用户名: 密码: 验证码:
鲤鱼卵钙离子结合活性肽的制备及钙结合机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以鲤鱼鱼卵为研究对象,优化酶解工艺制备鱼卵钙离子结合活性肽(FEP),优化活性肽与钙离子结合条件,制备鱼卵肽钙复合物(FEP-Ca),通过构建缺钙大鼠模型研究FEP-Ca促钙吸收活性。从FEP中分离纯化高活性钙离子结合肽并鉴定其结构,对活性肽与钙结合的机制进行探讨。研究结果如下:
     1.鲤鱼卵酶解制备FEP条件优化
     鲤鱼卵脱脂后含有1.09%的磷,氮磷摩尔比为31.31,蛋白质中丝氨酸摩尔百分数为6.81%。以水解度和酶解液钙离子结合活性为指标,优化了鱼卵酶解工艺。结果表明胰蛋白酶对鱼卵的酶解效果最好,当鱼卵脱磷率为30.39%时,在49℃,加酶量3000U/g,底物浓度2%,pH9.0条件下,水解度为31.15%,酶解液结合钙活性最好,500mg/ml酶解液能结合0.67mmol/g的钙。
     2. FEP-Ca复合物制备条件优化及其稳定性
     以FEP的单位蛋白钙结合量和钙结合率为评价指标,对肽钙结合反应条件进行优化。结果表明在FEP浓度为5g/L,钙离子浓度为5mM,pH8.0,45℃,1h条件下,FEP单位蛋白钙结合量为0.86mmol/g,钙结合率为86%。此条件下制备的FEP-Ca复合物磷含量为3.78%,氮含量为11.15%,钙含量为7.27%,氮磷摩尔比为6.53。
     FEP-Ca复合物具有较好的酸碱稳定性,在pH5-8范围内钙保留率高达90%以上。一定的加热处理会导致FEP-Ca复合物钙保留率下降,经过高温杀菌后钙保留率为71.33%。FEP-Ca复合物具有较高的抗消化性,经过胃蛋白酶、胰蛋白酶共同作用后,钙保留率为89.69%。磷酸盐能与FEP竞争钙离子,随着磷酸盐浓度的上升,FEP-Ca的钙保留率显著下降(p <0.05)。当磷酸盐浓度为30mM时,钙保留率降至37.05%。
     3. FEP-Ca促钙吸收活性研究
     缺钙大鼠饲喂FEP-Ca后,可显著增加体重、促进钙吸收、维持血钙和ALP水平稳定,增加骨重、骨密度和骨钙含量,增强骨生物力学性能,使上述指标达到或优于正常对照组水平。FEP-Ca对缺钙大鼠的补钙效果显著优于CaCO3(p <0.05),而与CPP-Ca无显著性差异。FEP-Ca有望成为新型的补钙制剂。
     4. FEP中高活性组分的分离纯化及结构鉴定
     FEP经超滤分离后,将分子量小于5kDa的组分依次经羟基磷灰石层析、分子排阻层析及RP-HPLC分离纯化得到高活性组分,经ESI-QTOF-MS/MS分析,鉴定其氨基酸序列为(pS)S(pS)AF(pS)(pS)ELAR,分子量为1461Da,含有5个丝氨酸,其中有4个被磷酸化修饰,是一种典型的磷酸肽。
     5.活性肽钙结合机制研究
     人工合成高活性组分(IPP),经质谱和红外光谱分析表明,生理条件下磷酸基团是钙离子的优先结合部位,1分子IPP能结合4个钙离子,羧酸基团未参与钙离子的结合。红外光谱和圆二色谱分析表明,IPP生理条件下完全以无序状态存在。当同时升高pH(10以上)和钙离子浓度(3mM以上)后,羧基解离,钙离子对磷酸基团电荷产生屏蔽效应,使IPP在疏水作用和氢键作用下形成β折叠结构,并在两个羧酸根之间形成盐桥,进而构建网状结构,形成IPP-Ca纳米颗粒。而当体系中含有混合肽时,则可在pH6-8范围与钙离子结合形成纳米颗粒。
     IPP在过饱和磷酸钙溶液中与磷酸根竞争与钙的结合,并吸附到Ca-P簌和无定形纳米粒(ACP)表面,抑制晶核形成和ACP定向聚集结晶,还能吸附到结晶表面抑制结晶长大产生沉淀。
In this thesis, fish egg peptides (FEP) with calcium-binding activity wereprepared from carp eggs through enzymatic technology and the parameters of FEPbinding calcium reaction were optimized to prepare peptide-calcium complex(FEP-Ca). The effects of FEP-Ca on increasing calcium bioavailability were furtherstudied in calcium-deficiency rats. A novel peptide was purified and identified toexplore the mechanism of the peptide binding calcium. The details of the work wouldbe shown as follows:
     1. Preparation of FEP through enzymatic technology from carp eggs
     Calcium-binding activity and degree of hydrolysis (DH) were adopted as indexto optimize the enzymatic technology. The trypsin showed the highest ability toprepare peptides with calcium-binding activity from carp eggs. Dephosphorizationtreatment of carp eggs could significantly increase the degree of hydrolysis. However,excessive dephosphorization was disadvantageous to calcium-binding activity. Theoptimization of enzymatic conditions for preparation calcium-binding peptide was asfollows: the degree of dephosphorization of carp eggs30.39%, trypsin dosage3000U/g, substrate concentration2%, pH9.0, temperature49℃and hydrolysis time12h.The DH and calcium-binding activity of the hydrolysate reached31.15%and0.67mmol/g.
