萍.基于灰色关联度的TOPSIS模型在秦岭生态功能区水土保持治理效益评价中的应用[J].水土保持研究,2013,20(6):188-191.
    [136]张艳,赵廷宁,史常青.北京山区采石场边坡植被恢复动态研究[J].干旱区资源与环境,2013,27(6):63-68.
    [137]张振明.北京山区主要森林生态系统结构与功能模型研究[D].北京:北京林业大学,2009.
    [138]张志斌.大型露天煤矿闭坑后的生态环境问题及其对策[J].露天采矿技术,2003,23(3):1-3.
    [139]章家恩,徐琪.恢复生志学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-113.
    [140]赵方莹,程小琴.采石场废弃地自然恢复植物群落类型研究[J].应用研究,2010,24(5):26-30.
    [141]赵陟峰,郭建斌,景峰,等.山西葛铺煤矿矿区废弃地植被恢复与重建技术[J].水土保持研究,2009,16(2):92-100.
    [142]周玮,朱军,吴鹏,等.杠寨小流域不同林分对土壤理化性质的影响[J].湖北农业科学,2012,51(22):5041-5044.
    [143]朱文武,赵琨.矿山采空区植被恢复研究进展[J].水土保持应用技术,2013,(1):27-29.
    [144]朱智勇,解建仓,宋丽娜,等.黄土高原生态治理效益评价[J].沈阳农业大学学报,2009,40(3):344-348.
    [145]中华人民共和国.中华人民共和国水土保持法,2012.
    [146]中华人民共和国国务院.土地复垦规定,1988.
    [147]中华人民共和国水利部.开发建设项目水土保持方案编报审批管理规定,1995.
    [148]周国华,秦绪文,董岩祥.土壤质量环境标准的制定原则与方法[J].地质通报,2005,24(8):721-727.
    [149]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997:25-37.
    [150]周玮,朱军,吴鹏,等.杠寨小流域不同林分对土壤理化性质的影响[J].湖北农业科学,2012,51(22):5041-5044.
    [151]Bai Z K, Zhao J K. Some problem about reclamation and reconstruction of open cast coalmine. Bradshaw A D and ChadwickM[J]. The Restoration of Land,2003,4:1-9.
    [152]Bi Y L, Hu Z Q. Respective of applying VA mycorrhiza to reclamation. In Mine Land Reclamation and Ecological Restoration for 21 Century:Beijing International symposium on land reclamation. Beijing:China Coal Industry Publishing House.2000.555-559.
    [153]Brenchley W E & Warington K. The seed population of arable land[J]. Ecology,2009,18: 235-272.
    [154]Burke A. Determining landscape function and ecosystem dynamics:Contribution to ecological restoration in the southern Namib desert [J]. Ambio,2001,30(1):29-36.
    [155]Butt K R, Redericdson J F, Morns R M. An earthworm cultivation and soil in occultation technique for land restoration[J]. Ecological Engineering,2003,4:1-9.
    [156]Lu Xin-She. Mine Land Reclamation and Ecological Restortion for the 21 Century[M]. Beijing: China Coal Industry Publishing House,2000,90-101.
    [157]Dimitris Damigos, Dimitris Kaliampakos. Environmental Economics and the Mining Industry: Monetary Benefits of an Abandoned Quarry Rehabilitation in Greece[J]. Environmental Geology.2003,44(3):356-362.
    [158]Dutta R K, Agrawal M. Effect of tree plantations on the soil characteristics and microbial activity of coal mine spoil land[J]. Tropical Ecolog.2002,43(2):315-324
    [159]Eichberg C, Storm C, Kratochwil A, et al. A differentiating method for seed bank analysis: Validation and application to succession stages of Koelerio-Corynephoretea inland sand vegetation[J]. Phytocoenologia,2006,36(2):161-189.
    [160]Franzluebbers A J. Soil organic matter stratification ratio as an indicator of soil quality [J]. Soil Tillage Res.,2002,66:95-106.
