用户名: 密码: 验证码:
大麦生物活性成分的遗传分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麦(Hordeum vulgare L.)是重要的粮食作物和啤酒酿造原料,同时富含β-葡聚糖、黄酮类化合物、多酚、甜菜碱等多种生物活性成分,具有抗氧化、降胆固醇和增强免疫等多种生理活性。随着经济的发展和人们生活水平的提高,以大麦为原料的营养保健品得到了迅速的发展,综合有效地开发利用大麦丰富的种质资源,培育高产、优质、富含生物活性成分的新品种已成为大麦育种的重要课题。大麦的生物活性成分多表现为数量性状,是由多个基因和环境共同作用的结果,对其遗传基础的研究比较困难。近年来,随着基因组学的发展和生物统计软件的完善,特别是分子标记技术在遗传育种领域的广泛应用,以连锁不平衡(linkage disequilibrium,LD)为基础的关联分析(association analysis)方法的出现为数量性状遗传的研究提供了新途径。本研究利用关联分析探讨了大麦部分生物活性成分的分子遗传基础,并选择具有优异等位基因的大麦材料加工麦苗营养保健品——麦绿素(barley green),对其最佳浸提条件和贮藏稳定性进行分析。其主要结果如下:
     1.利用分布于全基因组上的21个微卫星标记(simple sequence repeat, SSR),对来自35个国家和地区的292份大麦材料(包括地方品种、野生品种和改良栽培品种)进行全基因组扫描,分析群体遗传多样性,以构建大麦生物活性成分关联分析的定位群体。结果表明,这个大麦群体具有广泛的遗传变异,除2对SSR引物无扩增结果外,19对SSR引物共扩增出135个等位变异,平均每对引物检测到7.1个,平均遗传多样性指数(Hi)为0.73。比较不同地理生态大麦群体的多样性显示,亚洲中东、亚洲东北及阿拉伯半岛地区的大麦材料遗传多样性最丰富,这些地区具有选取高生物活性成分含量遗传稳定的大麦材料的潜力。292个大麦材料基于SSR数据的聚类分析发现,三个大类的划分与野生型、地方型和改良栽培型大麦等三个基因型群体存在显著的相关性,11个亚类的划分与7个地理生态群体也极显著相关。因此,这个群体适合于全基因组范围上的SSR标记及候选基因与大麦生物活性成分进行关联分析。
     2.为建立适合于大麦的EcoTILLING技术体系,用于鉴定大麦目的基因或特定区域的自然突变。利用M13通用接头作荧光标记,采用巢式PCR对大麦目的基因进行扩增,从PCR扩增的退火温度及模板量、CELⅠ的用量和酶切处理时间等方面对大麦EcoTILLING技术体系进行了优化。结果显示,用于第一次PCR扩增(10μL反应体系)的大麦基因组DNA模板最佳用量为20ng,第一次PCR扩增产物稀释3倍后作为第二次PCR扩增的模板,2次PCR扩增的适宜退火温度均为58℃;在20μL CELⅠ酶切体系中,最适酶量为0.4μL(3U·μL~-1),45℃条件下最佳酶切处理时间为17.5min。优化的EcoTILLING技术体系能有效地发现大麦自然群体中特定区域的DNA多态性,降低了试验成本,为大规模检测与大麦生物活性成分相关候选基因内的核苷酸多态性提供了技术平台。
     3.利用高通量的EcoTILLING技术检测与生物活性成分合成相关的四个候选基因,即△1-吡咯啉-5-羧酸合成酶基因(P5CS)、甲基固醇羟化酶单加氧酶基因(CSMO)、叶绿素a/b结合蛋白基因(CABP)和热激蛋白17.8基因(HSP17.8)在292个大麦材料中的核苷酸变异。结果显示,四个基因中共67个核苷酸变异被鉴定,其中包括28个插入缺失(Indel)和39个单核苷酸多态性位点(SNP)。25个SNP和28个Indel分布在基因的内含子或非编码区,14个SNP分布在基因的外显子区域,其中7个非同义突变对大麦生物活性成分的合成可能有严重的影响。统计分析显示四个基因进化过程承受了不同的选择压力,P5CS基因内高水平的核苷酸多样性可能是平衡选择的结果,而HSP17.8,CSMO和CABP等三个基因内低水平的核苷酸多样性可能是中性选择的结果。因此,这些被鉴定的自然等位变异需进一步通过关联分析来评价候选基因在大麦生物活性成分积累中的潜在作用。
     4.基于群体结构的基础上,利用分布于全基因组的19个SSR标记和4个候选基因内的67个SNP标记,对292个大麦材料的4个农艺性状和4个生物活性成分的表型值进行标记与表型的关联分析。结果显示,大麦群体中累计有12个SSR位点和16个SNP位点与7个表型性状的相关性在P<0.01水平上显著,其中4个SSR位点和4个SNP位点与大麦的四个生物活性成分相关联,关联标记对表型性状的解释率在1.99%~15.77%之间,平均值为5.80%。对与性状关联位点的等位变异作进一步解析显示,37个SSR等位变异和8个SNP稀有变异对表型性状具有增效效应,其中5个SSR等位变异和3个SNP稀有变异对大麦四个生物活性成分的含量具有增效效应,这些优异等位基因可为选育高营养品质大麦提供有效的参考,促进大麦保健食品加工专用的基因型品种的发展。
     5)选用叶面积宽、生长快、生物活性成分含量高且具有优异等位基因的4个大麦品种(138256、138277、26229和BMZ05-234)进行大田种植,对麦苗不同生长期的株高、营养及生物活性成分比较分析发现,大麦品种26229适合作为麦绿素加工专用品种,六叶期麦苗最适作为麦绿素加工原料。与常规加热浸提相比,超声波和微波辅助浸提能显著提高麦绿素产品营养成分的含量;麦苗汁在40℃条件下超声波处理30分钟后,300W功率的微波再萃取8分钟是超声波-微波协同浸提麦绿素的最佳条件,所得麦绿素总黄酮含量高,抗氧化活性强。在室温和冷藏条件下,麦绿素营养成分和抗氧化性随着保存时间的延长都有明显的下降,其中总黄酮和甜菜碱两种物质的稳定较好,而可溶性蛋白质、可溶性总糖及SOD酶的稳定性较差。与室温条件相比,冷藏能有效保证麦绿素的营养成分和抗氧化活性,因此尽可能低温保藏是麦绿素产品保持营养及生理活性的有效方法。
Barley is an important cereal crop and brewing raw material. There are many kinds ofbioactive components in barley, such as β-glucan, flavonoids, polyphenol, betain and others.Many claims have been made regarding the health benefits of barley supplements. Some ofthe suggested benefits include antioxidation, cholesterol lowering and boosting energy andimmunity. With the development of economy and the people’s living standards rising quickly,the production with barley bioactive components have been developed rapidly. It has becomean important topic to develop and utilize the rich germplasm resources of barley effectively,and cultivate