     2. Preparation of FEP-Ca complex and its stability
     Based on binding rate, The conditions of FEP binding calcium were optimized asfollows: FEP concentration5g/L, calcium concentration5mM, temperature45℃, pH8.0and reaction time1h. In these conditions the binding rate of FEP was86%. Thecontents of phosphorus, nitrogen and calcium were3.78,11.15,7.27%respectivelyand the molar ratio of phosphorus to nitrogen was6.53.
     FEP-Ca complex owned good ability to resist pH with more than90%calciumretention rate at the pH range of5-8. After heated at121.1℃for15min, the calcium retention rate was as high as71.33%. FEP-Ca complex also could resist digestion bypepsin and trypsin with89.69%calcium retention rate after treated with the twoenzymes. However, the calcium retention rate significantly decreased as the additionof phosphate because phosphate can compete with FEP to bind calcium.
     3. Effect of FEP-Ca on enhancing calcium bioavailability in vivo
     In vivo the effect of FEP-Ca on increasing calcium bioavailability were studiedin calcium-deficiency rats. During the experimental period, calcium absorption and itsaccumulation in bone was significantly increased by FEP-Ca supplementation. Thelevels of serum calcium, bone mineral density, bone calcium content andbiomechanical properties of the FEP-Ca group were significantly higher than those ofCaCO3group (p <0.05), but similar to the CPP-Ca group (p>0.05). FEP-Ca isexpected to become a novel calcium nutraceutical additive in food industry due toenhancing Ca bioavailability by its intake.
     4. Purification and identification of calcium-binding peptideAfter ultrafiltration, the fraction with molecular weight <5kDa (U) was collectedand then purified with hydroxylapatite chromatography (HAC), H3eluted with themaximum concentration of phosphate buffer (400mmol/L) exhibited the highestcalcium binding ability of5.03mmol/g. Amino acid content analysis showed that theSer content of H3is about3times more than that of U but the contents of Thr andTyr are almost identical. H3was further purified using size exclusionchromatography (SEC) and reverse phase high-performance liquid chromatography(RP-HPLC), an oligophosphopeptide with the highest calcium binding ability (7.62mmol/g) was obtained. Its sequence was identified as (pS)S(pS)AF(pS)(pS)ELARthrough ESI-QTOF tandem mass analysis.
     5. Mechanism of peptide binding calcium
     The peptide with the sequence (pS)S(pS)AF(pS)(pS)ELAR (IPP) wassynthesized for further study. MS and FTIR spectrum of IPP and IPP-Ca showed thatphosphate had the priority to binding calcium. Under physiological conditions onemole of IPP could bind four moles of calcium and carboxyl group could not bindcalcium. FTIR and CD spectrum further revealed that regardless of the presence calcium IPP was present in the state of unorded structure in solution underphysiological conditions, without any secondary structures such as α-helix or β-sheet.When pH reached to10with calcium concentration up to3mM, Ca2+boundphosphate and shielded negative charges of it, which made the formation of β-sheet inIPP via hydrophobic interactions and hydrogen bond. Then Ca2+served as asalt-bridge between carboxyl group and induce the formation of nanoparticles.However in the presence of other peptides, Ca2+could induce the peptides solution tofomate nanoparticles at the pH range of6-8.
     In the supersaturated solution of hydroxylapatite (HAP), IPP could compete withphosphate to bind calcium and adsorb to the surfaces of Ca-P nanoclusters andamorphous calcium phosphate granules (ACP), which inhibited the nuleation ofcalcium phosphate and the aggregation of ACP to crystal. IPP also could adsorb to thesurfaces of calcium phosphate crystals, thus inhibited the growth and precipitation ofcrystals.
引文
[1]农业部渔业局,《中国渔业年鉴》,北京:中国农业出版社,2008-2012.
    [2]杨玉平.鲢体内土腥味物质鉴定及分析方法与脱除技术的研究[学位论文],华中农业大学,2011.
    [3]李玲,宗利,王玖玖,等.大宗淡水鱼加工前处理技术和装备的研究现状及方向[J].渔业现代化,2007,37(5):43-46.
    [4]张屹环.大宗淡水鱼糜凝胶性质比较研究[学位论文],江南大学,2011.
    [5]陆丽丽.鲤科鱼卵脂质的分析、提取及特性[学位论文],上海水产大学,2007.
    [6]Falch E., Rustadb T., Jonsdottir R., et al.Geographical and seasonal differences in lipidcomposition and relative weight of by-products from gadiform species[J].J. Food Comp.Anal.,2006,19:727-736.
    [7]Tocher D. R.,Sargem J. R.Analyses of lipids and fatty acids in ripe roes of some northwestEuropean marine fish[J].Lipids,1984,19(7):492-499.
    [8]Shirai N., Higuchi T. Suzuki H. Analysis of lipid classes and the fatty acid composition of thesalted fish roe food products, Ikura, Tarako, Tobiko and Kazunoko[J]. Food Chem.,2006,94(1):6l-67.
    [9]李玉葵,寿红霞,王冀平.浙江省12种常见鱼卵中矿物元素分析[J].现代科学仪器,2000,25-26.
    [10]Inoue S., Kaneda-Hayashi T., Sugiyama H., et al. Studies on Phosphoproteins from Fish Eggs:Isolation and Characterization of a Phosphoprotein from the Eggs of Pacific Herring [J]. J.Biochem.,1971,69(6):1003-1011.
    [11]Kitts D. D., Weiler K. Bioactive proteins and peptides from food sources. Applications ofbioprocesses used in isolation and recovery [J]. Current Pharmaceutical Design,2003,9:1309-1323.
    [12]West D. W. Structure and function of the phosphorylated residues of casein [J]. J. Dairy Res.,1986,53:333-352.
    [13]Gerber H. W., Jost R. Casein phosphopeptides: their effects on calcification in vitro culturedembryonic rat bone [J]. Calcified Tissue Int.,1986,38:350-357.
