用户名: 密码: 验证码:
AMP激活的蛋白激酶在COPD大鼠骨骼肌线粒体生物合成调控中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠COPD模型建立及干预
     背景和目的:
     慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)是一种以气流受限为特征的慢性气道疾病,同时也是一种涉及多器官受损的全身疾病。近年来国内外研究发现,部分运动受限的COPD患者表现为明显的骨骼肌功能障碍。对中、重度COPD患者,骨骼肌的消耗成为预计患者病死率的重要指标之一。
     COPD的骨骼肌功能障碍形成机制复杂,系统性炎症在COPD患者中的存在已被广泛接受,有人认为炎症是COPD患者骨骼肌功能障碍的始动因素。其中肿瘤坏死因子-α(Tumor necrosis factor-a, TNF-a)作为一种重要炎症介质已被证明参与了COPD的炎症过程。
     线粒体是骨骼肌运动所需能量的生成场所,也是活性氧(ROS)产生的主要场所,同时也处于细胞凋亡的中心环节。因此,线粒体功能障碍在COPD的骨骼肌功能障碍中越来越受到重视。已有研究发现,中重度COPD患者出现运动性骨骼肌萎缩、骨骼肌线粒体密度减少及结构异常。
     我们拟通过建立COPD大鼠模型,观察COPD模型大鼠骨骼肌形态学变化及电镜下骨骼肌纤维与线粒体变化,同时给予白藜芦醇及AMP激活的蛋白激酶(Adenosine5'-monophosphate (AMP)-activated protein kinase, AMPK)激动剂干预。评估外周血及骨骼肌TNF-a水平与骨骼肌与线粒体的结构形态改变的关系,为炎症在COPD骨骼肌功能障碍中的损伤作用机制提供实验依据。
     方法:
     1.COPD大鼠模型制备用两次气管内注入脂多糖(LPS)和反复烟熏的方法制作COPD大鼠模型。
     2.分组与处理雄性SD大鼠随机分为对照组、COPD模型组、AICAR (AMPK特异性激动剂)组和白藜芦醇组,对照组和模型组分别给予生理盐水、AICAR、白藜芦醇。
     3.肺功能采用无束缚小动物肺功能仪(Buxco, USA)测定大鼠肺功能变化。
     4.肺和骨骼肌病理采用HE、Masson染色光学显微镜下观察各组肺脏和骨骼肌的病理变化。及电镜观察骨骼肌与线粒体的超微结构改变。
     结果:
     1.各实验组大鼠行为变化模型组及各治疗组大鼠早期出现躁动不安、咳嗽、气急、、进食进水量逐渐减少等表现。正常对照组则始终未见上述表现。各组体重改变差异无显著性。
     2.各实验组大鼠肺功能变化与对照组比较,模型组大鼠PEF明显降低(P<0.01),VT明显降低(P<0.05),EF50明显降低(P<0.05)。AICAR和白藜芦醇组PEF、均较模型组明显升高(P<0.05,P<0.01)。AICAR和白藜芦醇组VT均较模型组明显升高、EF50(P<0.05)。AICAR和白藜芦醇组EF50均较模型组明显升高(P<0.05)AICAR和白藜芦醇组间比较差异无统计学意义(P>0.05)。
     3.大鼠肺组织病理变化COPD模型组可见广泛肺泡壁增厚、破坏,肺泡破裂、融合,小气道纤毛脱落,气腔狭窄,小血管壁增厚。AICAR组肺组织可见中量炎症细胞浸润,肺泡壁破坏、肺泡融合,肺泡腔增大;白藜芦醇组肺组织可见中量炎症细胞浸润,肺泡壁破坏、小气道纤毛脱落,气腔狭窄。
     4.骨骼肌细胞形态学观察COPD模型组大鼠骨骼肌细胞轻度萎缩,胶原纤维沉积较对照组明显增多。白藜芦醇和AICAR组大鼠组骨骼肌细胞较COPD模型组大鼠胶原纤维沉积减少。透射电镜下观察显示:模型组大鼠的小腿三头肌线粒体减少,出现肿胀,水性变及空泡化,内膜、嵴破坏溶解改变;白藜芦醇组及AICAR组大鼠的小腿三头肌线粒体结构尚完整,肌丝完整,肌原纤维排列整齐,分布正常。
     结论:
     1.两次气管内注入脂多糖(LPS)和反复烟熏的方法可成功制作COPD大鼠模型。
     2. COPD模型大鼠骨骼肌存在骨骼肌炎症及线粒体损伤。
     3. AICAR及白藜芦醇可以改善COPD模型大鼠骨骼肌炎症反应,减轻线粒体结构损伤。
     第二部分AMPK对COPD大鼠骨骼肌线粒体合成调控中的作用及白藜芦醇作用机制探讨
     背景和目的:
     近年来国内外研究发现,部分运动受限的COPD患者表现为明显的骨骼肌功能障碍。COPD的骨骼肌功能障碍形成机制复杂,系统性炎症在COPD患者中的存在已被广泛接受,TNF-α作为一种重要炎症介质已被证明参与了COPD的炎症过程。
     AMPK作为真核生物细胞中一个重要的蛋白激酶,参与细胞的能量代谢过程,其通过调控代谢相关酶起作用。国内外研究发现AMPK的下游靶蛋白参与能量代谢调节有关。但是AMPK是否参与炎症介导的COPD骨骼肌线粒体生物合成障碍目前一无所知。
     本研究拟通过观察大鼠外周血与骨骼肌TNF-α水平、骨骼肌AMPK表达、PGC-1α及线粒体生物合成相关基因表达的变化,进而探讨炎症状态下COPD模型大鼠骨骼肌线粒体合成的的影响,同时给予AMPK激动剂及白藜芦醇干预后观察PGC-1α变化及对骨骼肌线粒体生物合成的影响,为治疗COPD骨骼肌障碍提供新的理论基础。
     方法:
     1. COPD大鼠模型制备与分组与处理同第一部分。
     2.取材与处理采用酶联免疫吸附(ELISA)法测定血清TNF-a浓度;小腿三头肌留取组织匀浆,取上清液采用ELISA法检测TNF-a浓度;采用荧光定量PCR分析检测AMPK、NRF-1、PGC-1α、Tfam、COX ⅣmRNA表达;采用Western blotting检测AMPK, TNF-α PGC-1α Tfam、COX Ⅳ蛋白表达。
     结果:
     1.不同组别血清TNF-α的水平与对照组比较,模型组大鼠血清TNF-a明显升高,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组均较模型组明显降低,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组间无显著统计学差异,组间比较差异无统计学意义(P>0.05)。
     2.不同组别骨骼肌TNF-α的水平与对照组比较,模型组大鼠骨骼肌TNFa明显升高,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组均较模型组明显降低,组间比较差异具有统计学意义(P<0.01)。AICAR组骨骼肌TNFa明显低于白藜芦醇组,组间比较差异无统计学意义(P<0.05)。
     3.不同组别骨骼肌AMPK mRNA及蛋白表达的变化与对照组比较,模型组大鼠骨骼肌AMPK mRNA相对含量明显降低,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(组间比较差异具有统计学意义P<0.01)。AICAR组AMPK mRNA相对含量明显高于白藜芦醇组,组间比较差异无统计学意义(P<0.01)。与对照组比较,模型组大鼠骨骼肌AMPK蛋白相对含量明显降低,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高,组间比较差异具有统计学意义(P<0.01)。白藜芦醇组AMPK蛋白相对含量明显低于AICAR组,组间比较差异具有统计学意义(P<0.05)。
     4.不同组别骨骼肌PGC-1a mRNA及蛋白表达的变化与对照组比较,模型组大鼠骨骼肌PGC-1amRNA(?)目对含量明显降低,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高,组间比较差异具有统计学意义(P<0.05)。AICAR组与白藜芦醇组间无明显统计学差异,组间比较差异无统计学意义(P>0.05)。与对照组比较,模型组大鼠骨骼肌PGCla蛋白相对含量明显降低,组间比较差异具有统计学意义(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高,组间比较差异具有统计学意义(P<0.01)。白藜芦醇组PGC1a蛋白相对含量明显高于AICAR组,组间比较差异具有统计学意义(P<0.01)。
     5.不同组别骨骼肌NRF-1mRNA及蛋白表达的变化与对照组比较,模型组大鼠骨骼肌NRF1mRNA明显降低(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(P<0.05)。AICAR组与白藜芦醇组间无明显统计学差异(P>0.05)。与对照组比较,模型组大鼠骨骼肌NRF1蛋白明显降低(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(P<0.01)。白藜芦醇组NRF1蛋白明显高于AICAR组(P<0.01)。
     6.不同组别骨骼肌Tfam mRNA及蛋白表达的变化与对照组比较,模型组大鼠骨骼肌Tfam mRNA明显降低(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(P<0.05,P<0.01)。AICAR组与白藜芦醇组间无明显统计学差异(P>0.05)。与对照组比较,模型组大鼠骨骼肌Tfam蛋白明显降低(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(P<0.01)。白藜芦醇组Tfam蛋白明显高于AICAR组(P<0.01)。7.不同组别骨骼肌COX Ⅳ mRNA及蛋白表达的变化与对照组比较,模型组大鼠骨骼肌COXIVmRNA明显降低(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(P<0.05)。AICAR组与白藜芦醇组间无明显统计学差异(P>0.05)。与对照组比较,模型组大鼠骨骼肌COX Ⅳ蛋白明显降低(P<0.01)。AICAR和白藜芦醇组均较模型组明显升高(P<0.01)。白藜芦醇组COX Ⅳ蛋白明显高于AICAR组(P<0.01)。
     8.相关性分析骨骼肌TNF-a和AMPK呈负相关关系(R=-0.454,P<0.01)。骨骼肌PGC-1a mRNA和AMPKmRNA呈正相关关系(R=0.278,P<0.05)。骨骼肌TNF-a和PGC-1amRNA呈负相关关系(R=-0.780,P<0.01)。骨骼肌PGC-1a mRNA和NRFmRNA呈正相关关系(R=0.685,P<0.01)。骨骼肌PGC-1a mRNA和Tfam mRNA呈正相关关系(R=0.800,P<0.01)。
     结论:
     1. COPD大鼠骨骼肌存在TNF-α介导的炎症。
     2. COPD大鼠骨骼肌AMPK水平下降,PGC-1α表达下降影响骨骼肌线粒体生物合成。
     3. AMPK激动剂AICAR及白藜芦醇可通过活化AMPK,提高PGC-1α表达水平,改善了COPD运动性骨骼肌线粒体生物合成。
Part one
     Background and objective
     Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation in the airways. Inflammatory responses are responsible for both the persistence of airflow limitation and also, the systemic effect involving multiple organ damage. Multiple studies have revealed recently that skeletal muscle dysfunction contributes in motionlessness in COPD patients, which has emerged as an important predictor for mortality in patients with severe COPD.
     The mechanisms underlying skeletal muscle dysfunction in COPD is complicated. However, the presence of systemic inflammation in COPD patients has been widely accepted, that inflammation potentially initiates skeletal muscle damage in COPD patients. Tumor necrosis factor-a (TNF-a) has been shown as an important inflammatory mediator involved in the inflammatory process of COPD.