barley varieties with high yield, high quality, and being rich in functionalcomponents. Most bioactive components of barley are quantitative traits. Dissection of thegenetic basis for these traits is difficult, because they are controlled by multi-genes and areaffected by environmental factors. With the development of genomics and biostatisticssoftware and applications of molecular markers in crop breeding, association analysis basedon the linkage disequilibrium (LD) offers a new method for identifying of loci controllingthose traits. In the present study, association analysis was used to study genetic basis forbioactive components of barley, and the extraction condition of barley green andstorage-stability of barley green were investigated. The main results are summarized asfollowings:
     1. Twenty-one genome-wide simple sequence repeat (SSR) markers were used to assessthe genetic diversity and population structure of a set of292barley accessions includinglandraces, cultivars and spontaneum. The results showed that the population included adiverse genetic variation. A total of135alleles were detected by19SSR markers with anaverage of7.1per marker. The average value of genetic diversity index (Hi) for19SSRs was0.73. While comparing the genetic diversity, the accessions coming from Middle East Asia,North East Asia and Arabian Peninsula showed more diversity as compared to that of othergeographic regions. A dendrogram was derived from UPGMA cluster analysis based on thegenetic similarity coefficient matix for292barley accessions by using allelic of19SSR markers. Three major clusters were found to be associated with three genepools of barley andseveral subclusters containing genotypes from the same geographic regions were observed.The results suggested that the population could be used for detection of genome-wide SSRmarker-phenotype association mapping with bioactive component in barley.
     2. The goal of this to establish an optimized EcoTILLING protocol for identification ofnatural variations within target genes and specified regions of genomes in barley. Theuniversal adapter M13was labeled with fluorescent dyes, the nested PCR with specific primercombination and M13adapter was performed for the targeted region. The EcoTILLINGprotocol for barley was optimized, including the template amount and annealing temperaturein PCR amplification, CEL I amount and reaction time in cleavage of mispaired heteroduplexDNA. The results showed that the optimal amount of genomic DNA in a10μL of reactionsystem was20ng as template for the first round of PCR, and the first PCR product was diluted3-fold and used as a template for the second round. The proper annealing temperature for bothfirst-and second-round PCR was58℃. Optimum amount of CEL I enzyme was0.4μL (3U·μL-1) in a20μL of digestion reaction system, and17.5min at45℃was the optimal time forthe cleavage of heteroduplex DNAs. The experiment indicates that the optimizedEcoTILLING protocol can effectively detect DNA polymorphisms for natural population ofbarley with lower cost, and it could provide a foundation for larger scale efforts in reversegenetics and characterization of natural nucleotide variation in barley.