    [161]Gorokhovich Y, Reid M, Mignone E, et al. Prioritizing Abandoned Coal Mine Reclamation Projects Within the Contiguous United States Using Geographic[J]. Information System Extrapolation Environmental Management.2003,32(4):527-534.
    [162]Holmes T P, Bergstrom J C, Huszar E, et al. Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration[J]. Ecological Economics,2004,49:19-30.
    [163]Hosogi D, Kameyama A. Timing for the planting method using deciduous forest topsoil in suburban Tokyo, Japan[J]. Ecological Engineering,2006,26(2):123-131.
    [164]Khan M L, Bhuyan P, Tripathi R S. Effects of forest disturb once on fruit set. seed dispersal and predation of Rudraksh (Elaeocarpus ganitrusRoxb.) in Northeast India[J]. Current Science,2005, 88(1):133-142.
    [165]Liu S Z, Xia H P, Kong G H, et al. The soil and vegetation of oil shale dump in Maomingcity, Guangdong Province [J]. Ecologic Science,2002,21(1):25-29.
    [166]Nie X P. Effects of copper on rhizoidal Acacia symbiotic association[J]. Chinese Journal of Applied Ecology,2002,13(2):137-140.
    [167]Nonna A. Noto. Abandoned mine reclamation feeing coal [R]. CRS report for Congress. Washington, DC,2006.
    [168]Pinto V, Font X, Salgot M, et al. Using 3-D structures and their virtual representation as a tool for restoring opencast mines and quarries[J]. Eng. Geol.2002,3(6):121-129.
    [169]Pinto V, FontX, Salgot IVI, et al. Using 3-D structures and their virtual representation as a tool for restoring openeast mines and quarries. Eng:Geol.2002,3(6):121-129.
    [170]Polat E, Uzun HI, and Topcuoglu B, et al. Effects of Spent Mushroom Productivity of Cucumber (Curcumas natives L.) Grown in Greenhouses. The African Journal of Biotechnology,2009,8: 176-180.
    [171]Prach K, Walker L R. Four opportunities for studies of ecological succession[J]. Trends in Ecology&Evolution,2011,26(3):119-123.
    [172]Rasse D P, Rumpel C, Dignac M-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization[J]. Plant Soil,2005,269:341-356.
    [173]Ren J, Tao L, LiuXM. Effect of water supply on seed germination of soil seed-bank in desert vegetation[J]. Acta BotanicaSinica,2002,44(1):124-126.
    [174]Salman M, El-Eswed B, Khalili F. Adsorption of humic acid on betonies [J]. Apply Clay Sci, 2007,38:51-56.
    [175]Salonen V, Setala H. Plant colonization of bare peat surface-relative importance of seed availablity and soil [J]. Ecography,1993, (15):199-204.
    [176]Smith S M, Mccormick P V, Leeds J A, et al. Constraints of seed bank species composition and water depth for restoring vegetation in the Florida Everglades, USA[J]. Restoration Ecology 2002,10(1):138-145.
    [177]Sonsteby N, Mage. Effects of bark mulch and npk fertilizer on yield, leaf nutrient status and soil mineral nitrogen during three years of strawberry production[J]. Act Agriculture Scandinavica, 2004,54(3):128-134.
    [178]Stapleton C. Soil-forming materials:their use in land reclamation[J]. Mineral Planning.2000, (1):9-11.
    [179]States[J]. Journal of Range Management,2000,53:114-118.
    [180]Ussiri D A N, Lal R, Jacinthe P A. Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio[J]. Soil Science Society of America Journal,2006,70: 1797-1806.
    [181]Ussiri D A N, Lal R. Carbon sequestration in reclaimed minesoils[J]. Critical Reviews in Plant Sciences,2005,24:1-15.
    [182]Wong M H. Ecological restration of mine degraded soils with anphasis on metal contaminated soils [J]. Chemosphere,2003, (5):775-780.
    [183]Xiong W C, Bai L L, Zhen S L. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China[J]. Forest Ecology and Management, 2003,177:514-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700