    [14]范轶欧,刘爱玲,何宇纳等.中国成年居民营养素摄入状况的评价[J].营养学报,2012,34(1):15-19.
    [15]王陇德.中国居民营养与健康状况调查报告之综合报告[M].北京:人民出版社,2006:22.
    [16]Kohama Y., Oka H., Yamamoto K., et al. Induction of angiotensin-converting enzymeinhibitory activity by acid-limited proteolysis of glyceraldehyde3-phosphate dehydrogenase[J]. Biochemical and biophysical research communications,1989,161(2):456-460.
    [17]Wijesekara I., Kim S. K. Angiotensin-I-converting enzyme (ACE) inhibitors from marineresources: prospects in the pharmaceutical industry[J]. Marine Drugs,2010,8(4):1080-1093.
    [18]Zhao Y. H., Li B. F., Dong S. Y., et al. A novel ACE inhibitory peptide isolated from Acaudinamolpadioidea hydrolysate[J]. Peptides.2009,30:1028-1033.
    [19]朱晓杰.海地瓜蛋白酶解物Plastein反应修饰及其ACE抑制活性研究[硕士论文].青岛:中国海洋大学,2012.
    [20]王海涛,王伟,赵元晖.中国毛虾流感病毒神经氨酸酶抑制活性肽的研究[J].高等学校化学学报,2013,34(11):2540-2545.
    [21]苑宁.鳕鱼皮中流感病毒神经氨酸酶抑制活性肽的研究[毕业论文].青岛:中国海洋大学,2013.
    [22]Sasaki S., Ohta T., Decker E. A. Antioxidant activity of water-soluble fractions of salmonspermary tissue[J]. Journal of Agricultural and Food Chemistry,1996,44(7):1682-1686.
    [23]Dong S. H., Zeng M. Y., Liu Z. Y., et al. Antioxidant and biochemical properties of proteinhydrolysates prepared from Silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry,2008,107:1485-1493.
    [24]Juillerat M. A., Baechler R., Berrocal R., et al. Tryptic phosphopeptides from whole caseinⅠ.Preparation and analysis by fast protein liquid chromatography [J]. Journal of Dairy Reseach,1989,56:603-611.
    [25]吕莹.大豆肽结合钙的机制及其促进机体钙吸收和增强骨质量的生物学效应[学位论文].北京:中国农业大学,2010.
    [26]Jung W. K., Karawita R., Heo S. J., et al. Recovery of a novel Ca-binding peptide from AlaskaPollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis [J]. Process Biochem.,2006,41:2097-2100.
    [27]Jung W. K, Kim S. K. Calcium-binding peptide derived from pepsinolytic hydrolysates ofhoki (Johnius belengerii) frame [J]. Eur. Food Res. Technol.,2007,224:763-767.
    [28]慕现敏.鱼鳞钙离子结合活性肽的分离纯化及其生理活性研究[学位论文].青岛:中国海洋大学,2013.
    [29]Jiang B., Mine Y. Preparation of Novel Functional Oligophosphopeptides from Hen Egg YolkPhosvitin [J]. J. Agri. Food Chem.2000,48:990994.
    [30]Huang G, Ren L, Jiang J. Purfication of a histidine-containing peptide with calcium bindingactivity from shrimp processing byproducts hydrolysate [J]. European food research andtechnology,2011,232:281-287.
    [31]Huang G, Ren Z, Jiang J. Separation of iron-binding peptides from shrimp processingby-products hydrolysates [J]. Food Bioprocess Technology,2011,4:1527-1532.
    [32]Lee S.H, Song K.B. Isolation of a calcium-binding peptide from enzymatic hydrolysates ofporcine blood plasma protein [J]. Journal of the Korean Society for Applied BiologicalChemistry,2009,52(3):290-294.
    [33]Lee S.H, Song K.B. Purification of an iron-binding nona-peptide from hydrolysates of porcineplasma protein [J]. Process Biochemistry,2009,44:378-381.
    [34]Wu H., Liu Z., Zhao Y., et al. Enzymatic preparation and characterization of iron-chelatingpeptides from anchovy (Engraulis japonicus) muscle protein [J]. Food Res. Int.,2012,48:435-441.
    [35]Chen D., Liu Z., Huang W., et al. Purification and characterisation of a zinc-binding peptidefrom oyster protein hydrolysate[J]. Journal of Functional Foods,2013.
    [36]Wang C, Li B, Ao J. Separation and identification of zinc-chelating peptides from sesameprotein hydrolysate using IMAC-Zn2+and LC-MS/MS [J]. Food Chemistry,2012,134:1231-1238.
    [37]Megías C., Pedroche J., Yust M. M., et al. Production of copper-chelating peptides afterhydrolysis of sunflower proteins with pepsin and pancreatin [J]. Food Sci. Technol.,2008,41:1973-1977.
    [38]Jiang B, Mine Y. Phosphopeptides derived from hen egg yolk phosvitin: effect of molecularsize on calcium-binding properties [J]. Bioscience, Biotechnology and Biochemistry,2001,65:1187-1190.
    [39]West D. W. Structure and function of the phosphorylated residues of casein[J]. Dairy Res.,1986,53:333–352.
    [40]Wang L. J., Guan X. Y., Tang R. K., et al. Phosphorylation of osteopontin is required forinhibition of calcium oxalate crystallation [J]. J. Phys. Chem. B,2008,112:9151-9157.
    [41]Zong H, Peng L.J, Zhang S.S, et al. Effects of molecular structure on the calcium-bindingproperties of phosphopeptides [J]. European Food Research Technology,2012,235(5):811-816.
    [42]Hardman K. D., Agarwal R. C., Freiser M. J. Manganese and calcium binding sites ofconcanavalin A[J]. Journal of molecular biology,1982,157(1):69-86.
