用户名: 密码: 验证码:
不同槭属植物幼苗对水分、光照及氮沉降的生理生态学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化,包括局部地区干旱及氮沉降等,正变得日益严重。全球环境变化也使得森林光照异质性的发生频率增加。森林植被正面临着前所未有的生存压力,而森林植被将如何采取生理生态学措施适应变化的环境,成为生态学家研究的热点。本研究选取了中国暖温带常见的几种槭属植物:三角枫(Acer buergerianum Miquel),青榨槭(Acer davidii Franch),元宝槭(Acer truncatum Bunge)及栎属的栓皮栎(Quercus variabilis Blume),研究不同的水分、光照及氮沉降对其生长形态、叶形态、叶绿素含量及叶绿素荧光特征、气体交换特征、生物量及其分配格局等生理生态学特征的影响。本研究从功能性状的角度揭示森林植被对水分、光照及氮沉降的响应机制,将有助于理解及预测未来气候变化对森林植被的影响,并能够为植被恢复、森林管理、制定区域生态环境可持续发展战略及暖温带自然资源的开发利用等方面提供基础数据与理论依据。
     三角枫及青榨槭均为中国本土种。光照及水分是影响森林植被生存及生长的重要环境因子,关于干旱及遮荫相互作用的研究已有许多报道,但是未有一致的结论。关于干旱及遮荫相互作用的几种假设分别认为遮荫能够减轻(“促进理论”)或者加重(“权衡理论”)干旱的负面作用,以及遮荫对干旱的影响没有任何作用(“独立作用理论”)。本实验采用正交设计,共设置了5个水分水平(15%、35%、55%、75%与95%的饱和持水量)及2个光照水平(10%与66%的全光照),对三角枫及青榨槭进行了123天的处理。结果发现,干旱及遮荫不同程度地抑制了三角枫及青榨槭的生长。遮荫显著减少了三角枫的生长指标、生物量指标及叶片尺寸,增加了叶绿素含量、叶片水分含量及比叶面积。遮荫显著减少了青榨槭的生长指标、生物量指标,增加了叶绿素含量、叶片水分含量及比叶面积,但是对叶片大小没有显著影响。干旱显著降低了三角枫及青榨槭的生长指标、生物量指标及叶片尺寸。三角枫总体来说具有更高的可塑性。
     对大多数测量指标而言,光照及水分的交互作用对两个物种的影响达到了显著水平,因此本研究不支持“独立作用理论”。对两物种来说,在高光照条件下,处在较高的水分状态下(55%-95%的饱和持水量)幼苗生物量往往是干旱环境中幼苗的数倍。而在遮荫环境下,处在较高的水分状态下(55%-95%的饱和持水量)幼苗生物量仅仅略高于干旱环境中幼苗。说明遮荫可以在一定程度上缓解干旱对两树种幼苗的负面作用,本研究基本支持“促进理论”。异速生长分析发现,光照及水分显著影响了三角枫的茎生物量比及叶生物量比,以及青榨槭的茎生物量比,但是对两物种的根生物量比及根冠比没有影响。水分对根冠比的影响不显著也是“促进理论”的特征之一。高于15%饱和持水量的土壤水分含量是保持两物种幼苗生存生长的必要条件,对森林冠幅的常规修剪可以加速幼苗生长,促进植被恢复及群落演替。
     为了揭示林窗形成对林下不同演替阶段乔木幼苗的影响,采用演替中期种元宝槭及演替后期种栓皮栎作为研究对象,设置了为期一个生长季的盆栽控制实验。实验共有三个处理:(1)持续低光照处理,用以模拟林下环境;(2)持续高光照处理,用以模拟林窗环境;(3)先低光照后高光照处理(光照转换处理),用以模拟林窗的形成。实验过程中对整株及叶片水平的的形态学及生理学指标进行测量,并对光照转换完成后的光照转换处理及持续高光强处理下新长出的叶性状(新叶)进行了测量。相对于持续弱光的情况,光照转换处理下两物种的生物量都有所增加,叶片水分含量、比叶面积及叶绿素含量则有所降低。相对于持续弱光的情况,光照转换处理增加了元宝槭冠幅,降低了根冠比及叶片尺寸。然而,相对于持续弱光的情况,光照转换处理增加了栓皮栎的基径、实际量子产量及光化学淬灭,减少了最大量子产量。不同的光照处理未能改变栓皮栎的生物量分配。两个物种的最大量子产量在光照转换后均急速下降,之后缓慢上升,且元宝槭幼苗的最大量子产量恢复速度快于栓皮栎。持续低光及持续高光处理下,两物种的实际量子产量随时间推移而下降。
     元宝槭幼苗在光照转换后光照转换处理下新长出的叶片要显著小于持续高光处理下的新叶。但是元宝槭幼苗在光照转换处理及持续高光处理下新叶的叶绿素荧光指标并无差异。栓皮栎幼苗在光照转换处理下的新叶尺寸与持续高光处理下未见差异,而叶绿素荧光显著高于持续高光处理。元宝槭总体上具有更高的表型可塑性,而栓皮栎在叶绿素含量及叶绿素荧光方面的可塑性更高。两种落叶乔木对不同光照的响应机制在光照吸收及利用方面基本相同,但在生物量分配方面有较大差异。
     不断增加的大气氮沉降极大地影响着森林生态系统及城市生态系统。元宝槭广泛分布在中国北部、朝鲜半岛及日本,且在城市街道、公园及庭院多有种植,具有重要的生态功能及景观价值。在其广泛分布区内,大气氮沉降也具有较大差异。本实验设置了较大跨度的氮沉降速率梯度,从现行的氮沉降速率到未来或能够达到的氮沉降速率,对元宝槭幼苗进行了为期一个生长季的模拟氮沉降处理,并对幼苗的生长、生物量指标及分配、叶形态特征、气体交换及叶绿素荧光指标进行了测量。适度氮沉降促进了株高、基径、总生物量、叶片尺寸、气体交换参数及叶绿素荧光参数然而极端重度氮沉降(20gNm-2y-1)下并未表现出这种促进作用。叶绿素含量、生物量分配格局、叶延展性、叶片水分含量及比叶面积并未受氮沉降影响。氮沉降临界值应该在一定区域,一定时间段内,针对某一特定物种的发育阶段进行定义。氮沉降临界值还应该考虑土壤缓冲能力。本研究中,暖温带种植的一年生元宝槭幼苗中,氮沉降对幼苗生长的促进作用的临界值约为(20gNm-2y-1。
     总之,三角枫及青榨槭幼苗对干旱及遮荫均具有一定的耐受能力,遮荫在一定程度上缓解了干旱的负面效果。林窗的形成促进了元宝槭及栓皮栎幼苗的生长,总体来看元宝槭幼苗比栓皮栎幼苗具有更高的表型可塑性,而栓皮栎幼苗在叶绿素荧光方面的可塑性更高。适度的氮沉降促进了元宝槭幼苗的生长,而过量的氮沉降速率下,促进作用消失。本研究将为植被恢复中的物种选择提供科学依据,为育种造林及森林管理提供基础数据。
Global environmental change, such as regional drought and nitrogen deposition, has becoming more serious and urgent than ever before. Global change also increases the frequency of environmental heterogeneity such as drought and illumination heterogeneity, which has become hot issues in ecology. The plants living in this chaning world are therefore supposed to take steps to adapt to the new environment in prospective climate change scenario, which ecologists also pay close attention to. In this study, we choose several maple trees as the research objects and investigated the effects of various moisture, illuminations and nitrogen depositions on these maples in terms of growth morphology, leaf traits, gas exchange characteristics, chlorophyll contents and fluorescence characteristics and biomass parametrs.
     As native species, Acer buergerianum Miq.(Trident maple) and Acer davidii Franch (David maple) have large distributions in China. Both species play crucial roles in the forest ecosystem and has high ornamental values. Among all those environmental factors, water and light are two important factors of them, which can limit plant growth and are crucial in sylvicultural practises and in the framework of forest regeneration. Understanding their combined effects on species is fundamental for predicting the effects of global change on forest habitats since environmental factors will change concomitantly. Nevertheless, there is no consensus on how drought interacts with shade. It is variously predicted that shade may have a stronger, weaker or equal impact on seedlings at drought condition by four hypotheses in the recent literature.