     3. The high-throughput reverse genetic method called EcoTILLING was used for SNPdiscovery of four bioactive component-related candidate genes, which encoded HSP17.8(heat-shock protein17.8), CABP (a chlorophyll a/b-binding protein), CSMO (C-4sterolmethyl oxidase) and P5CS (Δ′-pyrroline-5-carboxylate synthetase), across292barleyaccessions collected from35different countries. A total of67variations including28insert/deletions (Indels) and39single nucleotide polymorphisms (SNPs) in which14SNPs inthe coding region were identified. Seven of missense changes are predicted to be deleteriousto synthesis of bioactive component in barley. Statistical results of nucleotide diversityshowed that different genes were seemingly under different selective pressures. Balancingselection resulted in high nucleotide diversity in P5CS region, and nucleotide polymorphismsin HSP17.8, CSMO and CABP region were not significant deviated from neutral variation. These natural allelic variants could be used to make association analysis with phenotypictraits for studying these candidate gene’s potential contribution and possible role in bioactivecomponents.
     4. To determine the population structure and its impact on marker-trait association, the292barley accessions was assessed by19simple sequence repeat (SSR) markers and67polymorphism sites in four candidate gene related with bioactive components. The associationanalysis was tested with the TASSEL v3.0software using the general linear model (GLM). Atotal of28distinct markers significantly associated (p<0.01) with one or more phenotypictraits were detected, which included16single nucleotide polymorphisms (SNPs) and12SSRmarkers. Of those,4SNPs and4SSRs were significantly associated with phenotypic traits offour bioactive components. The percentage of variation of a given trait explained by eachassociated marker spanned from1.99%to15.77%with the average level of5.80%. Thephenotypic allele effect was estimated through comparison between the average phenotypicvalue over accessions with the specific allele and that of accessions with “common allele”.The results showed that37alleles of9SSRs and8rare SNPs had positive effect onphenotypic traits. Of these,4alleles of4SSRs and4rare SNPs had positive effect onbioactive components. These excellent alleles identified in our study will provide informationfor further breeding and genetic research and for improvement of barley bioactivecomponents.
     5. According to special quality requirements of barley green,4barley genotypes(ICARDA No.138256、138277、26229and BMZ05-234) were primary selected from292accessions based on the results of association analysis. Under field growing conditions,according to plant height and nutrient components of seedling,6-leaves seedling of barleyvariety26229fitted for producing barley green were screened out in this study. Compared toheating solvent extraction, microwave-assisted extraction and ultrasonic-assisted extractionon barley leaf exhibited more amount of barley green. Under ultrasonic treatment30min at40℃, followed by microwave-assisted extract8min at300W power, the maximum amount offlavonoid and the highest antioxidant activity were attained. The nutrient components andantioxidant activity of barley green descended obviously at cold storage and roomtemperature. Betain and flavonoid in barley green were easy to keep, while soluble protein, soluble total sugar and super-oxide dismutase (SOD) were hard to keep at2differenttemperature conditions. Compared with the room temperature, the cold storage could betterkeep the nutrient components and antioxidant activity of barley green.