    [43]包小兰.大豆肽与钙结合形成可溶性复合物的机制及其稳定性的研究[博士学位论文].北京:中国农业大学,2007.
    [44]刘贺.大豆肽与钙结合机制及Caco-2细胞内肽促钙转运模式研究[博士学位论文].北京:中国农业大学,2013.
    [45]Sutton B R, Davletov B A, Berghuis Albert M, et al. Structure of the first C2domain ofsynaptotagmin I: A novel Ca2+/phospholipid-binding fold[J]. Cell.1995,80(6):929-938.
    [46]Holt C., Timmins P. A., Errington N., et al. A core-shell model of calcium phosphatenanoclusters stabilized by β-casein phosphopeptides, derived from sedimentation equilibriumand small-angle X-ray and neutron-scattering measurements [J]. Eur. J. Biochem.,1998,252:73-78.
    [47]Zhang J., Liang L., Tian Z., et al. Preparation and in vitro evaluation of calcium-induced soyprotein isolate nanoparticles and their formation mechanism study [J]. Food Chem.,2012,133:390-399.
    [48]Nordin B. E. C. Calcium and osteoporosis[J]. Nutrition,1997,13:664-686.
    [49]Hoenderop J. G. J., Nilius B., Bindels R. J. M. Calcium absorption across epithelia[J]. PhysiolRev,2005,85:373-422.
    [50]Anderson J. M. Molecular structure of tight junctions and their role in epithelial transport[J].News Physiol. Sci.2001,16:126–130.
    [51]Quamme G. A., Dirks J. H. Intraluminal and contraluminal magnesium on magnesium andcalcium transfer in the rat nephron[J]. Am. J. Physiol. Renal. Fluid Electrolyte Physiol.1980,238: F187-F198.
    [52]Wang Y., Zhang J., Yi X.J., et al. Activation of ERK1/2MAP kinase pathway induces tightjunction disruption in human corneal epithelial cells[J]. Exp. Eye Res.2004,78:125-136.
    [53]Wilson F. H., Disse N. S., Choate K. A., et al. Human hypertension caused by mutations inWNK kinases[J]. Science,2001,293:1107-1112.
    [54]Hoenderop J. G., van der Kemp A. W., Hartog A., et al. Molecular identification of the apicalCa2+channel in1,25-dihydroxyvitamin D3-responsive epithelia[J]. J. Biol. Chem.1999,274:8375-8378.
    [55]Slepchenko B. M., Bronner F. Modeling of transcellular Ca transport in rat duodenum pointsto coexistence of two mechanisms of apical entry[J]. Am. J. Physiol. Cell Physiol.,2001,281: C270-C281.
    [56]Blaustein M. P, Juhaszova M., Golovina V. A. et al. Na/Ca exchanger and PMCA localizationin neurons and astrocytes: functional implications[J]. Ann. NY Acad Sci.,2002,976:356-366.
    [57]Bronner F. Recent developments in intestinal calcium absorption[J]. Nutrition Reviews,2008,67(2):109-113.
    [58]Bouillon R., Van Cromphaut S., Carmeliet G. Intestinal calcium absorption: molecular vitaminD mediated mechanisms[J].2003, J. Cell Biochem.88:332-339.
    [59]Darwish H. M., Krisinger J., Strom M., et al. Molecular cloning of the cDNA andchromosomal gene for vitamin D-dependent calcium-binding protein of rat intestine[J]. Proc.Natl. Acad. Sci. USA,1987,84:6108-6111.
    [60]Bindels R. J., Hartog A., Timmermans J., et al. Active Ca2+transport in primary cultures ofrabbit kidney CCD: stimulation by1,25-dihydroxyvitamin D3and PTH [J]. Am. J. Physiol.Renal Fluid Electrolyte Physiol.1991,261: F799-F807.
    [61]Greger R., Lang F., Oberleithner H. Distal site of calcium reabsorption in the rat nephron [J].Pflugers Arch.,1978,374:153-157.
    [62]Hoff A. O., Catala-Lehnen P., Thomas P. M., et al. Increased bone mass is an unexpectedphenotype associated with deletion of the calcitonin gene[J]. J. Clin. Invest,2002,110:1849-1857.
    [63]Carney S. L., Thompson L. Chronic calcitonin administration and renal calcium transport inthe rat[J]. Clin. Exp. Pharmacol. Physiol.,1998,25:236-239.
    [64]Hofer A. M., Brown E. M. Extracellular calcium sensing and signalling[J]. Nat. Rev. Mol.Cell Biol.2003,4:530-538.
    [65]Ba J., Brown D., Friedman P. A. Calcium-sensing receptor regulation of PTH-inhibitableproximal tubule phosphate transport [J]. Am. J. Physiol. Renal Physiol.,2003,285:F1233-F1243.
    [66]Kumar V., Prasad R. Thyroid hormones stimulate calcium transport systems in rat intestine[J].Biochim. Biophys. Acta.2003,1639:185-194.
    [67]Young M. M., Nordin B. E. Calcium metabolism and the menopause[J]. Proc. R. Soc. Med.1967,60:1137-1138.
    [68]Nordin B., Need A., Morris H. A., et al. Evidence for a renal calcium leak in postmenopausalwomen [J]. J. Clin. Endocrinol. Metab.1991,72:401-407.
    [69]Wagner G. F, Dimattia G. E, Davie J. R, et al. Molecular cloning and cDNA sequence analysisof coho salmon stanniocalcin[J]. Mol. Cell Endocrinol.1992,90:7-15.
    [70]Wagner G. F, Guiraudon C. C, Milliken C., et al. Immunological and biological evidence for astanniocalcin-like hormone in human kidney [J]. Proc. Natl. Acad. Sci. USA.,1995,92:1871-1875.