     We performed a potted growth experiment with a wide range of water supply regime [15%,35%,55%,75%and95%of soil field capacity (FC)] combined with two illumination levels (10and66%of full sunlight) to investigate the interactive responses of A. buergerianum and A. davidii to light and water in terms of seedling growth, leaf traits, biomass parameters and partitioning patterns. The experiment was run for123days following the initial acclimation stage. In respect of A. buergerianum, the results showed that shade reduced growth, biomass and leaf size of A. buergerianum to a large extent, but enhanced the chlorophyll content, leaf water content and specific leaf area. Regarding A. davidii seedlings, shade decreased growth, biomass and increased leaf water content, specific leaf area and chlorophyll content, but did not change the size of the leaves. Drought decreased growth, biomass and leaf size of both tree species.
     For both species, most biomass characteristics partitioning patterns had strong interactions in their responses to illumination and moisture treatments. Leaf traits of A. buergerianum displayed strong interactions in responses to illumination and moisture treatments but not of A. davidii. A. buergerianum owns a higher plasticity than A. davidii. Allometric analysis demonstrated that illumination and moisture influenced stem mass ratio and leaf mass ratio of A. buergerianum and stem mass ratio of A. davidii but had no effects on root mass ratios and root to shoot ratios of both species. The combined effects of light and water differ from simple sum of either factor alone. Shade mitigated the negative effects of drought for both species. In order to keep the seedlings vigorous under various illumination conditions, we recommend a water supply above15%of soil fild capacity. Regulations of forest canopy density would facilitate seedlings growth and accelerate regeneration.
     In order to uncover the impact of canopy opening in the forest ecosystem, a simulated potted experiment was conducted. We investigated responses of the mid-successional species Acer truncatum Bunge and the late-successional species Quercus variabilis Blume to three solar illumination conditions:(1) low light and low light (LL),(2) high light and high light (HH) and (3) low light to high light (LH). The last treatment was used to simulate canopy opening process. Morphological and physiological acclimations at whole plant and leaf levels were recorded. Both species exhibited increases in biomass, totally and in partly, and decreases in leaf water content, specific leaf area and chlorophyll concentrations when moved to LH treatment. In A. truncatum, sudden exposure to high light conditions (LH) increased crown, and decreased root to shoot ratio, leaf size. However, in Q. variabilis, LH treatment increased stem diameter at ground height, effective quantum yield, photochemical quenching and decreased maximum photosystem II quantum yield. The biomass allocation pattern did not change in Q. variabilis among three conditions. Maximum photosystem II quantum yield underwent a sharp decline and then recovery for both species after sudden exposure to high light, with A. truncatum recovering more quickly than Q. variabilis. In both species, effective quantum yield decreased over time upon LL or HH treatment. Newly developed maple leaves from the LH saplings remained significantly smaller than HH leaves when developing under high light whereas no difference was found in all chlorophyll fluorescence parameters between LH and HH environment. However, the newly developed oak leaves did not display significant difference for mean leaf area and mean leaf perimeter and increased all chlorophyll fluorescence parameters. A. truncatum displayed a greater overall plasticity than Q. variabilis although the oak seedlings have a greater plasticity with respect to chlorophyll content and chlorophyll fluorescence parameters. The two tree species have similar acclimation mechanisms to different light conditions in respect to light absorbing and utilizing, but different strategies in respect to resource allocation.