引文
[1]全国高胆固醇血症控制状况多中心研究协作组.高胆固醇血症临床控制状况多中心协作研究――达标率及影响因素[J].中华心血管病杂志,2002,30:109-114
    [2]中国成人血脂异常防治指南制定联合委员会.中国成人血脂异常防治指南[J].中华心血管病杂志,2007,5
    [3] FDA Allows Barley Products to Claim Reduction in Risk of Coronary Heart Disease, FDANews,2005, December23
    [4] Hu F.B., Willett W.C. Optimal Diets for Prevention of Coronary Heart Disease[J]. TheJournal of the American Medical Association,2002,288:2569-2578
    [5]任嘉嘉,相海,王强,等.大麦食品加工及功能特性研究进展[J].粮油加工,2009,4:31-33
    [6] Li J., Kaneko T., Qin L.Q., et al. Effects of barley intake on glucose tolerance, lipidmetabolism, and bowel function in women [J]. Nutrition,2003,19:926-929
    [7]陈建澍,潘伟槐,童微量,等.大麦β-葡聚糖对小鼠血脂水平的影响[J].大麦科学,2002,3:23-25
    [8]李时珍.本草纲目(下册)[M].北京:人民卫生出版社,1982:1455
    [9]郭建华.麦绿素在国内的研究进展[J].农产品加工(学刊),2008,7:31-32
    [10]许钢,田迪英,袁玲霞.大麦麦叶中生物活性物质含量的动态研究[J].食品工业科技,2002,11:11-14
    [11] Kishitani S., Watanabe K. Accumulation of glycinebetaine during cold acclimation andfreezing tolerance in leaves of winter and spring barley plants[J]. Plant, Cell&Environment,2006,17:89-95
    [12] Peterson D.M., Qureshi A.A. Genetic and environmental effects on tocols of barley andoats[J]. Cereal Chemistry,1993,70:157-162
    [13] Kalra S.I., Jod S. Biological evaluation of protein quality of barley[J]. Food Chemistry,1998,61(2):35-39
    [14]中国医学科学院营养与食品研究所编著.食物成分表[M].北京:人民出版社,1991
    [15]石永峰.大麦的生物学特性营养价值及应用[J].粮食与饲料工业,1994,11:29-32
    [16] Newman R., Newman C. Barley as a food grain[J]. Cereal foods world,1991,36(9):800-804
    [17] Guler M. Barley grain beta-glucan content as affected by nitrogen and irrigation[J]. FieldCrops Research,2003,84:335-340
    [18] Skendi A., Biliaderis C.G., Lazaridou A., et al. Structure and rheological properties ofwater soluble β-glucan from oats cultivars of Avena sativa and Avena bysantina[J].Journal of Cereal Science,2003,38:15-31
    [19] Papageorgiou M., Lakhdara N., Lazaridou A. Water extractable (1→3;1→4)-β-D-glucanfrom barley and oats; An intervarietal study on their structural features and rheologicalbehavior[J]. Journal of Cereal Science,2005,24:213-224
    [20] Zhang G.,Wang J.,Chen J. Analysis of β-glucan content in barley cultivars fromdifferent locations of China[J]. Food Chemistry,2002,79:251-254
    [21] Kahlon T.S., Chow F.I., Knuckles B.E., et al. Cholesterol lowering effects in hamsters ofβ-glucan-benriched barley fraction, dehulled whole barley, rice bran, and oat bran andcombinations[J]. Cereal Chemistry,1993,70(4):435-440
    [22] Wang L., Behr S.R., Newman R.K., et al. Comparative cholesterol-lowering effects ofbarley β-glucan and barley oil in golden syrian hamsters[J]. Nutrition Research,1997,17:77
    [23] AbuMweis S.S., Jew S., Ames N.P. β-glucan from barley and its lipid-lowering capacity:a meta-analysis of randomized, controlled trials[J]. European Journal of ClinicalNutrition,2010,64:1472-1480
    [24] Yokoyama W.H., Hudson C.A., Knuckles B.C., et al. Effect of barley-glucan in durumwheat pasta on human glycemic response[J]. Cereal Chemistry,1997,74(3):293-296
    [25]王希.大麦多糖的提取及其生物活性研究[D].江苏大学,2008
    [26] Yan J., Vetvicka V., Xia Y., et al. β-Glucan, a specific biologic response modifier thatuses antibodies to target tumors for recognition by complement receptor type[J]. Journalof Immunology,1999,163(6):3045-3052
    [27] Akramien D., Gra elien G, Did iapetrien J, et al. Treatment of Lewis lung carcinomaby photodynamic therapy and glucan from barley[J]. Medicina,2009,45(6):480-485
    [28] Jon F., Alice K., Thomas A.W. Tocopherol and tocotrienol accumulation duringdevelopment of caryopses from barley (Hordeum vulgare L.)[J]. Phytochemistry,2004,65(22):2977-2985
    [29]夏向东.裸大麦中生育三烯酚的提取及抑制内皮细胞氧化损伤的作用[D].中国农业大学博士学论文,2002
    [30] Kamal E.A., Appelqvist L.A. The chemistry and antioxidant properties of tocopherolsand tocotrienols[J]. Lipids,1996,31:671-701
    [31] Serbinova E., Khwaja S., Catudioc J., et al. Palm. Oil vitamin E protects againstischemia/reperfusion injury in the isolated perfused langendorf heart[J]. NutritionResearch,1992,12,203-215
    [32] Steinberg D., Parthasarathy S., Carew T.E., et al. Beyond cholesterol: modification oflow-density lioprotein that increases its atherogen-city[J]. England Journal of Medical,1989,320,915-924