     Mitochondria is the site where reactive oxygen species (ROS) and energy required for skeletal muscle movement, as well as the central link in the apoptosis. Therefore, mitochondrial dysfunction has become a major focus in COPD with skeletal muscle dysfunction. A number of studies have reported that moderate to severe COPD patients are with exercise-associated skeletal muscle atrophy, decrease in the density and structural abnormality of skeletal mitochondria.
     We resort to a COPD rat model to analyze the morphological and untrastructural changes (muscle fiber and mitochondria) in this study. Resveratrol or AMPK agonists was administrated with the COPD rat model, then seral and skeletal muscle TNF-a levels and skeletal muscle morphology were analyzed. This study may provide experimental evidences for enlightening the role of inflammatory injury in skeletal muscle dysfunction in COPD.
     Methods
     1. COPD rat model:COPD model was prepared by two doses of intratracheal lipopolysaccharide (LPS) injection and repeatedly smoke exposure.
     2. Grouping:SD rats were randomized into the control group, the COPD model group, AICAR,(AMPK agonist) group and resveratrol group. The control group and model group were given saline, AICAR, Chenopodium quinoa resveratrol.
     3. Lung function:rat lung function was determined by a small animal spirometer (Buxco, USA).
     4. Lung and skeletal muscle pathology:Lung and skeletal muscle slices were prepared and stained by HE and Masson staining.The pathological and ultrastructural changes of the lung and skeletal muscle were observed under a optical microscope and a electron microscope, separately.
     Results
     1The behavioral changes:The model group and the treatment group have shown irritability, cough, shortness of breath, reduced food and water intake early in the experiment. However, such changes have not been observed in the control group. Weight changes was not statistically different among each group.
     2Lung function changes:The PEF, VT and EF50value was significantly lower in the modeling group as compared with the control group (P<0.01, P<0.05and P<0.05, respectively). The PEF, VT and EF50values were significantly higher in the AICAR group and the resveratrol group than that in the model group (P<0.05and P<0.01, respectively). There was no statistically significant difference between the AICAR group and the resveratrol group in PEF, VT and EF50(P>0.05).
     3Pathological changes in the lung:COPD modelling group showed extensive thickening and destruction of alveolar walls, rupture and integration of alveoli, small airway cilia loss, airspace narrowing, as well as small vessel wall thickening. Lungs from the AICAR group showed a moderate amount of inflammatory cell infiltration, destruction and integration of the alveolar septa and alveolar enlargement. Lung tissues from the resveratrol group showed moderate inflammatory infiltration, destruction of the alveolar septa, small airway cilia loss and airspace narrowing.
     4Morphology of skeletal muscle cells:The COPD modelling group showed mild atrophy of skeletal muscle cells, while collagen deposition was significantly more abundant compared with that of the control group. The resveratrol group and the AICAR group showed less reduce collagen fiber deposition among skeletal muscle cells compared with the COPD modelling group. As observed on the transmission electron microscope, the triceps muscle from the modeling group has reduced number of mitochondria, swelling, water-based change and vacuolization, as well as endometrial cristae destruction. However, the triceps muscle from the resveratrol group and the AICAR group remained relatively intact, with preserved mitochondria structure, myofilament integrity and normal distribution of myofibrils.
     Conclusion
     1The COPD rat model could be successfully duplicated by twice intratracheal instillation of lipopolysaccharide (LPS) and repeatedly smoke exposure.
     2Inflammation and mitochondrial damage are prominent in skeletal muscles from the rat COPD model.
     3Both AICAR and resveratrol administration could allievated skeletal muscle inflammation and mitochondrial damage in COPD models.
     Part two
     Background and Objective
     In recent years, significant skeletal muscle dysfunction has been observed in COPD patients with reduced motion capacity. The mechanisms underlying skeletal muscle dysfunction in COPD is sophisticated. However, the presence and role of systemic inflammation has been widely accepted, which is suggested to be the initial factor of skeletal muscle dysfunction in COPD patients. Among all the inflammatory mediators, tumor necrosis factor-a (TNF-a) has been widely accepted as an important mediator involving in the inflammatory process of COPD.
     AMP-activated protein kinase (AMPK) is an important protein kinase in eukaryotic cells. The role of AMPK in cell energy metabolism is largely dependent on regulating the activity of metabolic enzymes. Various studies have revealed that AMPK downstream target proteins are involved in the regulation of energy metabolism. But till now, little is known about the exact role and mechanism of AMPK on the inflammation-mediated dysfunction of mitochondrial biosynthesis within skeletal muscles in COPD.
     This study was to elucidate the impact of TNF-a on mitochondrial biogenesis in skeletal muscle of COPD rats. First, we analyzed the relationships between serum and muscular TNF-a level with genetic expressions of AMPK, PGC-la and mitochondrial biogenesis-associated genes. Next we explored the role of PGC-la on mitochondrial biogenesis via administration of AMPK agonists or resveratrol. The current study might provide rationales for novel treatments against skeletal muscle disorders in patients with COPD.