     Increasing levels of atmospheric nitrogen deposition have greatly affected forest trees. Acer truncatum Bunge has a large distribution in northern China, Korea and Japan and plays an important ecological role in forest ecosystems. We investigated the responses of A. truncatum to a broad range of nitrogen addition regime with a focus on seedling growth, biomass partitioning, leaf morphology, gas exchange physiology and chlorophyll fluorescence physiology. After the initial acclimation period, the experiment was run from June to September2011. Moderate nitrogen addition promoted shoot height, stem diameter at ground height, total biomass, bulk of leaves and chlorophyll fluorescence and gas exchange performance, whereas extreme level of nitrogen addition did not result in such facilitation. Chlorophyll content, pattern of biomass partitioning, ratio of leaf length to width, leaf water content, and specific leaf area did not change among the addition regimes. The critical amount of nitrogen deposition should be defined in the context of a certain time period in a particular region for a certain species at a special developmental stage. The critical amount of N deposition that weakens total biomass facilitation in A. truncatum planted in mixed soil of yellow cinnamon soil and humic soil is approximately10gNm-2y-1during its first growing season.
     In summary, all these maple species displayed certain phenotypic plasticity in response to different climate fators, in the level of leaf and the whole plant. Results of this study will provide fundamental and theoretical data to vegetation recovery, forest administration and management and help to predict the responses of forest vegetation in a prosective climate change scenario.
引文
Aber J, Goodale C, Ollinger S, Smith M, Magill A, Martin M, Hallett R, Stoddard J. Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 2003,53,375-389.
    Abrams M, Kubiske M. Photosynthesis and water relations during drought in Acer rubrum L. genotypes from contrasting sites in central Pennsylvania. Functional Ecology,1990, 727-733.
    Achten WMJ, Maes WH, Reubens B, Mathijs E, Singh VP, Verchot L, Muys B. Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass and Bioenergy,2010,34,667-676.
    Aranda I, Castro L, Pardos M, Gil L, Pardos J. Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (L.) seedlings. Forest Ecology and Management,2005,210,117-129.
    Azevedo GFC, Marenco RA. Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. Photosynthetica,2012,50,86-94.
    Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management,2004,196,173-186.
    Beon M-S, Bartsch N. Early seedling growth of pine(Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture. Plant ecology,2003,167,97-105.
    Berger TW, Glatzel G. Response of Quercus petraea seedlings to nitrogen fertilization. Forest Ecology and Management,2001,149,1-14.
    Bertamini M, Nedunchezhian N. Short Communication Leaf age effects on chlorophyll, Rubisco, photosynthetic electron transport activities and thylakoid membrane protein in field grown grapevine leaves. Journal of Plant Physiology,2002,803,799-803.
    Berz GA. Global warming and the insurance industry. Interdisciplinary Science Reviews, 1993,18,120-125.
    Bjorkman O. Responses to different quantum flux densities. In Encyclopedia of Plant Physiology, New Series. O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Zeigler, eds., Springer, Berlin,,1981,12A, pp.57-107.
    Bjorkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics and 77 K among vascular plants of diverse origin. Planta,1987,170, 489-504.
    Bobbink R, Ashmore M, Braun S, Fluckiger W, Wyngaert IJJVD. Empirical nitrogen critical loads for natural and semi-natural ecosystems:2002 update,2003, Bern, Switzerland, Environmental Documentation No.164, Swiss Agency for the Environment, Forest and Landscape (SAFEL).
    Boussadia O, Mariem FB, Mechri B, Boussetta W, Braham M, Hadj SBE. Response to drought of two olive tree cultivars (cv Koroneki and Meski). Scientia Horticulturae, 2008,116,388-393.
    Brooks ML. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology,2003,40,344-353.
    Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia,2011,167,355-368.
    Burns KC. Patterns in specific leaf area and the structure of a temperate heath community. Diversity and Distributions,2004,12,105-112.
    Chung MY, Chung MG. Fine-scale genetic structure in populations of Quercus variabilis (Fagaceae) from southern Korea. Canadian journal of botany,2002,80,1034-1041.
    Clark CM, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature,2008,451,712-715.
    Colom MR, Prato EP, Giannini R. Chlorophyll fluorescence and photosynthetic response to light in 1-year-old needles during spring and early summer in Pinus leucodermis. Trees,2003,17,207-210.
    Cornelissen JHC, Lavorel S, Gamier E, Diaz S, Buchmann N, Durvich, Reich P, H TS, Morgan H, Mga VDH, Pausas J, Poorter H. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany,2003,51,335-380.
    Diaz S, Cabido M. Vive la difference:plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution,2001,16,646-655.
    Dai YJ, Shen ZG, Liu Y, Wang LL, Hannaway D, Lu HF. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 2009,65,177-182.
    Demmig-Adams B, Adams WWI. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology,1992, 43,599-626.
    Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Noije TV, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Ller JFM, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O. Nitrogen and sulfur deposition on regional and global scales:A multimodel evaluation. Global Biogeochemical Cycles,2006,20,1-21.
    Du N, Guo WH, Zhang XR, Wang RQ. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiologiae Plantarum,2010,32,839-848.
    Du N, Wang RQ, Zhang XR, Xu F, Tan XF, Guo WH. Scaling relationships of leaf traits do not change among months in a temperate shrub species. Polish Journal of Ecology, 2013,61,23-34.
    Eissenstat D, Wells C, Yanai R, Whitbeck J. Building roots in a changing environment: implications for root longevity. New Phytologist,2000,147,33-42.
    Elvir JA, Wiersma GB, Day ME, Greenwood MS, Fernandez IJ. Effects of enhanced nitrogen deposition on foliar chemistry and physiological processes of forest trees at the Bear Brook Watershed in Maine. Forest Ecology and Management,2006,221, 207-214.