    [33] Pearce B.C., Parker F.A., Deason M. E. et al. Hypocholesterolemic activity of syntheticand natural tocotrienols[J]. Journal of Medical Chemical,1992,35:3595-3606
    [34] Qureshi A.A., Bradlow B.A., Salser W.A., et al. Novel tocotrienols of rice bran modulatecardiovascular disease risk parameters of hyper-chlosterolemic humans[J]. Journal ofNutritional Biochemistry,1997,8(5):290-298
    [35] Nesaremam K., Stephen F., Dils R., et al. Tocotrienols inhibit the growth of human breastcancer cells irrespective of estrogen receptor status[J]. Lipids,1998,33(5):461-469
    [36]陈伟,叶明志,周洁.植物酚类物质研究进展[J].福建农业大学学报,1997,26(4):502-508
    [37] Krueger C.G., Vestling M.M., Reed J.D. Matrix-assisted laser desorption/ionizationtime-of-flight mass spectrometry of heteropoly flavan-3-ols and glucosylatedheteropolyflavans in sorghum (Sorghum bicolor L.) Moench[J]. Agriculture FoodChemistry,2003,51(3):538-543
    [38] Goupy P., Hugues M., Boivin P., et al. Antioxidant composition and activity of barley(Hordeum vulgare) and malt extracts and of isolated phenolic compounds[J]. Journal ofScience and Food Agriculture,1999,79(12):1625-1634
    [39] Yu J., Vasanthan T., Temelli F. Analysis of phenolic acids in barley byhigh-performance liquid chromatography[J]. Journal of Agriculture and Food Chemistry,2001,49:4352-4258
    [40] Kenneth R., Markham A. The Mis-identification of the Major Antioxidant Flavonoids inYoung Barley (Hordeum vulgare) Leaves[J]. Z. Naturforsch,2003,58:53-56
    [41] Maillard M.N., Soum M.H., Boivin P. Antioxidant Activity of Barley and Malt:Relationship with Phenolic Content[J]. Lebensmittel Wiss-enschaft und-Technologie,1996,29(3):238-244
    [42]裘爱泳,刘军海.植物多酚提取和应用[J].粮食与油脂,2003,6:10-11
    [43]赵勇.盐胁迫下植物组织中甜菜碱和脯氨酸变化的研究[D],中国农业科学院,2004.
    [44] Kishitani S., Watanabe K., Yasuda S., et al. Accumulation of glycinebetaine during coldacclimation and freezing tolerance in leaves of winter and spring barley plants[J]. Plant,Cell&Environment,2006,17:89-95
    [45] Nomura M., Muramoto Y., Yasuda S., et al. The accumulation of glycinebetaine duringcold acclima-tion in early and late cultivars of barley[J]. Euphytica,1995,83:247-250
    [46] Lawson-Yuen A., Levy H.L. The use of betaine in the treatment of elevatedhomocysteine [J]. Molecular Genetics and Metabolism,2006,88:201-207
    [47] Ananth C.V., Elsasser D.A., Kinzler W.L., et al. Polymorphisms in methioninesynthasereductase and betaine-homocysteine S-methyltransferase genes: Risk of placentalabruption [J]. Molecular Genetics and Metabolism,2007,91:104-110
    [48] Kharbanda K.K., Mailliard M.E., Baldwin C.R. Betaine attenuates alcoholic steatosis byrestoring phosphatidylcholine generation via the phosphatidylethanolaminemethyltransferase pathway [J].Journal of Hepatology,2007,46:314-321
    [49]张宇金.甜菜碱的抗肿瘤作用及对S180荷瘤小鼠机体糖代谢过程的影响[J].中草药,2006,37(9):1378-1380
    [50] Finocchiara F., Ferrari B. β–glucan and tocols in small grain cereal for the developmentof functional food[J]. Proceedings of the XLVI Itanlian cociety of AgriculturealGenetics-SIGA Annual Congress, Giardini Naxos, Itanly18/21September,2002
    [51] Peterson D.M.,Qureshi,A.A. Genetic and environmental effects on tocols of barley andoats[J]. Cereal Chemistry,1993,70,157-162
    [52] Ehrenbergerová J., Beleresiová N., Pryma J et al. Effect of cultivar, year grown, andcropping system on the content of tocopherols and tocotrienols in grains of hulled andhulless barley[J]. Plant Food for Human Nutrion,2006,61:145-150
    [53] Cahoon E.B., Hall S.E., Ripp K.G. Metabolic redesign of vitamin E biosynthesis in plantsfor tocotrienol production and increased antioxidant content[J]. Nature Biotechnology,2003,21:1082-1087
    [54] Ajjawi I., Shintani D. Engineered plants with elevated vitam in E:A nutraceutical successstory[J]. Trends Biotechnology,2004,22(3):104-107
    [55] Garcia I., Rodgers M., Lenne C., et al. Subcellular localization and purirification of ap-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization ofthe corresponding Cdna[J].Biochemical,1997,325:761-769