     Methods
     1. Preparation and randomization of the rat COPD model:the rat COPD model was prepared in a way identical to that referred to in Part One of this thesis. SD rats were randomized as the control group, the COPD model group, the AICAR group,(AMPK agonist) group and the resveratrol group. The control group and model group were treated with saline, while rats in the AICAR group received Chenopodium or resveratrol.
     2. Material processing and detection:The level of TNF-a was detected by enzyme-linked immunosorbent assay (ELISA) with serum samples or supernatants originated from triceps muscle homogenate. The expression of AMPK, NRF-1, PGC-la, Tfam and COX IV mRNA was analyzed by qPCR, while the expression of their protein countparts were measured by Western blot.
     Results
     1Serum TNF-a level:Serum TNF-a level was significantly higher in the COPD model group as compared with the control group (P<0.01). Serum TNF-a levels were significantly lower in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between serum TNF-a level in the AICAR group and the resveratrol group (P>0.05).
     2The TNF-a levels in skeletal muscle:Muscle TNF-a level was significantly elevated in the COPD model group as compared with the control group (P<0.01). Muscle TNF-a levels were significantly lower in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between muscle TNF-a level in the AICAR group and the resveratrol group (P>0.05).
     3AMPK mRNA and protein expression in skeletal muscle:The expression of muscle AMPK mRNA and protein was significantly decreased in the COPD model group as compared with the control group (P<0.01). The expression of muscle AMPK mRNA and protein was significantly higher in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between muscle expression of muscle AMPK mRNA in the AICAR group and the resveratrol group (P>0.05). Muscle expression of AMPK protein was significantly decreased in the resveratrol group as compared with the AICAR group (P<0.05).
     4PGC-la mRNA and protein expression in skeletal muscle:The expression of muscle PGC-la mRNA and protein was significantly decreased in the COPD model group as compared with the control group (P<0.01). The expression of muscle PGC-la mRNA and protein was significantly higher in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between muscle expression of muscle PGC-la mRNA in the AICAR group and the resveratrol group (P>0.05). Muscle expression of PGC-la protein was significantly decreased in the resveratrol group as compared with the AICAR group (P<0.05).
     5NRF-1mRNA and protein expression in skeletal muscle:The expression of muscle NRF-1mRNA and protein was significantly decreased in the COPD model group as compared with the control group (P<0.01). The expression of muscle NRF-1mRNA and protein was significantly higher in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between muscle expression of muscle NRF-1mRNA in the AICAR group and the resveratrol group (P>0.05). Muscle expression of NRF-1protein was significantly decreased in the resveratrol group as compared with the AICAR group (P<0.05).
     6Tfam mRNA and protein expression in skeletal muscle:The expression of muscle Tfam mRNA and protein was significantly decreased in the COPD model group as compared with the control group (.P<0.01). The expression of muscle Tfam mRNA and protein was significantly higher in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between muscle expression of muscle Tfam mRNA in the AICAR group and the resveratrol group (P>0.05). Muscle expression of Tfam protein was significantly increased in the resveratrol group as compared with the AICAR group (P<0.05).
     7COX IV mRNA and protein expression in skeletal muscle:The expression of muscle COX IV mRNA and protein was significantly decreased in the COPD model group as compared with the control group (P<0.01). The expression of muscle COX IV mRNA and protein was significantly higher in the AICAR group and the resveratrol group than that of the COPD model group (P<0.01in both situations). There was no statistically significant difference between muscle expression of muscle COX IV mRNA in the AICAR group and the resveratrol group (P>0.05). Muscle expression of COX Ⅳ protein was significantly decreased in the resveratrol group as compared with the AICAR group (P<0.05).
     8Analysis of Correlations:The muscle TNF-a and AMPK level was negatively correlated (R=-0.454, P<0.01).Positive correlations were observed between the skeletal muscle PGC-1a mRNA and AMPKmRNA (R=0.278, P<0.05), skeletal muscle TNF-a and PGC-1a mRNA was negatively correlated (R=-0.780, P<0.01), skeletal muscle PGC-1a mRNA and NRF mRNA was positive correlations (R=0.685,P<0.01), and between skeletal muscle PGC-1a mRNA and Tfam mRNA was positive correlations (R=0.800, P<0.01).
     Conclusion
     1TNF-α mediated inflammation of skeletal muscle of COPD.
     2The down-regulation of AMPK and PGC-1α are associated with the breakdown of mitochondrial biogenesis in skeletal muscle cells from the rat model of COPD.
     3AMPK agonists and resveratrol are able to improve skeletal muscle mitochondrial biogenesis in COPD rats by activating the expression of AMPK and PGC-1α.
引文
[1]WHO.int. World Health Statistics; [updated 2008; cited 2012 April 25].
    [2]World Health Organization. Annex Table 2 Deaths by cause, sex and mortality stratum in WHO regions, a estimates for 2002. World Health Report Statistical Annex.2004:120-124.
    [3]Global Initative for Chronic Obstructive Lung Disease Global strategy of the diagnosis, management,and prevention of chronic obstructive pulmonary disease,revised 2011(Online)"The Global Initative for Chronic Obstructive Lung Disease":,Accessed 5 March,2012.
    [4]Saey D, Debigare R, Leblanc P, et al. Contractile leg fatigue after cycle exercise:a factor limiting exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2003;168:425-430.
    [5]Agusti AG, Noguera A, Sauleda J, et al. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J.2003;21:347-360.
    [6]Rabinovich RA, Vilaro J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med.2010;16:123-133.
    [7]Bernard S, LeBlanc P, Whittom F, et al.Peripheral muscle weakness in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med.1998; 158:629-634.
    [8]Man WD, Soliman MG, Nikoletou D, et al. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax.2003;58:665-669.
    [9]Man WD, Hopkinson NS, Harraf F, et al. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease. Thorax.2005;60:718-722.
    [10]Coronell C, Orozco-Levi M, Mendez R, et al. Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J.2004;24:129-136.
    [11]Serres I, Gautier V, Varray A, et al. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest.1998;113:900-905.
    [12]Allaire J, Maltais F, Doyon JF, et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax.2004;59:673-678.
    [13]Swallow EB, Gosker HR, Ward KA, et al. A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol.2007; 103:739-746.
    [14]Mador MJ, Kufel TJ, Pineda L. Quadriceps fatigue after cycle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2000;161:447-453.
    [15]Mador MJ, Bozkanat E, Kufel TJ. Quadriceps fatigue after cycle exercise in patients with COPD compared with healthy control subjects. Chest.2003;123:1104-1111.
    [16]Gosker HR, Hesselink MK, Duimel H, et al. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J.2007;30:73-79.
    [17]Picard M, Godin R, Sinnreich M, et al. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease:disuse or dysfunction? Am J Respir Crit Care Med.2008;178:1040-1047.
    [18]Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J.2003; 17:2299-2301.
    [19]Koves TR, Li P, An J, et al. Peroxisome proliferator-activated receptor-gamma co-activator lalpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem.2005;280:33588-33598.
    [20]Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha):transcriptional coactivator and metabolic regulator. Endocr Rev.2003;24:78-90.
    [21]Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature.2002;418:797-801.
    [22]Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J.2007;30:245-252.
    [23]Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper. Eur Respir J.2004;23:932-946.
    [24]Noguera A, Busquets X, Sauleda J, et al. Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1998; 158:1664-1668.
    [25]Di Francia M, Barbier D, Mege J, et al. Tumor necrosis factor-alpha and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1994;150:1453-1455.
    [26]Montes de Oca M, Tomes SH, De Sanetis J, et al. Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J.2005,26:390-397.
    [27]Rabinovich RA, Figueras M, Ardite E, et al. Increased tumour necrosis factor-alpha plasma levels during moderate-intensity exercise in COPD patients. Eur Respir J.2003;21: 789-794.
    [28]Montes de OM, Torres SH, De SJ, et al. Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J.2005;26:390-397.
    [29]Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci.2004;29:18-24.
    [30]Hardie DG The AMP-activated protein kinase pathway:new players upstream and downstream. J Cell Sci.2004; 117:5479-5487.
    [31]Hallows KR. Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism. Curr Opin Nephrol Hypertens.2005;14:464-471.