    Ernst DS, Ermin B, Klaus MH. Plant Ecology,2005, Berlin, Springer.
    Falster DS, Warton DI, Wright U. User's guide to SMATR:standardized major axis tests and routines, version 2.0. http://www.bio.mq.edu.au/ecology/SMATR/SMATR users guide.pdf.2006.
    Farquhar G, Von Caemmerer SV, Berry J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta,1980,149,78-90.
    Fenn ME, Jovan S, Yuan F, Geiser L, Meixner T, Gimeno BS. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution,2008,155,492-511.
    Fliickiger W, Braun S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 1998,102,69-76.
    Freiwald V, T. Silfver EB, Holopainen T. Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen(Populus tremula) and hybrid aspen (P. tremula × Populus tremuloides) clones. Canadian Journal of Forest Research,2007, 37,2326-2336.
    Gaio-Oliveirao G, Dahlman L, Palmqvist K, Maguas C. Ammonium uptake in the nitrophytic lichen Xanthoria parietina and its effects on vitality and balance between symbionts. Lichenologist,2004,36,75-86.
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. Nitrogen cycles:past, present, and future. Biogeochemistry,2004, 70,153-226.
    Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions. Science,2008,320,889-892.
    Gamier E, Cortez J, Billes G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A. Plant functional markers capture ecosystem properties during secondary succession. Ecology,2004,85,2630-2637.
    Gatti MG, Campanello PI, Goldstein G. Growth and leaf production in the tropical palm Euterpe edulis:Light conditions versus developmental constraints. Flora,2011,206, 742-748.
    Genty B, Briantais J, Baker N. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta,1989,990,87-92.
    Gordon WS, Jackson RB. Nutrient concentrations in fine roots. Ecology,2000,81, 275-280.
    Griffin JJ, Ranney TG, Pharr DM. Photosynthesis, chlorophyll fluorescence, and carbohydrate content of Illicium taxa grown under varied irradiance. Journal of the American Society for Horticultural Science,2004,129,46-53.
    Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GaF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J. Integrated screening validates primary axes of specialization in plants. Oikos,1997, 79,259-281.
    Guo HX, Liu WQ, Shi YC. Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica, 2006,44,140-142.
    Guo W, Li B, Zhang X, Wang R. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments,2007,69,385-399.
    Guo X, Guo W, Luo Y, Tan X, Du N, Wang R. Morphological and biomass characteristic acclimation of trident maple (Acer buergerianum Miq.) in response to light and water stress. Acta Physiologiae Plantarum,2013,35,1149-1159.
    Hallik L, Niinemets, Wright IJ. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist,2009,184,257-274.
    Hanba YT, Kogami H, Terashima I. The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant, Cell and Environment, 2002,25,1021-1030.
    He JS, Wang Z, Wang X, Schmid B, Zuo W, Zhou M, Zheng C, Wang M, Fang J. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist,2006, 170,835-848.
    Hees AFMV, Clerkx APPM. Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech. Forest Ecology and Management,2003,176,439-448.
    Holmgren M. Combined effects of shade and drought on tulip poplar seedlings:trade-off in tolerance or facilitation? Oikos,2000,90,67-78.
    Holmgren M, Scheffer M, Huston MA. The interplay of facilitation and competition in plant communities. Ecology 1997,78,1966-1975.
    Humbert L, Gagnon D, Kneeshaw D, Messier C. A shade tolerance index for common understory species of northeastern North America. Ecological Indicators,2007,7, 195-207.
    Hussner A, Hoelken HP, Jahns P. Low light acclimated submerged freshwater plants show a pronounced sensitivity to increasing irradiances. Aquatic Botany,2010,93,17-24.
    Hyvonen R, gren GI, Linder S, Persson T, Cotrufo F, Ekblad A, Freeman M, Grelle A, A I, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, Oijen MV, Wallin G. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review. New Phytologist,2006,173,463-480.
    Iio A, Fukasawa H, Nose Y, Kakubari Y. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan. Trees,2004,18,510-517.
    Jimenez MD, Pardos M, Puertolas J, Kleczkowski LA, Parados JA. Deep shade alters the acclimation response to moderate water stress in Quercus suber L. Forestry,2009,82, 285-298.
    Kaiser J. The other global pollutant:nitrogen proves tough to curb. Science,2001,294, 1268-1269.
    Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell and Environment,2000,23,81-89.
    Kitao M, Yoneda R, Tobita H, Matsumoto Y, Maruyama Y, Arifin A, Azani AM, Muhamad MN. Susceptibility to photoinhibition in seedlings of six tropical fruit tree species native to Malaysia following transplantation to a degraded land. Trees,2006,20, 601-610.
    Labarbera M. Analyzing body size as a factor in ecology and evolution. Annual review of ecology and systematics,1989,97-117.
    Lahlou O, Ouattar S, Ledent J-F. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie,2003,23,257-268.
    Lamarque JF, Kiehl J, Brasseur G, Butler T, Cameron-Smith P, Collins W, Collins W, Granier C, Hauglustaine D, Hess P. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:Analysis of nitrogen deposition. Journal of Geophysical Research:Atmospheres (1984-2012),2005,110.
    Lambers H, Chapin F, Pons T,张国平,周伟平.植物生理生态学,2005,杭州,浙江大学出版社.
    Lambers H, Poorter H. Inherent variation in growth rate between higher plants:a search for physiological causes and ecological consequences.1992.
    Larcher W. Physiological Plant Ecology,2003, Berlin, Springer Verlag.
    Lee W-K, Gadow KV, Chung D-J, Lee J-L, Shin M-Y. DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecological Modelling,2004,176,187-200.
    Lei TT, Lechowicz MJ. Diverse Responses of Maple Saplings to Forest Light Regimes. Annals of Botany,1998,82,9-19.