    [56] Rippert P., Scimemi C., Dubald M., et al. Engineering Plant Shikimate Pathway forProduction of Tocotrienol and Improving Herbicide Resistance1[J]. Plant Physiology,2004,134:92-100
    [57] Falk J., Andersen G., Kernebeck B., et al. Constitutive overexpression of barley4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin Econtent in seeds but not in leaves[J]. FEBS Letters.2003,540:35-40
    [58] Molina-Cano J.L., Roca de Togores F., Royo C., et al. Fast germinating low beta-glucanmutants induced in barley with improved malting quality and yield[J]. Theoretical andApplied Genetics,1989,78:748-754
    [59] Stuart I.M., Loi L., Fincher G.B. Varietal and environmental variations in (1-3,1-4)-β-glucan levels and (1-3, l-4)-β-glucanase potential in barley: relationships tomalting quality[J]. Journal of Cereal Science,1988,7:61-71
    [60] Greenberg D.C. A dillel cross analysis of gum content in barley (Hordeum vulgare)[J].Theoretical and Applied Genetics,1977,50:41-46
    [61] Han F., Ullrich S.E., Chirat S. et al. Mapping of β–glucan content and β-glucanaseactivity loci in barley grain and malt[J]. Theireticcal and Applied Genetics.1995,91:921-927
    [62] Mather D.E., Tinker N.A., LaBerge D.E. et al. Regions of the genome that affect grainand malt quality in a North AmericanTwo-row barley cross[J]. Crop Science,1997,37:544-554
    [63] Burton R.A., Wilson S.M., Hrmova M. Cellulose synthase-like CslF genes mediate thesynthesis of cell wall (1,3;1,4)-beta-D-glucans[J]. Science,2006,3l1:1940-1942
    [64] Lshitani M. Expression of the betaine aldehyde dehydrogenase gene in barley in responseto osmotic stress and abscisic acid[J]. Plant Molecular Biology,1995,27(2):307-315
    [65] Weretilnyk E.A., Hanson A.D. Molecular cloning of a plant betaine dehydrogenase,anenzyme implicated in adaption to salinity and drought[J]. Proc Nati Acad Sci USA,1990,87:2745-2749
    [66] NakamuraT., Yokota S., Muramoto Y. Expression of a betaine aldehyde dehydrogenasegene in rice,a glycine betaine non-accumulator,and possible localization of its protein inperoxisomes[J]. Plant Journal,1997,22:1115-1120
    [67] Castigioni P., Korte J., Bell E., et al. Transgenic plants with increased glycine-betaine[P].2005, US Patent,20050160500
    [68] Guo P., Baum M., Grando S., et al. Differentially expressed genes betweendrought-tolerant and drought-sensitive barley genotypes in response to drought stressduring the reproductive stage[J]. Journal of Experimental Botany,2009,60(12):3531-3544
    [69]杨树明,谢勇武,曾亚文,等.土壤、灌水和施氮对大麦农艺和产量性状及不同粒位籽粒功能成分的影响[J].麦类作物学报,2011,31(1):92-97
    [70] Jende-Strid B. Genetic control of flavonoid biosynthesis in barley[J]. Hereditas,1993,119:187-204
    [71] Drukaa A., Kudrnaa D., Rostoksa N., et al. Chalcone isomerase gene from rice (Oryzasativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping[J].Gene,2003,302:171-178
    [72] He F., Pan Q.H., Shi Y. Biosynthesis and Genetic Regulation of Proanthocyanidins inPlants[J]. Molecules,2008,13:2674-2703
    [73] Lepiniec L., Debeaujon I., Routaboul J.M., et al. Genetics and biochemistry of seedflavonoids[J]. Annual Review of Plant Biology,2006,57:405-430
    [74]张磊,张宝石.植物数量性状基因的定位与克隆[J].植物学通报,2007,24(4):553-560
    [75] Powell W., Morgante M., Ande C., et al. The comparison of RFLP, RAPD, AFLP, SSRmarkers for germplasm analysis[J]. Molecular Breeding,1996,12:225-238
    [76] Rostoks N., Mudie S., Cardle L., et al. Genome-wide SNP discovery and linkage analysisin barley based on genes responsive to abiotic stress[J]. Molecular Genetic Genomics,2005,274(5):515-527
    [77] Zeng Z.B. Theoretical basis for separation of multiple linked gene effects in mappingquantitative trait loci[J]. PNAS,1993,90:10972-10976
    [78]朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生命科学版),2000,26(l): l-6
    [79] Kleinhofs A., Chao S., Sharp P.J., et al. Mapping of nitrate reductase genes in barley andwheat. In: Miller TE, Koebner RMD (eds) Proc7thInt Wheat Genet Symp[C]. BathPress, Bath,1988, pp:541-546
    [80] Wenzl P., Li H.B., Carling J., et al. A high-density consensus map of barley linkingDArT markers to SSR, RFLP and STS loci and agricultural traits[J]. BMC Genomics,2006,7:206