    [32]Marquis K, Debigare R, Lacasse Y. et al.Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2002; 166:809-813.
    [33]Slinde F, Gronberg A, Engstrom C-P, et al. Body composition by bioelectrical impedance predicts mortality in chronic obstructive pulmonary disease patients. Respir Med.2005;99: 1004-1009.
    [34]Soler-Cataluna JJ, Sanchez-Sanchez L, Martinez-Garcia MA, et al. Mid-arm muscle area is a better predictor of mortality than body mass index in COPD. Chest.2005;128:2108-2115.
    [35]Swallow EB, Reyes D, Hopkinson NS, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62:115-120.
    [36]Tantucci C, Modina D. Lung function decline in COPD. Int J ChronObstruct Pulmon Dis. 2012;7:95-99.
    [37]Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive lung disease. N Engl J Med.2004;350:2645-2653.
    [38]宋一平,崔德健,茅培英.慢性阻塞性肺疾病大鼠模型的建立及药物干预的影响.中华内科杂志.2000,8:556-557.
    [39]Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med.1996; 153:976-980.
    [40]Bernard S, LeBlanc P, Whittom F, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1998;158:629-634.
    [41]Seymour JM, Ward K, Sidhu PS, et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 2009;64:418-423.
    [42]Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996; 10:709-720.
    [43]Jakobsson P, Jorfeldt L, Brundin A. Skeletal muscle metabolits and fibre types in patients with advanced chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure. Eur Respir J.1990;3:192-196.
    [44]Fiaccadori E, Del Canale S, Vitali P, et al. Skeletal muscle energetics, acid-base equilibrium and lactate metabolism in patients with severe hypercapnia and hypoxemia. Chest.1987;92:883-887.
    [45]Sala E, Roca J, Marrades RM, et al. Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159:1726-1734.
    [46]Maltais F, Jobin J, Sullivan MJ, et al. Lower limb metabolic and hemodynamic responses during exercise in normal subjects and in COPD. J Appl Physiol.1998;84:1573-1580.
    [47]Casaburi R, Patessio A, Ioli F, et al. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143:9-18.
    [48]Patessio A, Casaburi R, Carone M, et al. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis.1993;148:622-626.
    [49]Engelen MP, Casaburi R, Rucker R, et al. Contribution of the respiratory muscles to the lactic acidosis of heavy exercise in COPD. Chest.1995;108:1246-1251.
    [50]Puente-Maestu L, Perez-Parra J, Godoy R, et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J.2009;33:1045-1052.
    [51]Gosker HR, Hesselink MK, Duimel H, et al. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J.2007;30:73-79.
    [52]Celotti E. Resveratrol content of some wines obtained from dried Valpolicella grapes: Recioto and Amarone. J Chromatography A.1996;730:47-52.
    [53]Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol:A molecule whose time has come? And gone? Clinical Biochemistr.1997;30:91-113.
    [54]Sener G, Topaloglu N, Ozer Sehirli A, et al. Resveratrol alleviates bleomycin-induced lung injury in rats. Pulm Pharmacol Ther.2006;3:1-3.
    [55]吴纪珍,齐咏,马利军,等.IL-8和NF-κB在慢性阻塞性肺疾病缓解期气道炎症中的作用.中国实用内科杂志,2006,10:753-755.
    [56]Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Bioehem.1997;66:409-435.
    [57]Tadaishi M, Miura S, Kai Y, et al. Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1{alpha} mRNA:a role of {beta}2-adrenergic receptor activation. Am J Physiol Endocrinol Metab.2011;300: E341-349.
    [58]Clayton DA. Mitochondrial DNA replication:what we know. IUBMB Life. 2003;55:213-217.
    [59]Clayton DA. Vertebrate mitochondrial DNA-a circle of surprises. Exp Cell Res. 2000;255:4-9.
    [60]Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev.2008;88:611-638.
    [61]Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine. Annu Rev Genet.2005;39:359-407.
    [62]Romanello V, Guadagnin E, Gomes L, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J.2010;29:1774-1785.
    [63]Lowell B, Shulman G. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384-387.
    [64]Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia.2007;50:113-120.
    [65]Lanza IR, Short DK, Short KR, et al. Endurance exercise as a counter-measure for aging. Diabetes.2008;57:2933-2942.
    [66]Liu Y, Cseresnyes Z, Randall W, et al. Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol.2001;155: 27-39.
    [67]Scarpulla RC. Transcriptional paradigms in Mammalian mitochondrial biogenesis and function. Physiol Rev.2008;88:611-638.
    [68]Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev.2004;18:357-368.
    [69]Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell.1999;98:115-124.
    [70]Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta.2002;1576:1-14.
    [71]Suliman HB, Carraway MS, Piantadosi CA. Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Grit Care Med.2003; 167:570-579.
    [72]Carraway MS, Suliman HB, Jones WS, et al. Erythropoietin activates mitochondrial biogenesis and couples red cell mass to mitochondrial mass in the heart. Circ Res. 2010;106:1722-1730.
    [73]Lopez-Lluch G, Hunt N, Jones B, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A.2006;103:1768-1773.
    [74]Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science.2005;310:314-317.
    [75]Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell.2003;115:629-640.
    [76]Vercauteren K, Pasko RA, Gleyzer N, et al. PGC-1-related coactivator:immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol.2006;26: 7409-7419.
    [77]Wu Z, Huang X, Feng Y, et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1 alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci U S A.2006;103:14379-14384.
    [78]Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta.2011; 1813:1269-1278.
    [79]Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Bioehem.1997;66:409-435.
    [80]Uguccioni G, Hood DA. The importance of PGC-1α in contractile activity-induced mitochondrial adaptations. Am J Physiol Endocrinol Metab.2011;300:E361-71.
    [81]Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta.2011;1813:1269-1278.
    [82]Handschin C:The biology of PGC-lalpha and its therapeutic potential. Trends Pharmacol Sci 2009;30:322-329.
    [83]Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev.2004; 18:357-368.
    [84]Kramer DK, Ahlsen M, Norrbom J, et al. Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC-1 alpha mRNA. Acta Physiol(Oxf). 2006; 188:207-216.
    [85]Wang L, Jia Y, Rogers H, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1 a and AMPK activation. Int J Biochem Cell Biol. 2013;45:1155-1164.
    [86]Naya FJ, Mercer B, Shelton J, et al.Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem.2000;275:4545-4548.
    [87]Zhu W, Bassel-Duby R, Williams RS. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev.1998;12:2499-2509.
    [88]Parsons SA, Wilkins BJ, Bueno OF, et al. Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol.2003;23:4331-4343.
    [89]Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 2002.99:15983-15987.
    [90]Wu H, Kanatous SB, Thurmond FA, et al.Gallardo T, Isotani E,Bassel-Duby R, Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science.2002;296:349-352.
    [91]Wright DC, Geiger PC, Han DH, et al. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-lalpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282:18793-18799.
    [92]Akimoto T, Pohnert SC, Li P, et al. Exercise stimulates Pgc-lalpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem.2005;280: 19587-19593.
    [93]Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5'-AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun.2000;273:1150-1155.
    [94]Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell.2008;134:405-415.
    [95]Li L, Pan R, Li R, et al. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-y coactivator-1α (PGC-1α) deacetylation by physical activity:intact adipocytokine signaling is required. Diabetes.2011;60:157-167.
    [96]Xu XJ, Gauthier MS, Hess DT, et al. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J Lipid Res.2012;53:792-801.
    [97]Gauthier MS, O'Brien EL, Bigornia S, et al. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun. 2011;404:382-387.
    [98]齐咏,马利军,牛红丽,等.NF-κB在稳定期低体重慢性阻塞性肺病患者中的表达.中 国老年病杂志,2011,31(18):3461-3462.
    [99]Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome. Lancet. 2007;370:797-799.
    [100]Calvano SE, Xiao W, Richards DR, et al. A network-based analysis of systemic inflammation in humans. Nature.2005;437:1032-1037.
    [101]Nathan C. Points of control in inflammation. Nature.2002;420:846-852.
    [102]Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome. Lancet, 2007;370:797-799.