    [71]Hoenderop J. G., van der Kemp A. W., Hartog A., et al. The epithelial calcium channel, ECaC,is activated by hyperpolarization and regulated by cytosolic calcium[J]. Biochem. Biophys.Res. Commun.,1999,261:488-492.
    [72]Peng J. B., Chen X. Z., Berger U.V., et al. Hediger MA. A rat kidney-specific calciumtransporter in the distal nephron[J]. J. Biol. Chem.,2000,275:28186-8194.
    [73]Kevin C. Prebiotics and calcium bioavailability[J]. Curr. Issues Intest. Microbiol.,2003,4:21-32.
    [74]Schuette S. A., Zemel M. B., Linkswiler H. M. Studies on the mechanism of protein-inducedhypercalciuria in older men and women[J]. J. Nutr.,1980,110:305-310.
    [75]Linkswiler H. M., Zemel M. B., Hegsted M., et al. Proteininduced hypercalciuria[J]. Fed.Proc.,1981,40:2429-2254.
    [76]Mareen S., Chu J-Y., Kaufman N. A., et al. The calciuretic effect of dietary protein[J]. Am. J.Clin. Nutr.,1974,27:584-588.
    [77]Anand C. R, Linkswiler H. M. Effect of protein intake on calcium balance of young mengiven500mg calcium daily[J]. J. Nutr.,1974,104:695-676.
    [78]Hegsted M., Linkswiler H. M. Long-term effects of level of protein intake on calciummetabolism in young adult women[J]. J. Nutr.,1981,111:244-249.
    [79]Kerstetter J. E., O’Brien K. O., Insogna K. L. Dietary protein affects intestinal calciumabsorption [J]. Am. J. Clin. Nutr.,1998,68:859-865.
    [80]Goulding A. Effects of varying dietary salt intake on the fasting urinary excretion of sodium,calcium and hydroxyproline in young women[J]. NZ. Med. J.,1983,96:853-860.
    [81]Sabto J, Powell M. J, Breidahl M. J, et al. Influence of urinary sodium on calcium excretion innormal individuals[J]. Med. J. Aust.,1984,140:354-360.
    [82]Nordin B. E. C, Polley K. J. Metabolic consequences of the menopause. A cross-sectional,longitudinal, and-intervention study on557normal ostmenonausal women[J]. Calcif. TissueInt.,1987,41: Sl-S9.
    [83]Nordin B. E. C, Need A., Morris H. A., et al. The nature and significance of the relationbetween urine sodium and urine calcium in women[J]. J. Nutr.,1993,123:1615-1623.
    [84]Perez A. V., Picotto G., Carpentieri A. R. Minireview on regulation of intestinal calciumabsorption[J]. Digestion,2008,77:22-34.
    [85]Guéguen L, Pointillart A. The bioavailability of dietary calcium[J]. J. Am. Coll. Nutr.,2000,19(suppl):119S-136S.
    [86]Harrington M. E., Flynn A., Cashman K. D. Effects of dietary fibre extracts on calciumabsorption in the rat[J]. Food Chem.,2001,73:263-269.
    [87]Heaney R. P., Weaver C. M., Fitzsimmons M. C. Soybean phytate content: effect on calciumabsorption[J]. Am. J. Clin. Nutr.,1991,53:745-747.
    [88]Weaver C. M., Heaney R. P., Teegarden D., et al. Wheat bran abolishes the inverserelationship between calcium laod size and absorption fraction in women [J]. J. Nutr.,1996,126:303-307.
    [89]O’Brein K. O., Allen L. H., Quatromoni P., et al. High fiber diets slow bone turnover in youngmen but have no effect on efficiency of intestinal calcium absorption [J]. J. Nutr.,1993,123:2122-2128.
    [90]Liu J., Bollinger D. W., Ledoux D. R., et al. Effects of dietary calcium:phosphorus ratios onapparent absorption of calcium and phosphorus in the small intestine, cecum and colon ofpigs[J]. J.Anim. Sci.,2000,78:106-109.
    [91]Cerklewski F. L. Calcium fortification of food can add unneeded dietary phosphorus[J]. J.Food Comp. Anal.,2005,18:595-598.
    [92]Mellander O. The physiological importance of the caseinin phosphopeptide calcium salts Ⅱ.Peroral calcium dosage of infants. Some aspect of the pathogenesis of rickets [J]. ActaSocietatis Botanicorum Poloniae,1950,55:247-255.
    [93]Mykkanen H. M., Wasserman R. H. Enhanced absorption of calcium by caseinphosphopeptides in rachitic and normal chicks[J]. Journal of Nutrition,1980,10:2141-2148.
    [94]Sato R., Noguchi T., Naito H. Casein phosphopeptide (CPP) enhances calcium absorptionfrom the ligated segment of rat small intestine [J]. Journal of nutritional science andvitaminology,1986,32:67-76.
    [95]Matsui T., Yano H., Awano T., et al. The influences of casein phosphopeptides on metabolismof ectopic bone induced by decalcified bone matrix implantation in rats [J]. Journal ofNutritional Science and Vitaminology,1994,40(2):137.
    [96]Tsuchita H., Goto T., Shimizu T., et al. Dietary casein phosphopeptides prevent bone loss inaged ovariectomized rats. J. Nutr.,1996,126:86-93.
    [97]Choi I., Jung C., Choi H. Effectiveness of phosvitin peptides on enhancing bioavailability ofcalcium and its accumulation in bones[J]. Food Chem.,2005,93:577-583.
    [98]Ishikawa S. I., Tamaki S., Arihara K., et al. Egg yolk protein and egg yolk phosvitin inhibitcalcium, magnesium, and iron absorptions in rats. J. Food Sci.,2007,72(6), S412-S419.