    Lei TT, Tabuchi R, Kitao M, Koike T. Functional relationship between chlorophyll content and leaf reflectance, and light-capturing efficiency of Japanese forest species. Physiologia Plantarum,1996,96,411-418.
    Liao M, Yu F, Song M, Zhang S, Zhang J, Dong M. Plasticity in R/S ratio, morphology and fitness-related traits in response to reciprocal patchiness of light and nutrients in the stoloniferous herb, Glechoma longituba L. Acta Oecologica,2003,24,231-239.
    Lichtenthaler HK, Wellburn AR. Determination of total carotenoids and chlorophylls a and b of leaf extracts in defferent solvents. Biochemical Society Transactions,1983,11, 591-592.
    Lindborg R, Eriksson O. Functional response to land use change in grasslands:Comparing species and trait data. Ecoscience,2005,12,183-191.
    Longstaff BJ, Kildea T, Runcie JW, Cheshire A, Dennison WC, Hurd C, Kana T, Raven JA, Larkum AW. An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis research,2002,74,281-293.
    Lorenzen CJ. Determination of chlorophyll and pheo-pigments:spectrophotometric equations. Limnology and Oceanography,1967,12,343-346.
    Lusk CH. Leaf area accumulation helps juvenile evergreen tree tolerate shade in a temperate rainforest. Oecologia,2002,132,188-196.
    Muller P, Li X-P, Niyogi KK. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology,2001,125,1558-1566.
    Ma X, Wu L, Ito Y, Tian W. Application of preparative high-speed counter-current chromatography for separation of methyl gallate from Acer truncatum Bunge. Journal ofChromatography A,2005,1076,212-215.
    Magill AH, Aber JD, Berntson GM, Mcdowell WH, J K, Melillo JM, Steudler P, Bemtson GM, Nadelhoffer KJ. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems,2000,3,238-253.
    Mark A, John S. Kok effect and the quantum yield of photosynthesis. Plant Physiology, 1984,75,95-101.
    Marshall B, Biscoe P. A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany,1980,31,29-39.
    Martin P. Vegetation responses and feedbacks to climate:a review of models and processes. Climate Dynamics,1993,8,201-210.
    Maxwell K, Johnson G. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,2000,51,659-668.
    Mcintyre S, Lavorel S, Landsberg J, Forbes T. Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science,1999,10, 621-630.
    More D, White J. Cassell' s trees of Britain and northern europe,2003, London, Cassell.
    Mountford EP, Savill PS, Bebber DP. Patterns of regeneration and ground vegetation associated with canopy gaps in a managed beechwood in southern England. Forestry, 2006,79,389-408.
    Nakaji T, Fukami M, Dokiya Y, Izuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees,2001,15,453-461.
    Naramoto M, Katahata S-I, Mukai Y, Yoshitaka K. Photosynthetic acclimation and photoinhibition on exposure to high light in shade-developed leaves of Fagus crenata seedlings. Flora,2006,201,120-126.
    Navas M-L, Gamier E. Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability. Acta Oecologica,2002,23,375-383.
    Nilsson I, Grennfelt P. Critical Loads for Sulfur and Nitrogen,1988, Stokhoster, Sweden, Nordic Council of Ministers.
    Nobel P. Physicochemical and environmental plant physiology,1991, San Diego, Academic Press.
    Nobel PS. Productivity of Agave deserti:measurement by dry weight and monthly prediction using physiological responses to environmental parameters. Oecologia, 1984,64,1-7.
    Nobel PS, Hartsock TL. Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations. Oecologia,1986,68, 181-185.
    Noda H, Muraoka H, Washitani I. Morphological and physiological acclimation responses to contrasting light and water regimes in Primula sieboldii. Ecological Research,2004, 19,331-340.
    Pair JC. Propagation of Acer truncatum, a new introduction to the southern Great Plains. Combined proceedings-International Plant Propagators' Society (USA),1987.
    Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications,2011,21, 3049-3082.
    Park I, Moon G, Lee D, Lee K. Growth, biomass and net production of Quercus species-(1)-With reference to natural stands of Quercus variabilis, Q. acutissima, Q. dentata, and Q. mongolica in Kwangju, Kyonggido. Journal of Korean Forestry Society,1996,85.
    Park I, Seo Y. Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwon-do. Journal of Korean Forestry Society, 2003,92.
    Phoenix GK, Emmett BA, Britton AJ, Caporn SJ, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ. Impacts of atmospheric nitrogen deposition:responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology,2012,18,1197-1215.
    Platt T, Gallegos C, Harrison W. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal Of Marine Research,1981,38,687-701.
    Porter E, Blett T, Potter DU, Huber C. Protecting resources on federal lands:implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience,2005, 55,603-612.
    Prioul J, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:a critical analysis of the methods used. Annals of Botany,1977,41,789-800.
    Quero JL, Villar R, Maranon T, Zamora R. Interactions of drought and shade effects on seedlings of four Quercus species:physiological and structural leaf responses. New phytologist,2006,170,819-833.
    Reay DS, Dentener F, Smith P, Grace J, Feely RA. Global nitrogen deposition and carbon sinks. Nature Geoscience,2008,1,430-437.
    Reich R, Ellsworth DS, Walters MB. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations:evidence from within and across species and functional groups. Functional Ecology,1998,12,948-958.
    Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees. Plant Biology, 2010,12,275-291.
    Rozendaal DMA, Hurtado VH, Poorter L. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology,2006,20,207-216.
    Runkle JR. Pattern of disturbance in some old growth mesic forest of eastern North America. Ecology,1982,63,560-562.
    Sack L, Grubb PJ. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia,2002,131,175-185.
    Sack L, Grubb PJ, Maranon T. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern spain. Plant Ecology, 2003,168,139-163.
    Sakuratani Y, Matsumoto Y, Oka M, Kubo T, Fujii A, Uotani M, Teraguchi T. Life history of Adalia bipunctata (Coleoptera:Coccinellidae) in Japan. European Journal of Entomology,2000,97,555-558.