    [103]Sin DD, Man SF. Systemic inflammation and mortality in chronic obstructive pulmonary disease. Can J Physiol Pharmacol.2007,85:141-147.
    [104]陈延伟,杨炯,黄毅.慢性阻塞性肺病外周血单个核细胞中的组蛋白去乙酰化酶活性与全身炎症的关系.武汉大学学报(医学版),2009,30(4):502-505.
    [105]宋祖军,王少波,王琦等.NF-κB的研究进展.世界急危重病医学杂志,2007,4(1):1693-1696.
    [106]Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome. Lancet, 2007;370:797-799.
    [107]Agusti AG, Noguera A, Sauleda J, et al. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J.2003;21:347-360.
    [108]Chung KF. Cytokines as targets in chronic obstructive pulmonary disease. Curr Drug Targets.2006;7:675-681.
    [109]Chung KF. Inflammatory mediators in chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy.2005;4:619-625.
    [110]Natanek SA, Gosker HR, Slot IG, et al. Pathways associated with reduced quadriceps oxidative fibres and endurance in COPD. Eur Respir J.2012 Dec 20.Epub ahead of print. PMID:23258787
    [111]Zini R, Morin C, Bertelli AA, Tillement JP. Resveratol-induced limitation of dysfunction of mitochondria isolated from rat brain in an anoxia-reoxygenation model. Life Sci. 2002;71:3091-3108.
    [112]Van Remmen H, Jones DP. Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci.2009;64:171-174.
    [113]Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature.2006; 444:337-342.
    [114]Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol.2009;297:H 13-20.
    [115]Miller NJ, Rice-Evans CA. Antioxidant activity of resveratrol in red wine. Clin Chem. 1995;41:1789.
    [116]Fremont L. Biological effects of resveratrol. Life Sci.2000;66:663-673.
    [117]Kumar A, Sharma SS. NF-kappaB inhibitory action of resveratrol:a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun. 2010;394:360-365.
    [118]Fullerton MD, Steinberg GR. SIRT1 takes a backseat to AMPK in the regulation of insulin sensitivity by resveratrol. Diabetes.2010;59:551-553.
    [119]Yi CO, Jeon BT, Shin HJ. Resveratrol activates AMPK and suppresses LPS-induced NF-xB-dependent COX-2 activation in RAW 264.7 macrophage cells. Anat Cell Biol. 2011;44:194-203.
    [1]Mannino DM, Homa DM, Akinbami LJ, et al. Chronic obstructive pulmonary disease surveillance--United States,1971-2000. MMWR Surveill Summ.2002;51:1-16.
    [2]Menezes AM, Perez-Padilla R, Jardim JR, et al. Chronic obstructive pulmonary disease in five Latin American cities (the PLATINO study):a prevalence study. Lancet. 2005;366-:1875-1881.
    [3]de Marco R, Accordini S, Cerveri I, et al. An international survey of chronic obstructive pulmonary disease in young adults according to GOLD stages. Thorax.2004;59:120-125.
    [4]Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China:a large, population-based survey. Am J Respir Crit Care Med.2007;176:753-760.
    [5]GOLD Executive Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease(Revised 2011).www.goldcopd.com.
    [6]Killian KJ, Summers E, Jones NL, et al. Dyspnea and leg efforts during incremental cycle ergometry. Am Rev Respir Dis.1992;145:1339-1345.
    [7]Mador MJ, Kufel TJ, Pineda L. Quadriceps fatigue after cycle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2000;161:447-453
    [8]Gagnon P, Saey D, Vivodtzev I, et al. Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects. J Appl Physiol. 2009;107:832-840.
    [9]Saey D, Debigare R, Leblanc P, et al. Contractile leg fatigue after cycle exercise:a factor limiting exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2003;168:425-430.
    [10]Theodore J, Robin ED, Morris AJ, et al. Augmented ventilatory response to exercise in pulmonary hypertension. Chest.1986;89:39-44.
    [11]Williams TJ, Patterson GA, Mcclean PA, et al. Maximal exercise testing in single and double lung transplant recipients. Am Rev Respir Dis.1992; 145:101-105.
    [12]Lacasse Y, Wong E, Guyatt GH, et al. Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. Lancet.1996;348:1115-1119.
    [13]Munro PE, Holland AE, Bailey M, et al. Pulmonary rehabilitation following lung transplantation. Transplant Proc.2009;41:292-295.
    [14]Rabinovich RA, Vilaro J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med.2010;16:123-133.
    [15]Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper. Eur Respir J.2004;23:932-946.
    [16]Remels AH, Gosker HR, van der Velden J, et al. Systemic inflammation and skeletal muscle dysfunction in chronic obstructive pulmonary disease:state of the art and novel insights in regulation of muscle plasticity. Clin Chest Med.2007;28:537-552.
    [17]Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:1005-1012.
    [18]Puhan MA, Garcia-Aymerich J, Frey M, et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease:the updated BODE index and the ADO index. Lancet.2009;374:704-711.
    [19]Rutten EP, Franssen FM, Engelen MP, et al. Greater whole-body myofibrilliar protein breakdown in cachectic patients with chronic obstructive pulmonary disease. Am J Clin Nutr.2006;83:829-834.
    [20]Bernard S, Leblanc P, Whittom F, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1998;158:629-634.
    [21]Man WD, Soliman MG, Nikoletou D, et al. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax.2003;58:665-669.
    [22]Man WD, Hopkinson NS, Harraf F, et al. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease. Thorax.2005;60:718-722.
    [23]Coronell C, Orozco-Levi M, Mendez R, et al. Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J.2004;24:129-136.
    [24]Serres I, Gautier V, Varray A, et al. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest.1998; 113:900-905.
    [25]Allaire J, Maltais F, Doyon JF, et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax.2004;59:673-678.
    [26]Swallow EB, Gosker HR, Ward KA, et al. A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol.2007; 103:739-746.
    [27]Mador MJ, Bozkanat E, Kufel TJ. Quadriceps fatigue after cycle exercise in patients with COPD compared with healthy control subjects. Chest.2003; 123:1104-1111.
    [28]Swallow EB, Reyes D, Hopkinson NS, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62:115-120.
    [29]Braun SR, Keim NL, Dixon RM, et al. The prevalence and determinants of nutritional changes in chronic obstructive pulmonary disease. Chest.1984;86:558-563.
    [30]Gray-Donald K, Gibbons L, Shapiro SH, et al. Effect of nutritional status on exercise performance in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1989; 140:1544-1548.
    [31]Engelen MPKJ, Schols AMWJ, Baken WC, et al. Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur Respir J. 1994;7:1793-1797.
    [32]Schols AMWJ, Soeters PB, Dingemans AMC, et al. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis.1993;147:1151-1156.
    [33]Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD.Am J Respir Crit Care Med.1996;153:976-980.
    [34]Bernard S, LeBlanc P,Whittom F, et al.Peripheral muscle weakness in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med.1998 Aug;158(2):629-634.
    [35]Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med.1996;153:976-980.
    [36]Engelen MPKJ, Schols AMWJ, Does JD, et al. Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obstruction in patients with chronic obstructive pulmonary disease. Am J Clin Nutr.2000;71:733-738.
    [37]Baarends EM, Schols AM, Mostert R, et al. Peak exercise response in relation to tissue depletion in patients with chronic obstructive pulmonary disease. Eur Respir J. 1997;10:2807-2813.
    [38]Kobayashi A, Yoneda T, Yoshikawa M, et al. The relation of fat-free mass to maximum exercise performance in patients with chronic obstructive pulmonary disease. Lung. 2000;178:119-127.
    [39]Schols AM, Mostert R, Soeters PB, et al. Body composition and exercise performance in patients with chronic obstructive pulmonary disease. Thorax.1991;46:695-699.
    [40]Seymour JM, Ward K, Sidhu PS,et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 2009;64:418-423.
    [41]Seymour JM, Ward K, Sidhu PS, et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 2009;64:418-423.
    [42]Mostert R, Goris A, Weling-Scheepers C, et al. Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease. Respir Med. 2000;94:859-867.
    [43]Mador MJ. Muscle mass, not body weight, predicts outcome in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2002; 166:787-789.