    [99]Jung W. K., Lee B. J., Kim S. K. Fish-bone peptide increases calcium solubility andbioavailability in ovariectomised rats [J]. British Journal of Nurtrition,2006,95:124-128.
    [100]Sato R., Shindo M., Gunshin H., et al. Characterization of phosphopeptide derived frombovine β-casein: an inhibitor to intra-intestinal precipitation of calcium phosphate. Acta Bioch.Bioph. Sin.,1991,1077:413-415.
    [101]West D. W. Structure and function of the phosphorylated residues of casein[J]. Dairy Res.,1986,53:333–352.
    [102]Lee Y. S., Noguchi T., Natio H. Intestinal absorption of calcium in rats given diets containingcasein or amino acid mixture: the role of casein phosphopeptides[J]. British J. Nutr.,1983,49:67-76.
    [103]李勇,蔡木易.肽营养学[M].北京:北京大学医学出版社,2007.
    [104]Kitamura T, Brauneis U, Gatmaitan Z, e al. Extra-cellular ATP, intracellular calcium andcanalicular contraction in rat hepatocyte doublets [J]. Hepatology,1991,14:640-647.
    [105]Ferraretto A, Gravaghi C, Fiorilli A, et al. Casein-derived bioactive phosphopeptides: role ofphosphorylation and primary structure in promoting calcium uptake by HT-29tumor cells[J].FEBS Letter,2003,551:92-98.
    [106]Ferraretto A, Signorile A, Gravaghi C, et al. Casein phosphopeptides influence calcium uptakeby cultured human intestinal HT-29tumor cells [J]. J. Nutr.,2001,131:1655-1661.
    [107]韩樱,何慧,赵宁宁等.蛋清肽-钙配合物体内促钙吸收作用研究[J].食品科学,2012,33(11):262-265.
    [108]彭芳辰,高虹.合理补钙与常用钙制剂[J].山西医药杂志,2003,32(43):358-360.
    [109]刘绍军,刘丽娜.从钙源角度探讨如何选择钙制剂[J].中国医药导报,2011,8(17):11-12.
    [110]菅凌燕,何晓静,肇丽梅,等.复方氨基酸螯合钙的人体吸收及其生物等效性[J].中国医院药学杂志,2009,29(12):983-986.
    [111]王俊,程薇,文莉,等.复合氨基酸螯合钙对大鼠生物利用率的研究[J].湖北农业科学,2008,4(12):1492-1494.
    [112]Ellegard K. H., Gammelgard-Larsen C., Sorensen E. S., et al. Process scale chromatographicisolation, characterization and identification of tryptic bioactive casein phosphopeptides[J].International dairy Journal,1999,9:639-652.
    [113]Adamson N. J., Reynolds E. C. Characterization of tryptic casein phosphopeptides preparedunder industrially relevant conditions[J]. Biotechnology and Bioengineering,1995,45(3):196-204.
    [114]Juillerat M. A., Baechler R., Berrocal R., et al. Tryptic phosphopeptides from whole casein I.Preparation and analysis by fast protein liquid chromatography[J]. J. Dairy Res.,1989,56:603-611.
    [115]Adamson N. J., Reynolds E. C. Characterization of casein phosphopeptides prepared usingalcalase: determination of enzyme specificity [J]. Enzyme and Microbial Technology,1996,19:202-207.
    [116]赵一明,王璋,许时婴,等.Alcalase水解酪蛋白制备磷酸肽和非磷酸肽的研究[J].食品工业科技,2007,28(12):100-103.
    [117]谷珅睿,陈合.固定化胰蛋白酶及其用于制备酪蛋白磷酸肽(CPPs)的实验研究[J].陕西科技大学学报.2003,21(4):59-62.
    [118]杨曜中,欧伶,葛轶群,等.酪蛋白磷酸肽的制备及性质[J].华东理工大学学报,1999,25(6):574-577.
    [119]Reynolds E. C., Riley P. F., Adamson N. J. A select ive precipitation purification procedure formultiple phosphoseryl-containing peptides and methods for their identification [J]. AnaliticalBiochemistry,1994,217:277-284.
    [120]Groepfert A., Meisel H. Semi-preparative isolation of phosphopeptides derived from bovinecasein and dephosphorylation of casein phosphopeptides[J]. Nahrung,1996,40:245-248.
    [121]Jung W. K., Park P. J., Byun H. G., et al. Preparation of hoki (Johnius belengerii) boneoligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase[J]. Food Chem.,2005,91:333-340.
    [122]Chakraborty R., Bepari S., Banerjee A. Application of calcined waste fish (Labeo rohita) scaleas low-cost heterogeneous catalyst for biodiesel synthesis [J]. Bioresour. Technol.,2011,102:3610-3618.
    [123]Duan R., Zhang J., Du X. Properties of collagen from skin, scale and bone of carp (Cyprinuscarpio)[J]. Food Chem.,2009,112:702-706.
    [124]Kongsri S., Janpradit K., Buapa K. Nanocrystalline hydroxyapatite from fish scale waste:Preparetion, characterization and application for selenium adsorption in aqueous solution [J].Chem. Eng. J.,2013,215-216:522-532.
    [125]Mori H., Tone Y., Shimizu K. Studies on fish scale collagen of Pacific saury (Cololabis saira)[J]. Mat. Sci. Eng. C,2013,33:174-181.
    [126]Gomez-Gillen M. C., Turnay J., Fernandez-Diaz M. D., et al. Structural and physicalproperties of gelatin extracted from different marine species: A comparative study [J]. FoodHydrocolloids,2002,16:25–34.
    [127]Kim S. K., Byun H. G., Lee E. H. Optimum extraction conditions of gelatin from fish skinsand its physical properties [J]. J. Korean Indus. Eng. Chem.,1994,5:547–559.