    Saldana-Acosta R, Meave JA, Sanchez-Velasquez LR. Seedling biomass allocation and vital rates of cloud forest tree species:Responses to light in shade house conditions. For Ecol Manage,2009,258,1650-1659.
    Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research,1986,10,51-62.
    Shipley B, Lechowicz MJ, Wright I, Reich PB. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology,2006,87,535-541.
    Shu R, Wang F, Yang Y, Liu Y, Tan R. Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, and endophytic fungus in Quercus variabilis. Lipids,2004,39,667-673.
    Smith T, Humston M. a theory of the spatial and temporal dynamics of plant communities. Vegetatio,1989,83,49-69.
    Sun X, Guo L-D, Hyde K. Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity,2011,47,85-95.
    Takamatsu S, Ito T, Yamamoto H, Braun U. Sawadaea nankinensis comb, nov.:a powdery mildew fungus of Acer buergerianum. Mycoscience,2008,49,161-167.
    Tezara W, Martianez D, Rengifo E, Herrera A. Photosynthetic responses of he tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Annals ofBotany-Lond,2003,92,757-765.
    Thomas RQ, Canham CD, Weathers KC, Goodale CL. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience,2010,3,13-17.
    Thornley J. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. Annals of Botany,1998,81,421-430.
    Tobita H, Utsugi H, Kitao M, Kayama M, Uemura A, Kitaoka S, Maruyama Y. Variation in photoinhibition among Sasa senanensis, Quercus mongolica, and Acer monoin the understory of a deciduous broad-leaved forest exposed to canopy gaps caused by typhoons. Trees,2010,24,307-319.
    Trenberth KE. Atmospheric moisture residence times and cycling:Implications for rainfall rates and climate change. Climatic change,1998,39,667-694.
    Uemura A, Ishida A, Nakano T, Terashima I, Tanabe H, Matsumoto Y. Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances. Tree Physiology,2000,945-951.
    Valladares F, Chico MJ, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees,2002,395-403.
    Valladares F, Sanchez-Gomez D, Zavala MA. Quantitative estimation of phenotypic plasticity:bridging the gap between the evolutionary concept and its ecological applications. Jo urnal of Ecology,2006,94,1103-1116.
    Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Gamier E. Let the concept of trait be functional! Oikos,2007,116,882-892.
    Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. Human alteration of the global nitrogen cycle:sources and consequences. Ecological applications,1997,7,737-750.
    Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea-how can it occur?. Biogeochemistry,1991,13,87-115.
    Von Bertalanffy L. Problems of life; an evaluation of modern biological thought.1952.
    Walther GR, Beiflner S, Burga CA. Trends in the upward shift of alpine plants. Journal of Vegetation Science,2005,16,541-548.
    Wang F, Jiao R, Cheng A, Tan S, Song Y. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology,2007,23,79-83.
    Wang ML, Jiang YS, Wei JQ, Wei X, Qi XX, Jiang SY, Wang ZM. Effects of irradiance on growth, photosynthetic characteristics, and artemisinin content of Artemisia annua L. Photosynthetica,2008,46,17-20.
    Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry. Biological Reviews,2006,81,259-291.
    Watt AS. Pattern and process in the plant community. Journal of Ecology,1947,35,1-22.
    Weis E, Berry JA. Quantium efficiency of photosystem Ⅱ in relation to energy-dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta,1987,894, 198-208.
    Westoby M, Wright IJ. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution,2006,21,261-268.
    White PS. Pattern, process and natural disturbance in vegetation. The Botanical Review, 1979,45,229-299.
    Wilson EJ, Skeffington RA. The effects of excess nitrogen deposition om young Norway spruce trees. Part Ⅱ The vegetation. Environmental Pollution,1994,86,153-160.
    Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NC. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany,2007,99,1003-1015.
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Gamier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M, Niinemets, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum. Nature, 2004,428,821-827.
    Wu FZ, Bao WK, Li FL, Wu N. Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. Photosynthetica, 2008,46,40-48.
    Wyka T, Robakowski CP, Zytkowiak R. Leafage as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research.,2008,87-99.
    Xu F, Guo W, Xu W, Wang R. Habitat effects on leaf morphological plasticity in Quercus Acutissima. Acta Biologica Cracoviensia Series,2008,50,19-26.
    Xu XL, Wang ZM, Zhang JP. Effect of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain-filling stage. Acta Botanica Sinica, 2000,43,571-577.
    Yamaguchi M, Watanabe M, Tabe C, Naba J, Matsumura H, Kohno Y, Izuta T. Effects of sulfur dioxide on growth and net photosynthesis of six Japanese forest tree species grown under different nitrogen loads. Trees,2012,26,1859-1874.
    Yamashita N, Ishida A, Kushima H, Tanaka N. Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan. Oecologia,2000, 412-419.
    Yang Y, Han C, Liu Q, Lin B, Wang J. Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum,2008,30,433-440.
    Yao YJ. Studies on development in Erysiphaceae:observations of ascocarp development in Sawadaia. Mycological Research,1990,94,338-346.
    Ye ZP. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica,2007,45,637-640.
    Zhang F, Jin Y, Chen H, Wu X. Selectivity mechanism of Anoplophora glabripennis on four different species of maples. Frontiers of Biology in China,2008,3,78-84.
    Zhao C, Liu Q. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research,2009,39,1-11.
    Zhao WH, Gao CC, Ma XF, Bai XY, Zhang YX. The isolation of 1,2,3,4,6-penta-O-galloyl-beta-d-glucose from Acer truncatum Bunge by high-speed counter-current chromatography. Journal of Chromatography B,2007,850,523-527.