    [44]Marquis K, Debigare R, Lacasse Y, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2002; 166:809-813.
    [45]Vilaro J, Rabinovich R, Gonzalez-deSuso JM, et al. Clinical assessment of peripheral muscle function in patients with chronic obstructive pulmonary disease. Am J Phys Med Rehabil.2009;88:39-46.
    [46]Hopkinson NS, Tennant RC, Dayer MJ, et al. A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease. Respir Res. 2007;8:25.
    [47]Shrikrishna D, Patel M, Tanner RJ, et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J.2012;40:1115-1122.
    [48]Whittom F, Jobin J, Simard PM, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc.1998;30:1467-1474.
    [49]Satta A, Migliori GB, Spanevello A, et al. Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance. Eur Respir J.1997;10:2853-2860.
    [50]Gosker HR, Engelen MP, van Mameren H, et al. Muscle fiber type ⅠⅨ atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am J Clin Nutr. 2002;76:113-119.
    [51]Gosker HR, van Mameren H, van Dijk PJ, et al. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J. 2002;19:617-625.
    [52]Booth FW, Gollnick PD. Effects of disuse on the structure and function of skeletal muscle. Med Sci Sports Exerc.1983;15:415-420.
    [53]Serres I, Gautier V, Varray A, et al. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest.1998;113:900-905.
    [54]Simard C, Maltais F, Leblanc P, et al. Mitochondrial and Capillarity Changes in Vastus Lateralis Muscle of Copd Patients:Electron Microscopy Study 564. Medicine & Science in Sports & Exercise.1996;28:95.
    [55]Coronell C, Orozco-Levi M, Mendez R,et al.Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J.2004;24:129-136.
    [56]Gosker HR, van Mameren H, van Dijk PJ, et al. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease.Eur Respir J. 2002;19:617-625.
    [57]Itoh K, Moritani T, Ishida K, et al. Hypoxia-induced fibre type transformation in rat hindlimb muscles. Histochemical and electro-mechanical changes. Eur J Appl Physiol Occup Physiol.1990;60:331-336.
    [58]Lindboe CF, Askevold F, Slettebo M. Changes in skeletal muscles of young women with anorexia nervosa. An enzyme histochemical study. Acta Neuropathol (Berl) 1982;56: 299-302.
    [59]Fiaccadori E, Del Canale S, Vitali P, et al. Skeletal muscle energetics, acid-base equilibrium and lactate metabolism in patients with severe hypercapnia and hypoxemia. Chest.1987;92:883-887.
    [60]Sala E, Roca J, Marrades RM, et al. Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159:1726-1734.
    [61]Maltais F, Leblanc P, Whittom F, et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax.2000;55:848-853.
    [62]Maltais F, Jobin J, Sullivan MJ, et al. Lower limb metabolic and hemodynamic responses during exercise in normal subjects and in COPD. J Appl Physiol.1998;84:1573-1580.
    [63]Casaburi R, Patessio A, Ioli F, et al. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143:9-18.
    [64]Patessio A, Casaburi R, Carone M, et al. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis.1993;148:622-626.
    [65]Allaire J, Maltais F, Doyon JF,et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD.Thorax.2004;59:673-678.
    [66]Mador MJ, Patel AN, Nadler J. Effects of pulmonary rehabilitation on activity levels in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2011;31:52-59.
    [67]Mador MJ, Kufel TJ, Pineda LA,et al.Diaphragmatic fatigue and high-intensity exercise in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med.2000; 161: 118-123.
    [68]Gea J, Barreiro E.Update on the mechanisms of muscle dysfunction in COPD.Arch Bronconeumol.2008;44:328-337.
    [69]Eid AA, Ioneseu AA, Nixon IS, et al. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2001; 164:1414-1418.
    [70]Couillard A, Maltais F, Saey D, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med.2003;167:1664-1669.
    [71]Rabinovich RA, Ardite E, Mayer AM, et al. Training depletes muscle glutathione in patients with chronic obstructive pulmonary disease and low body mass index. Respiration. 2006;73:757-761.
    [72]Mercadier JJ, Schwartz K, Schiaffino S, et al. Myosin heavy chain gene expression changes in the diaphragm of patients with chronic lung hyperinflation. Am J Physiol. 1998;274:L527-534.
    [73]高福生,李淑兰.慢性阻寒性肺疚病患者的骨骼肌功能障碍.国外医学呼吸系统分册,2005,25(3):192-193.
    [74]Morrison WL, Gibson J, Scrimegeour C, et al. Muscle wasting in emphysema. Clin Sci. 1988;75:415-420.
    [75]Engelen MPKJ, Deutz NEP, Wouters EFM, et al. Enhanced levels of whole-body protein turnover in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2000;162:1488-1492.
    [76]Morrison WL, Gibson J, Scrimegeour C, et al. Muscle wasting in emphysema. Clin Sci. 1988;75:415-420.
    [77]Frost RA, Lang CH. Protein kinase B/Akt:a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol.2007; 103:378-387.
    [78]Nader GA. Molecular determinants of skeletal muscle mass:getting the "AKT" together. Int J Biochem Cell Biol.2005;37:1985-1996.
    [79]Creutzberg EC, Casaburi R. Endocrinological disturbances in chronic obstructive pulmonary disease. Eur Respir J.2003;46:76s-80s.
    [80]Kamischke A, Kemper DE, Castel MA, et al. Testosterone levels in men with chronic obstructive pulmonary disease with or without glucocorticoid therapy. Eur Respir J. 1998;11:41-45.
    [81]Debigare R, Marquis K, Cote CH, et al. Catabolic/anabolic balance and muscle wasting in patients with COPD. Chest.2003; 124:83-89.
    [82]Crul T, Spruit MA, Gayan-Ramirez G, et al. Markers of inflammation and disuse in vastus lateralis of chronic obstructive pulmonary disease patients. Eur J Clin Invest. 2007;37:897-904.
    [83]Plant PJ, Brooks D, Faughnan M, et al. Cellular Markers of Muscle Atrophy in Chronic Obstructive Pulmonary Disease (COPD). Am J Respir Cell Mol Biol.2010;42:461.
    [84]Doucet M, Russell AP, Leger B, et al. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2007;176: 261-269.
    [85]Engelen MP, Wouters EF, Deutz NE, et al. Effects of exercise on amino acid metabolism in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2001; 163: 859-864.
    [86]Schols AM, Wouters EF. Nutritional abnormalities and supplementation in chronic obstructive pulmonary disease. Clin Chest Med.2000;21:753-762.
    [87]Schols AMWJ, Soeters PB, Mostert R, et al. Energy balance in chronic obstructive pulmonary disease. Am Rev Respir Dis.1991;143:1248-1252.
    [88]Baarends EM, Schols AMWJ, Slebos DJ, et al. Metabolic and ventilatory response pattern to arm elevation in patients with COPD and helathy age-matched subjects. Eur Respir J. 1995;8:1345-1351.
    [89]Baarends EM, Schols AMWJ, Pannemans DLE, et al. Total free living energy expenditure in patients with severe COPD. Eur Respir J.1997;155:549-554.
    [90]Hugli O, Schutz Y, Fitting JW. The daily energy expenditure in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1996;153:294-300.
    [91]Pitta F, Troosters T, Spruit MA, et al. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2005; 171:972-977.
    [92]Singh S, Morgan MD. Activity monitors can detect brisk walking in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil.2001;21:143-148.
    [93]Schonhofer B, Ardes P, Geibel M, et al. Evaluation of a movement detector to measure daily activity in patients with chronic lung disease. Eur Respir J.1997; 10:2814-2819.
    [94]Walker PP, Burnett A, Flavahan PW, et al. Lower limb activity and its determinants in COPD. Thorax.2008;63:683-689.
    [95]Pitta F, Troosters T, Probst VS, et al. Physical activity and hospitalization for exacerbation of COPD. Chest.2006; 129:536-544.
    [96]Morris N R, Adams L, Johnson B D, et al. Exercise limitations and cardiopulmonary exercise testing in COPD. Chronic Obstructive Pulmonary Disease:A Practical Guide to Management,2008:40.