    [81] Hearnden P.R., Eckermann P.J., McMichael G.L., et al. A genetic map of1,000SSR andDArT markers in a wide barley cross[J].Theoretical and Applied Genetics,2007,115:383-391
    [82] Marcel T.C., Varshney R.K., Barbieri M., et al. A high-density consensus map of barleyto compare the distribution of QTLs for partial resistance to Puccinia hordei and ofdefence gen homologues[J]. Theoretical and Applied Genetics,2007,114:487-500
    [83] Marquez-Cedillo L.A., Hayes P.M., Jones B.L., et al. QTL analysis of malting quality inbarley based on the doubled-haploid progeny of two elite North American varietiesrepresenting different germplasm group[J]. Theoretical and Applied Genetics,2000,101:173-184
    [84] Thomas W.T.B., Powell W., Waugh R., et al. Quantitative trait loci in a North WestEuropean spring barley cross-Blenheim×E22413[J]. Barley genetics newsletters,1994,24:41-45
    [85] Kjaer B., Jensen J. Quantitative trait loci for grain yield and yied components in a crossbetween a six-rowed and a two-rowed barley[J]. Euphytica,1996,90:39-48
    [86] Kicherer S., Backes G., Walther U., et al. Localising QTLs for leaf rust resistance andagronomic traits in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetic,2000,100:881-888
    [87] Marquez-Cedillo L.A., Hayes P.M., Kleinhofs A., et al. QTL analysis of agronomic traitsin barley based on the doubled-haploid progeny of two elite North American varietiesrepresenting different germplasm group[J]. Theoretical and Applied genetics,2001,103:625-637
    [88] Lgartua E., Edney M., Rosnagel B.G. et al. Marker-based selection of QTL affectinggrain and malt quality in two-row barley[J]. Crop science,2000,40:1426-1433
    [89] Mather D.E., Tinker N.A., Laberge D.E., et al. Regions of the genome that affect grainand malt quality in a North American two-row barley cross[J]. Crop science,1997,37:544-554
    [90] Salvi S. Conserved non-coding genomic sequences associated with a flowering-timequantitative trait locus in maize[J]. PNAS,2007,104:11376-11381
    [91] Flint-Garcia S.A., Thuillet A.C., Yu J.M., et al. Maize association population: ahigh-resolution platform for quantitative trait locus dissection[J]. Plant Journal,2005,44:1054-1064
    [92] Frary A., Nesbitt T.C., Grandillo S., et al. fw2.2, A quantitative trait locus key to theevolution of tomato fruit size[J]. Science,2000,289:85-88
    [93] Liu J.P., Eck J.V., Cong B., et al. A new class of regulatory genes underlying the causeof pear-shaped tomato fruit[J]. PNAS,2002,99:13302-13306
    [94] Werner J.D., Borevitz J.o., Warthmann N., et al. Quantitative trait locus mapping andDNA array hybridization identify an FLM deletion as a cause for nature flowering-timevariation[J]. PNAS,2005,102:2460-2465
    [95] Yano M., Katayose Y., Ashikari M., et al. Hdl, a major photoperiod sensitivityquantitative trait locus in rice, is closely related to the Arabidopsis flowering time geneCONSTANS. The plant cell,2000,12:2473-2483
    [96] Li C., Zhou A., Sang T. Rice domestication by reducing shattering[J]. Science,2006,311:1936-1939
    [97] Price A.H. Believe it or not, QTLs are accurate[J]. Trends in plant Science11:213-216
    [98]张学勇,童依平,游光霞,等.选择连连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39(8):1526-1535
    [99] Wu J.Z., Machara T., Shimokawa T., et al. A comprehensive rice transcription mapcontaining6591expressed sequence tag sites[J]. The plant cell,2002,14:525-535
    [100] Yu J.M., Buckler E.S. Genetic association mapping and genome organization ofmaize[J]. Current opinion in biotechnology,2006,17:1-6
    [101] Gupta P.K., Rustgi S., Kulwal P.L. Linkage disequilibrium and association studies inhigher plants: Present status and future prospects[J]. plant molecular biology,2005,57:461-485
    [102]王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡[J].遗传,2007,29(11):1317-1323
    [103] Devlin B., Risch N.A. Comparison of linkage disequilibrium measures for fine-scalemapping[J]. Genomics,1995,29:311-322
    [104] Gaut B.S., Long A.D. The lowdown on linkage disequilibrium[J]. The plant cell,2003,15:1502-1506