    [128]Jeon Y. J., Kim S. K. Continuous production of chitooligosaccharides using a dual reactorsystem [J]. Process Biochem.,2000,35:623–632.
    [129]Inoue S., Kaneda-Hayashi T., Sugiyama H., et al. Studies on Phosphoproteins from Fish Eggs:Isolation and Characterization of a Phosphoprotein from the Eggs of Pacific Herring [J]. J.Biochem.,1971,69(6):1003-1011.
    [130]Moore S., Stein W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds[J]. Journal of Biological Chemistry,1954,211(2):907-913.
    [131]Lowry, O. H., Rosebrough, A. L., Farr, A. L., et al. Protein measurement with the Folin-phenolreagent [J]. Journal of Biological Chemistry,1951,193:165–275.
    [132]Chen P. S., Toribara T. Y., Warner H. Microdetermination of phosphorus [J]. Anal. Chem.,1956,28:1756-1758.
    [133]孙为银.配位化学[M].北京:化学工业出版社,2004.
    [134]Mecham D. K., Olcott H. S. Phosvitin, the principal phosphoprotein of egg yolk [J]. J. Am.Chem. Soc.,1949,71:3670-3679.
    [135]Goulas A., Triplett E. L., Taborsky G. Oligophosphopeptides of varied structural complexityderived from the egg phosphoprotein, phosvitin [J]. J. Protein Chem.,1996,15:1-9.
    [136]Catherine G. D., AiKon M., A1exandre D. G. Hen egg and fish egg phosvitins: compositionand iron binding properties [J]. Eur. Food Res. Technol.2002,214:460-464.
    [137]胡志和,庞广昌,闫亚丽,等. CPPs阻钙沉淀活性与酪蛋白水解度之间关系的研究[J].食品科学,2001,22(1):18-22.
    [138]陈晨,迟玉杰,赵明阳,等.蛋清蛋白肽体外血管紧张素转化酶抑制活性及其消化稳定性[J].营养学报,2012,34(3):274-277.
    [139]杨燊,邓尚贵,秦小明.低值鱼蛋白多肽-钙螯合物的制备和抗氧化、抗菌活性研究[J].食品科学,2008,29(1):202-206.
    [140]马歌丽,何红,王俊伟.酪蛋白磷酸肽提取工艺[J].食品研究与开发,2009,30(9):122-125.
    [141]吴玥霖,王俊.鱼骨粉制备复合氨基酸螯合钙工艺研究[J].食品与发酵科技,2008,45(1):51-54.
    [142]丁利君,危雪如.罗非鱼蛋白酶解的多肽与钙复合物的制备及其抑菌分析[J].食品科学,2009,30(20):198-202.
    [143]夏松养,谢超,霍建聪,等.鱼蛋白酶水解物的钙螯合修饰及其功能活性[J].水产学报,2008,32(3):471-477.
    [144]卜尔红,刘成国,罗玲泉.碱性蛋白酶在酪蛋白磷酸肽生产中的研究[J].乳业科学与技术,2008,3:143-145.
    [145]Castellani O., Guerin-Dubiard C., David-Brand E., et al. Influence of physicochemicalconditions and technological treatments on the iron binding capacity of egg yolk phosvitin[J].Food Chem.,2004,85:569-577.
    [146]王若敏,陈杰. pH值和热处理对大豆肽稳定性的影响[J].大豆科学,2009,28(6):1059-1060.
    [147]Straub D. A., Ranch C. Calcium supplement in clinical practice: A review of forms,doses, andindications[J]. Nutr. Clin. Practice,2007,22:286-296.
    [148]Martini L., Wood R. J. Relative bioavailability of calcium-rich dietary sources in the elderly[J]. Am. J. Clin. Nutr.,2002,76(6):1345-1350.
    [149]Hanzlik R. P., Fowler S., Cand Fisher D. H. Relative bioavailability of calcium from calciumformate, calcium citrate and calcium carbonate[J]. The Journal of Pharmacology andExperimental Therapeutics,2005,313(3):1217-1222.
    [150]Anonymous. Anonymous report of the American Institute of Nutrition ad hoc committee onstandards for nutritional studies. J. Nutr.,1977,107:1340–1348.
    [151]Gao H., Chen H., Chen W., et al. Effect of nanometer pearl powder on calcium absorption andutilization in rats. Food Chem.,2008,109(3):493-498.
    [152]何丽,薛安娜,付萍.多种钙剂不同钙含量对大鼠钙吸收及骨密度的影响[J].卫生研究,2002,31(4):258-260.
    [153]吕莹.大豆肽结合钙的机制及其促进机体钙吸收和增强骨质量的生物学效应.北京:中国农业大学,2010.Bronner F. Recent developments in intestinal calcium absorption[J]. NutritionReviews,2008,67(2):109-113.
    [154]王灿楠,刘德成,庄明等.钙吸收利用与钙摄入量关系的动物实验研究[J].卫生研究,2002,31(6):439-441.
    [155]Kenny M. A., McCoy H. Adding zinc reduces bone strength of rats fed a low-calcium diet [J].Biological Trace Element Research,1997,58:35-41.
    [156]Kaastad T. S., Reiker O., Madsen J. E., et al. Effects of clodronate on cortical and trabecularbone in ovariectomized rats on a low calcium diet [J]. Calcified Tissue International,1997,61(2):158-164.
    [157]洪燕,程义勇,张月红,等.钙缺乏对大鼠骨骼发育的影响及其机制探讨[J].卫生研究,2002,31(1):41-43.
    [158]Pihlanto-Leppala A., Koskinen P., Piilola K, et al. Angiotensin I-converting enzyme inhibitoryproperties of whey protein digests: concentration and characterizationof active peptides [J].Journal of Dairy Research,2000,67(1):53-64.