    [97]Jaspers SR, Tischler ME. Atrophy and growth failure of rat hindlimb muscles in tail-cast suspension. J Appl Physiol.1984;57:1472-1479.
    [98]Ferrando AA, Lane HW, Stuart CA, et al. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol.1996;270:E627-E633.
    [99]Gibson JN, Halliday D, Morrison WL, et al. Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond) 1987;72:503-509.
    [100]Maltais F, Leblanc P, Simard C, et al. Skeletal muscle adaptation to endurance training in patients with Chronic Obstructive Pulmonary Disease. Am J Respir Grit Care Med. 1996; 154:442-447.
    [101]Franssen FM, Wouters EF, Schols AM. The contribution of starvation, deconditioning and ageing to the observed alterations in peripheral skeletal muscle in chronic organ diseases. ClinNutr.2002;21:1-14.
    [102]Maltais F, Leblanc P, Jobin J, et al. Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;155:555-561.
    [103]Decramer M, De Bock V, Dom R. Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;153:1958-1964.
    [104]Decramer M, Lacquet LM, Fagard R, et al. Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Crit Care Med.1994; 150:11-16.
    [105]Hopkinson NS, Man WD, Dayer MJ, et al. Acute effect of oral steroids on muscle function in chronic obstructive pulmonary disease. Eur Respir J.2004;24:137-142.
    [106]Preedy VR, Smith DM, Sugden PH. The effects of 6 hours of hypoxia on protein synthesis in rat tissues in vivo and in vitro. Biochem J.1985;228:179-185.
    [107]Green HJ, Sutton JR, Cymerman A, et al. Operation Everest Ⅱ:adaptations in human skeletal muscle. J Appl Physiol.1989;66:2454-2461.
    [108]Bigard AX, Brunet A, Guezennec CY, et al. Skeletal muscle changes after endurance training at high altitude. J Appl Physiol.1991;71:2114-2121.
    [109]Howald H, Pette D, Simoneau JA, et al. Effects of chronic hypoxia on muscle enzyme activities. Int J Sports Med.1990;11:S10-S14.
    [110]Pastoris O, Dossena M, Foppa P, et al. Modifications by chronic intermittent hypoxia and drug treatment on skeletal muscle metabolism. Neurochem Res.1995;20:143-150.
    [111]Kwast KE, Hand SC. Acute depression of mitochondrial protein synthesis during anoxia: contributions of oxygen sensing, matrix acidification, and redox state. J Biol Chem. 1996;271:7313-7319.
    [112]Bigard AX, Sanchez H, Birot O, et al. Myosin heavy chain composition of skeletal muscles in young rats growing under hypobaric hypoxia conditions. J Appl Physiol. 2000;88:479-486.
    [113]Rennie MJ, Edwards RH, Emery PW, et al. Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin Physiol.1983;3:387-398.
    [114]Takabatake M, Nakamura H, Abe H, et al. The Relationship between Chronic Hypoxemia and Activation of the Tumor Necrosis Factor-a System in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med.2000;161:1179-1184.
    [115]Heunks LM, Vina J, van Herwaarden CL, et al. Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Physiol. 1999;277:R1697-R1704.
    [116]Semple PD, Beastall GH, Watson WS, et al. Serum testosterone depression associated with hypoxia in respiratory failure. Clin Sci (Lond) 1980;58:105-106.
    [117]Rabinovich RA, Bastos R, Ardite E, et al. Mitochondrial Dysfunction in COPD Patients with low Body Mass Index. Eur Respir J.2007;29:643-650.
    [118]Cechetto D, Mainwood GW. Carbon dioxide and acid base balance in the isolated rat diaphragm. Pflugers Arch.1978;376:251-258.
    [119]Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem.1966;241:4110-4112.
    [120]Mitch WE. Robert H Herman Memorial Award in Clinical Nutrition Lecture,1997. Mechanisms causing loss of lean body mass in kidney disease. Am J Clin Nutr. 1998;67:359-366.
    [121]Sahlin K, Edstrom L, Sjoholm H. Fatigue and phosphocreatine depletion during carbon dioxide-induced acidosis in rat muscle. Am J Physiol.1983;245:C15-C20.
    [122]Gertz I, Hedenstierna G, Hellers G, et al. Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure. Clin Sci.1977;52:395-403.
    [123]Piehl-Aulin K, Jones I, Lindvall B, et al. Increased serum inflammatory markers in the absence of clinical and skeletal muscle inflammation in patients with chronic obstructive pulmonary disease. Respiration.2009;78:191-196.
    [124]Montes de Oca M, Tomes SH, De Sanetis J, et al. Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J.2005;26:390-397.
    [125]吴纪珍,齐咏,马利军,等.IL-8和NF-κB在慢性阻塞性肺疾病缓解期气道炎症中的作用.中国实用内科杂志,2006,10:753-755.
    [126]Crul T, Spruit MA, Gayan Ramirez G, et al. Markers of inflammation and disuse in vastus lateralis'of chronic obstructive pulmonary disease patients. Eur J Clin Invest. 2007;37:897-904.
    [127]Eid AA, Ioneseu AA, Nixon IS, et al. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2001;164:1414-1418.
    [128]张悦,罗勇,徐卫国.肿瘤坏死因子-α在慢阻肺大鼠骨骼肌蛋白分解代谢中的作用及其机制.上海交通大学学报(医学版),2008,28(9):1126-1128.
    [129]Rabinovich RA, Figueras M, Ardite E, et al. Increased tumour necrosis factor-alpha plasma levels during moderate-intensity exercise in COPD patients. Eur Respir J. 2003;21:789-794.
    [130]Montes de OM, Torres SH, De SJ, et al. Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J.2005;26:390-397.
    [131]Barreiro E, Schols AM, Polkey MI, et al. Cytokine profile in quadriceps muscles of patients with severe COPD. Thorax.2008;63:100-107.
    [132]Li YP, Schwartz RJ, Waddell IA, et al. Skeletal muscle myocites undergo ptotein loss and reactive oxygen-mediated NF-kB activation in response to TNF-α FASEB J. 1998;12:871-880.
    [133]Li YP, Atkins CM, Sweatt JD, et al. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. Antioxid Redox Signal. 1999;1:97-104.
    [134]Chandel NS, Trzyna WX, McClintock DS, et al. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol. 2000;165:1013-1021.
    [135]Agusti A, Morla M, Sauleda J, et al. NF-kappaB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight. Thorax.2004;59:483-487.
    [136]MacNee W, Rahman I. Oxidants and antioxidants as therapeutic targets in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1999;160:S58-S65.
    [137]Nowak D, Antczak A, Krol M, et al. Increased content of hydrogen peroxide in the expired breath of cigarette smokers. Eur Respir J.1996;9:652-657.
    [138]Dekhuijzen PN, Aben KK, Dekker I, et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med.1996;154:813-816.
    [139]Thompson AB, Bohling T, Heires A, et al. Lower respiratory tract iron burden is increased in association with cigarette smoking. J Lab Clin Med.1991;117:493-499.
    [140]Pratico D, Basili S, Vieri M, et al. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-Ⅲ, an index of oxidant stress. Am J Respir Crit Care Med.1998;158:1709-1714.
    [141]Rahman I, Skwarska E, MacNee W. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax. 1997;52:565-568.
    [142]Couillard A, Maltais F, Saey D, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in COPD patients. Am J Respir Crit Care Med. 2003;167:1664-1669.
    [143]Allaire J, Maltais F, Leblanc P, et al. Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve.2002;25:383-389.
    [144]Couillard A, Koechlin C, Cristol JP, et al. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J. 2002;20:1123-1129.
    [145]van Helvoort HA, Heijdra YF, Heunks LM, et al. Supplemental oxygen prevents exercise-induced oxidative stress in muscle-wasted patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2006; 173:1122-1129.
    [146]Barreiro E, Rabinovich R, Marin-Corral J, et al. Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax.2009;64:13-19.
    [147]Reid MB. Plasticity in skeletal, cardiac, and smooth muscle. Invited review:Redox modulation of skeletal muscle contraction:what we know and what we don't. J Appl Physiol.2001;90:724-731.
    [148]Koechlin C, Couillard A, Simar D, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2004;169:1022-1027.