    Zheng X, Fu C, Xu X, Yan X, Huang Y, Han S, Hu F, Chen G. The Asian nitrogen cycle case study. AMBIO:A Journal of the Human Environment,2002,31,79-87.
    Zhou X, Zhang Y, Ji X, Downing A, Serpe M. Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environmental and Experimental Botany,2011,74,1-8.
    曹健康,黄虹,陈黎.三角枫苗期生长特性的初步研究.黄山学院学报,2006,8,66-69.
    曹武,杜海艳,徐卫华,杭平平,李冬林.三角枫的生物学特性及培育技术.中国野生植物资源,2007,26,68-69.
    晁敏.山东省农业可持续发展战略主体模式研究——以滨州、峄城区、房干村为例.硕士学位论文,山东大学,1999,济南.
    程瑞梅,肖文发.河南宝天曼栓皮栎林群落特征及物种多样性.植物资源与环境,1998,7,8-13.
    楚道文,李海霞.房干生态旅游区开发建设理论、问题和对策.山东省农业管理干部学院学报,2002,18,91-93.
    丁国安,徐晓斌,王淑凤,于晓岚,程红兵.中国气象局酸雨网基本资料数据集及初步 分析.应用气象学报,2005,15,85-94.
    丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2,3-8.
    符超峰,安芷生,强小科,宋友桂,常宏.全球变化研究进展和面临的挑战及应对策略.干早区研究,2006,23,1-7.
    符淙斌,马柱国.全球变化与区域干旱化.大气科学,2008,32,752-760.
    符立志,孙佩刚.元宝槭的育苗技术.辽宁林业科技,2003,44-45.
    郭志华,张旭东,黄玲玲,巨关升.落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用.生态学报,2006,26,1047-1056.
    韩志国.利用调制荧光仪在线监测叶绿体荧光.生态科学,2005,24,246-269.
    韩志国,雷腊梅,韩博平.光-暗循环中三角褐指藻和具齿原甲藻快速光曲线的变化.热带海洋学报,2006,24,13-21.
    何炎红,郭连生,田有亮.7种针阔叶树种不同光照强度下叶绿素荧光淬灭特征.林业科学,2006,42,27-31.
    胡徐文.三角枫多态毛蚜的研究.安徽农学通报,2006,11,110-111.
    蒋高明.植物生理生态学的学科起源与发展史.植物生态学报2004,28,278-284.
    缴丽莉,倪志云,路丙社,白志英,周如久,冯蕾.低温胁迫对青榨槭幼树抗寒指标的影响.河北农业大学学报,2006,29,44-47.
    金雅琴,李冬林.优良速生槭树三角枫的生物学特性及培育技术.林业实用技术2008,44-45.
    李德军,莫江明,方运霆,李志安.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响.植物生态学报,2005,29,543-549.
    李冬林,王宝松,韩杰峰,汪有良,隋德宗.观赏槭树的苗期试验初报.江苏林业科技,2007,34,10-14.
    李吉跃,姜金璞.元宝枫栓皮栎苗木水力结构特征的对比研究.北京林业大学学报,2002,24,45-50.
    李剑泉,李智勇,易浩若.森林与全球气候变化的关系.西北林学院学报,2010,25,23-28.
    李静,任杰,杨帆,傅松玲.不同季节加拿大糖槭光合特性研究.中国农学通报,2013,29,9-13.
    李欠欠,汤利.大气氮沉降的研究进展.云南农必大学学报,2010,25,889-902.
    李倩中,苏家乐,陈尚平,刘晓青,项立平.两种类型械树光合作用及其影响因子初探.江西农业学报,2007,19,35-37.
    李战国.元宝枫优质苗木培育技术.北方园艺,2008,164-164.
    联合国社会发展研究所.全球化背景下的社会问题1997,北京,北京大学出版社.
    梁峰,蔺银鼎.光照强度对彩叶植物元宝枫叶色表达的影响.山西农业大学学报:自然科学版,2009,29,41-45.
    林而达,许吟隆,蒋金荷,李玉娥,杨修,张建云,李从先,吴绍洪,赵宗群,吴建国.气候变化国家评估报告(Ⅱ):气候变化的影响与适应.气候变化研究进展,2006,2,51-56.
    刘丹,那继海,杜春英.1961-2003年黑龙江主要树种的生态地理分布变化.气候变化研究进展,2007,3,100-105.
    刘秋锋,康慕谊,刘全儒.中条山混沟地区森林乔木种的数量分类与环境解释.植物生态学报,2006,30,383-391.
    刘心宏.三角枫漆斑病的危害与防治.安徽林业,2007,46-47.
    吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应.植物生态学报,2007,31,205-218.
    任海青.三角枫木材细胞组织比量及微纤丝角径向变异研究.安徽农业大学学报,1997,24,14-17.
    任海青,刘秀梅,訾兴中.三角枫木材材性及用途的研究.安徽农业大学学报,1994,21,370-374.
    任仁,白乃彬.中国降水化学数据的化学计量学分析.北京工业大学学报,2000,26,90-95.
    沈年华,万志洲,汤庚国,王春,程红梅.紫金山栓皮栎群落结构及物种多样性.浙江林学院学报,2009,26,696-700.
    沈允钢.光合作用.中国生物学文摘,2006,20,1-1.
    苏建荣,邓疆,罗香,杨文云.元宝槭幼树施肥研究Ⅰ.不同施肥处理对生长与构型的影响.林业科学研究,2005,18,147-152.
    苏建苏,邓疆,罗香,杨文云.元宝槭幼树施肥研究Ⅱ.对叶内黄酮,绿原酸及养分的影响.林业科学研究,2005,18,255-259.
    苏小青,林思祖,黄石德.干扰状态下闽楠林乔木层主要种群种间联结性的研究.中国生态农业学报,2007,15,7-10.
    孙秀琴,田树霞.元宝槭种子休眠生理的研究.林业科学研究,1991,4,185-191.