    [159]Hoang Q. Q., Sicheri F., Howard A. J., et al. Bone recognition mechanism of porcineosteocalcin from crystal structure. Nature,2003,425(30):977-980.
    [160]Dohi Y., Iwami K., Yonemasu K., et al. Two proteins with gamma-carboxyglutamic acid infrog bone: Isolation and comparative characterization. Acta Bioch. Bioph. Sin.,1987,915:413-415.
    [161]Nishmoto S. K., Waite J. H., Nishmoto M., et al. Strcture, activity, and distribution of fishosteocalcin. J. Biol. Chem.,2003,278(14):11843-11848.
    [162]Moncrief N. D., Kretsinger R. H., Goodman M. Evolution of EF-Hand Calcium-ModulatedProteins. I. Relationships Based on Amino Acid Sequences[J]. Journal of Molecular Evolution,1990,30:522-562
    [163]Zhou Y., Yang W., Kirberger M., et al. Prediction of EF-Hand Calcium-Binding Proteins andAnalysis of Bacterial EF-Hand Proteins[J]. PROTEINS: Structure, Function, andBioinformatics,2006,65:643-655.
    [164]Grobler JA, Essen LO, Williams R L, et al. C2domain conformational changes inphospholipase C-δ1[J]. Nature Structural Biology,1996,3:788-795.
    [165]Essen L. O., Perisic O., Cheung R., et al. Crystal structure of a mammalian phosphoinositidespecific phospholipase Cδ[J]. Nature,1996,380:595-602.
    [166]刘振海,李春鸿,张建国.译.仪器分析导论(第二版)[M].北京:化学工业出版社,2005.
    [167]庄玉明,王颖,赵根锁,等.磷酸酯的红外光谱研究[J].光谱学与光谱分析.2010,30(11):157-158.
    [168]Dragicevic-Curic N., Grafe S., Gitter B., et al. Surface charged temoporfin-loaded flexiblevesicles: In vitro skin penetration studies and stability[J]. Inter. J. of Pharma.,2010,384(1-2):100-108.
    [169]Wu H. H., Liu Z. Y., Dong S. Y., et al. Formation of ferric oxyhydroxide nanoparticlesmediated by peptides in anchovy (Engraulis japonicus) muscle protein hydrolysate[J]. J. Agri.Food Chem.,2013,140:390-399.
    [170]Lefèvre T., Subirade M. Structural and interaction properties of blactoglobulin as studied byFTIR spectroscopy[J]. Inter. J. Food Sci. Technol.,1999,34:419-428.
    [171]Boye J. I., Ma C. Y., Ismail A., et al. Effects of physicochemical factors on the secondarystructure of β-lactoglobulin[J]. Journal of Dairy Research,1996,63:97-109.
    [172]Byler D. M., Susi, H. Examination of the secondary structure of proteins by deconvolutedFTIR spectra[J]. Biopolymers,1986,25:469-487.
    [173]Bandekar J. Amide modes and protein conformation[J]. Biochimica et Biophysica ActaProtein Structure and Molecular Enzymology,1992,1120(2):123-143.
    [174]Liu G., Li J., Shi K., et al. Composition, secondary structure and self-assembly of oat proteinisolate[J]. Journal of Agricultural and Food Chemistry,2009,57:4552-4558.
    [175]Arrondo J. L. R., Muga A., Castresana J., et al. Quantitative studies of the structure of proteinsin solution by Fourier-transform infrared spectroscopy[J]. Progress in Biophysics andMolecular Biology,1993,159:23-56.
    [176]Wallace B. A., Janes R. W. Circular dichroism and synchrotron radiation circular dichroismspectroscopy: Tools for drug discovery[J]. Biochem. Soci. Transactions,2003,31:631-633.
    [177]Correal D. H. A., Ramos C. H. I. The use of circular dichroism spectroscopy to study proteinfolding, form and function[J]. Afr. J. Biochem. Res.2009,3:164-173
    [178]Wang L. J., Guan X. Y., Tang R. K., et al. Phosphorylation of osteopontin is required forinhibition of calcium oxalate crystallation [J]. J. Phys. Chem. B,2008,112:9151-9157.
    [179]Allaoua A., Wang, Z. Effect of succinylation on the physicochemical properties of soy proteinhydrolysate[J]. Food Research International,2001,34:507-514.
    [180]Schmidt D. G., Both P., Visser S., et al. Studies on the precipitation of calcium phosphate II.Experiments in the pH range7.3to5.6at25and50℃in thepresence of additives.[J]Netherlands Milk and Dairy Journal,1987,41:121-136.
    [181]Holt C. The milk salts: Their secretion, concentrations and physical chemistry. In P. F. Fox,Developments in dairy chemistry3: Lactose and minor constituents. London: Elsevier AppliedScience,1985.
    [182]Ellegard K. H., Gammelgard-Larsen C., Sorensen E. S., et al. Process scale chromatographicisolation, characterization and identification of tryptic bioactive casein phosphopeptides[J].International dairy Journal,1999,9:639-652.
    [183]Li S. Y., Phosphorylated osteopontin peptides inhibit crystallation by resisting the aggregationof calcium phosphate nanoparticles [J]. Cryst. Eng. Comm.,2012,14:8037-8043.
    [184]Yang X. D., Qin Y. L., et al., How amelogenin orchestrates the organization of hierarchicalenlongated microstructures of apatite[J]. J. Phys. Chem. B,2010,114:2293-2300.
    [185]Wang L. J., Nancollas G. Pathways to biomineralization and biodemineralization of calciumphosphates: the thermodynamic and kinetic controls[J]. Dalton Trans.,2009:2665-2672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700