    [149]Barreiro E, Gea J, Matar G, et al. Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol.2005;33:636-642.
    [150]Gosker HR, Schrauwen P, Hesselink MK, et al. Uncoupling protein-3 content is decreased in peripheral skeletal muscle of patients with COPD. Eur Respir J.2003;22:88-93.
    [151]Russell AP, Somm E, Debigare R, et al. COPD results in a reduction in UCP3 long mRNA and UCP3 protein content in types I and Ila skeletal muscle fibers. J Cardiopulm Rehabil. 2004;24:332-339.
    [152]Rabinovich RA, Bastos R, Ardite E, et al. Mitochondrial Dysfunction in COPD Patients with low Body Mass Index. Eur Respir J.2007;29:643-650.
    [153]Picard M, Godin R, Sinnreich M, et al. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease:disuse or dysfunction? Am J Respir Crit Care Med.2008;178:1040-1047.
    [154]Puente-Maestu L, Perez-Parra J, Godoy R, et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J.2009;33:1045-1052.
    [155]Puente-Maestu L, Perez-Parra J, Godoy R, et al. Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol.2009;40:746-750.
    [156]Gosker HR, Hesselink MK, Duimel H, et al. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J.2007;30:73-79.
    [157]Agusti AG, Sauleda J, Miralles C, et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2002; 166:485-489.
    [158]Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase- beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005;2:21-33.
    [159]Naya FJ, Mercer B, Shelton J, et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem.2000;275:4545-4548.
    [160]Zhu W, Bassel-Duby R, Williams RS. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev.1998;12:2499-2509.
    [161]Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA. 2002;99:15983-15987.
    [162]Parsons SA, Wilkins BJ, Bueno OF, et al. Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol.2003;23:4331-4343.
    [163]Wu H, Kanatous SB, Thurmond FA, et al. Gallardo T, Isotani E,Bassel-Duby R, Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science.2002;296:349-352.
    [164]Wright DC, Geiger PC, Han DH, et al. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-lalpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282:18793-18799.
    [165]Akimoto T, Pohnert SC, Li P, et al. Exercise stimulates Pgc-lalpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280:19587-19593.
    [166]Narkar VA, Downes M, Yu RT, et al.. AMPK and PPARdelta agonists are exercise mimetics. Cell.2008;134:405-415.
    [167]Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5'-AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun.2000;273:1150-1155.
    [168]Li L, Pan R, Li R,et al. Niemann B, Mitochondrial biogenesis and peroxisome proliferator-activated receptor-y coactivator-1α (PGC-1α) deacetylation by physical activity:intact adipocytokine signaling is required. Diabetes.2011;60:157-167.
    [169]Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev.2009;89:1025-1078.
    [170]Sun W, Lee TS, Zhu M, et al. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation.2006; 114:2655-2662.
    [171]Fogarty S, Hardie DG. Development of protein kinase activators:AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta.2010;1804:581-591.
    [172]Corton JM, Gillespie JQ Hawley SA, et al.5-Aminoimidazole-4-carboxamide ribonucleoside:a specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem.1995;229:558-565.
    [173]Fogarty S, Hardie DG Development of protein kinase activators:AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta.2010; 1804:581-591.
    [174]Hawley SA, Pan DA, Mustard KJ, el al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Melab. 2005;2:9-19.
    [175]Bimbaum MJ. Activating AMP-activated protein kinase without AMP. Mol Cell. 2005;19:289-290.
    [176]Hawley SA, Pan DA. Mustard KJ, el al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Melab.2005; 2:9-19.
    [177]Bimbaum MJ. Activating AMP-activated protein kinase without AMP. Mol Cell. 2005;19:289-290.
    [178]LeBrasseur NK, Kelly M, Tsao TS, et al. Thiazolidinediones can rapidly activate AMP activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab. 2006;291:E175-E181.
    [179]Lessard SJ. Chronic rosiglitazone treatment restores AMPKalpha2 activity in insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab.2006;290:E251-257.
    [180]Reiter AK, Bolster DR, Crozier SJ, et al. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribenucleoside. Am J Physiol Endocrinol Metab.2005;288:E980-988.
    [181]Ishii S, Kamegai J, Al'amura H, et al.Triiodothyronine(T3)stimulates food intake via enhanced hypothalamic AMP-activated kinase activity. Regul Pept.2008;151:164-169.
    [182]Tadaishi M, Miura S, Kai Y, et al. Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1{alpha} mRNA:a role of {beta}2-adrenergic receptor activation. Am J Physiol Endocrinol Metab. 2011;300:E341-349.
    [183]Rodgers J T, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature.2005;434:113-118.
    [184]Li L, Pan R, Li R, et al. Niemann B, Mitochondrial biogenesis and peroxisome proliferator-activated receptor-y coactivator-la (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes.2011;60:157-167.
    [185]Jeninga EH, Schoonjans K, Auwerx J. Reversible acetylation of PGC-la:connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene.2010;29: 4617-4624.
    [186]Alvarez-Guardia D, Palomer X, Coll T, et al. The p65 subunit of NF-κB binds to PGC-la, linking inflammation and metabolic disturbances in cardiac cells. Cardiovasc Res. 2010;87:449-458.
    [187]Morari J, Torsoni AS, Anhe GF, et al. The role of proliferator-activated receptor y coactivator-la in the fatty-acid-dependent transcriptional control of interleukin-10 in hepatic cells of rodents. Metab Clin Exp.2010;59:215-223.
    [188]Kim HJ, Park KG, Yoo EK, et al. Effects of PGC-la on TNF-a-induced MCP-1 and VCAM-1 expression and NF-κB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal.2007;9:301-307.
    [189]Palomer X, Alvarez-Guardia D, Rodriguez-Calvo R, et al. TNF-α reduces PGC-1α expression through NF-κB and p38MAPK leading to increased glucose oxidation in a human cardiac cell model. Cardiovasc Res.2009;81:703-712.
    [190]Takaoka MJ. Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Faculty Sci Hokkaido Imperial University.1940;3:1-16.
    [191]Csiszar A. Anti-inflammatory effects of resveratrol:possible role in prevention of age-related cardiovascular disease. Ann N Y Acad Sci.2011;1215:117-122.
    [192]Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence. Nat Rev Drug Discov.2006;5:493-506.
    [193]McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutrition.1935;10:63-79.
    [194]Barger JL, Walford RL, Weindruch R. The retardation of aging by caloric restriction:its significance in the transgenic era. Exp Gerontol.2003;38:1343-1351.
    [195]McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutrition.1935;10:63-79.
    [196]Van Remmen H, Jones DP. Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci.2009;64:171-174.
    [197]Dudley J I, Lekli I, Mukherjee S, et al. Does white wine qualify for French paradox? Comparison of the cardioprotective effects of red and white wines and their constituents: resveratrol, tyrosol, and hydroxytyrosol. J Agri Food Chem.2008;56:9362-9373.
    [198]Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature.2006;444:337-342.
    [199]Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol.2009;297:H 13-20.
    [200]Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha. Cell. 2006;127:1109-1122.
    [201]Lagouge M, Argmann C, Gerhart-Hines Z,et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha. Cell. 2006;127:1109-1122.
    [202]Csiszar A, Labinskyy N, Podlutsky A,et al. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol.2008;294:H2721-2735.
    [203][203] Miller NJ, Rice-Evans CA. Antioxidant activity of resveratrol in red wine. Clin Chem. 1995;41:1789
    [204]Fremont L. Biological effects of resveratrol. Life Sci.2000;66:663-673.
    [205]Kumar A, Sharma SS. NF-kappaB inhibitory action of resveratrol:a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun. 2010;394:360-365.
    [206]Fullerton MD, Steinberg GR. SERT1 takes a backseat to AMPK in the regulation of insulin sensitivity by resveratrol. Diabetes.2010;59:551-553.
    [207]Chin-Ok Yi, Byeong Tak Jeon, Hyun Joo Shin. Resveratrol activates AMPK and suppresses LPS-induced NF-κB-dependent COX-2 activation in RAW 264.7 macrophage cells Anat Cell Biol.2011;44:194-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700