    唐明,陈辉,张博勇.元宝槭VA菌根的研究.西北林学院学报,1993,3,003.
    田汉勤,万师强,马克平.全球变化生态学:全球变化与陆地生态系统.植物生态学报,2007,31,173-174.
    万云,许丽丽,耿其芳,冷欣,安树青,唐剑武.全球变化背景下生态学热点问题研究. 生态学报,2012,32,1-8.
    汪萌,张翠,刘泉.元宝枫的药用植物化学成分及药理作用研究进展.黑龙江医药2008,70-73.
    王国庆,张建云,刘春蓁,刘九夫,贺瑞敏.有关气候变化及其影响的国际项目与计划.中国水利,2008,2,69-71.
    王庆伟,于大炮,代力民.全球气候变化下植物水分利用效率研究进展.应用生态学报,2010,21,3255-3265.
    王仁卿,郭卫华,韩雪梅(2004)房干村生态文明建设分析.In:山东生态省建设研究.(ed张凯主编)pp 129-136.北京,中国科学技术出版社.
    王仁卿,周光裕.山东植被,2000,济南,山东科技出版社.
    王绍武,翟盘茂,龚道溢.2002年是近百年来中国第二个最暖的年.气候变化通讯,2003,2,11-12.
    王树森.华北土石山区基于森林植被演替规律的森林健康的研究.博士毕业论文,北京林业大学,2005,北京.
    王小治,朱建国,高人.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例.应用生态学报,2004,15,1616-1620.
    王政权,郭大立.根系生态学.2008.
    魏希颖,梁健.有潜在药用价值的元宝枫等槭属植物.中药材,2005,28,176-177.
    吴明作,刘玉萃.栓皮栎种群数量动态的谱分析与稳定性.生态学杂志,2000,19,23-26.
    吴明作,刘玉萃,姜志林.栓皮栎种群生殖生态与稳定性机制研究.生态学报,2001,2.
    谢会成.栓皮栎光合生理生态的研究.南京:南京林业大学,2002.
    谢会成,姜志林,李际红.栓皮栎林光合特性的研究.南京林业大学报:自然科学版,2004a,28,83-85.
    谢会成,宋金斗,姜志林.栓皮栎林内的光照分布及植物的光合特性研究.福建林学院学报,2004b,24,21-24.
    谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响.山东林业科技,2004,2,6-7.
    谢迎新,张淑利,冯伟,赵旭,郭天财.大气氮素沉降研究进展.中国生态农业学报,2010,18,897-904.
    徐义刚,周光益,骆土寿,吴仲民,何在成.广州市森林土壤水化学和元素收支平衡研究.生态学报,2001,21,1670-1681.
    许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯,2006,42,1163-1167.
    许中旗,黄选瑞,徐成立,许晴,纪晓林.光照条件对蒙古栎幼苗生长及形态特征的影响.生态学报,2009,29,1121-1128.
    杨保林,张文辉,周建云.秦岭北坡不同干扰条件下栓皮栎无性繁殖在其种群更新中的作用.东北林业大学学报,2010,38,27-43.
    叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用.生态学杂志,2007,26,1323-1326.
    叶子飘.光合作用对光和C02响应模型的研究进展.植物生态学报,2010,34,727-740.
    衣英华,樊大勇,谢宗强,陈芳清.模拟淹水对枫杨和栓皮栎气体交换,叶绿素荧光和水势的影响.植物生态学报,2006,30,960-968.
    喻才员,孔迪红,万承永.不同催芽方法破除青榨槭种子休眠的影响分析.林业建设,2007,29-30.
    翟盘茂,任福民,张强.中国降水极值变化趋势检测.气象学报,1999,57,208-216.
    翟盘茂,王萃萃,李威.极端降水事件变化的观测研究.气候变化研究进展,2007,3,144-148.
    张冬梅,钱又宇,马晓,苏金乐.三种槭树光合特性的比较研究.园林科技,2007,22-24.
    张建云,王国庆,刘九夫,贺瑞敏.国内外关于气候变化对水的影响的研究进展.人民长江,2009,40,39-40.
    张露,胡松竹,袁生贵,李发凯,易小龙,肖永有.青榨槭种源苗期试验研究.江西农业大学学报,2004,26,670-674.
    张守仁,樊大勇,Strasser RJ.植物生理生态学研究中的控制实验和测定仪器新进展.植物生态学报,2007,31,982-987.
    张文辉,卢志军.陕西不同林区栓皮栎种群空间分布格局及动态的比较研究.西北植物学报,2002a,22,476-483.
    张文辉,卢志军.栓皮栎种群的生物学生态学特性和地理分布研究.西北植物学学报,2002b,22,1093-1101.
    张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响.应用生态学报,2006,17,1099-1102.
    张颖,刘学军,张福锁,巨晓棠,邹国元,胡克林.华北平原大气氮素沉降的时空变异.生态学报,2006,26,1633-1639.
    张治安,张美善,蔚荣海.植物生理学实验指导,2004,北京,中国农业科学技术出版社.
    赵新风,徐海量,张鹏,张青青.养分与水分添加对荒漠草地植物钠猪毛菜功能性状 的影响.植物生态学报,2014,38,134-146.
    中国植物志编辑委员会.中国植物志,1981,北京,科学出版社.
    周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,2001,21,2002-2012.
    周鹏,耿燕,马文红,贺金生.温带草地主要优势植物不同器官间功能性状的关联.植物生态学报,2010,1,7-16.
    周晓兵,张元明.干旱半干旱区氮沉降生态效应研究进展.生态学报2009,29,3835-3845.
    朱教君,刘足根.森林干扰生态研究.应用生态学报,2004,15,1703-1710.
    左园园,刘庆,林波,何海.短期增强UV-B辐射对青榨槭幼苗生理特性的影响.应用生态学报,2005,16,1682-1686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700