    [105] Zhu C., Gore M., Buckler E.S., et al. Status and prospects of association mapping inplants[J]. The plant genome,2008,1:5-20
    [106] Wang R., Yu Y., Zhao J., et al. Population structure and linkage disequilibrium of amini core set of maize inbred lines in China[J]. Theoretical and Applied Genetics,2008,117(7):1141-1153
    [107] Wang Y.S., Barrantt B.J., Clayton D.G., et al. Genome-wide association studies,theoretical and practical concerns[J]. Nature reviews genetics,2005,6:109-118
    [108]杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530
    [109] Przeworkski M. The signature of positive selection at randomly chosen loci[J]. Genetics,2002,160:1179-1189
    [110] Rafalski A. Applications of single nucleotide polymorphisms in crop genetics andbreeding[J]. Current opinion in plant biology,2002,5:94-100
    [111] Norborg M., Borevitz J.O., Bergelson J., et al. The extent of linkage disequilibrium inArabidopsis thaliana[J]. Nature genetic,2002,30:190-193
    [112] Caldwell K.S., Russell J., Langridge P. et al. Extreme population-dependent linkagedisequilibrium detected in an inbreeding plant species, Hordeum vulgare[J]. Genetics2006,172:557-567
    [113] Pritchard J.k., Stephens M., Donnelly P. Inference of population structure usingmultilocus genotype data[J]. Genetics,2000,155:945-959
    [114] Long A.D., Langley C.H. The power of association studies to detect the contribution ofcandidate genetic loci to variation in complex traits[J]. Genome research,1999,9(8):720-731
    [115] Thornsberry J.M., Goodman M.M., Doebley J., et al. Dwarf8polymorphisms associatewith variation with variation in flowering time[J]. Nature genetics,2001,28:286-289
    [116] Igartua E., Casas A.M., Ciudad F., et al. RFLP markers associated with major genescontrolling heading date evaluated in a barley germ plasm pool[J]. Heredity,1999,83(5):551-559
    [117] Gebhardt C., Ballovra A., Walkemeier B., et al. Assessing genetic potential ingermplasm collections of crop plants by marker-trait association: a case study forpotatoes with quantitative variation of resistance to late blight and maturity type[J].Molecular Breeding,2004,13:93-102
    [118] Remington D.L., Thornsberry J.M., Matsuoka Y., et al. Structure of linkagedisequilibrium and phenotypic associations in the maize genome[J]. PNAS,2001,98:11479-11484
    [119] Olsen K.M., Halldorsdottir S.S., Stinchcombe J.R., et al. Linkage disequilibriummapping of Arabidopsis CRY2flowering time alleles[J]. Genetics,2004,167:1361-1369
    [120] Ehrenreich I.M., Hanzawa Y., Chou L., et al. Candidate gene association mapping ofArabidopsis flowering time[J]. Genetics,2009,183:325-335
    [121] Zhao H.H., Fernando R.L. A power and precision of alternate methods for linkagedisequilibrium mapping of quantitative trait loci[J]. Genetics,2007,175:1975-1986
    [122] Wilson L.M., Whitt S.R., Ibanez A.M., et al. Dissection of maize kernel compositionand starch production by candidate gene associations[J]. Plant Cell,2004,16:2719-2733
    [123] Palaisa K.A., Morgante M., Williams M., et al. Contrasting effects of selection onsequence diversity and linkage disequilibrium at two phytoene synthase loci[J]. PlantCell,2003,15:1795-1806
    [124] Harjes C.E., Rocheford T.R., Bai L., et al. Natural genetic variation in lycopene epsiloncyclase tapped for maize biofortification[J]. Science,2008,319:330-333
    [125] Olsen K.M., Purugganan M.D. Molecular evidence on the origin and evolution ofglutinous rice[J]. Genetics,2002,162:941-950
    [126] Wen W., Mei H., Feng F., et al. Population structure and association mapping onchromosome7using a diverse panel of Chinese germplasm office (Oryza sativa L.)[J].Theoretical and Applied Genetics,2009,119:459-470
    [127] Tian Z., Qian Q., Liu Q., et al. Allelic diversities in rice starch biosynthesis lead to adiverse array of rice eating and cooking qualities. PNAS,2009,106:21760-21765
    [128] Iwata H., Ebana K., Uga Y., et al. Genome-wide association study of grain shapevariation among Oryza sativa L. germplasms based on elliptic Fourier analysis[J].Molecular Breeding,2010,25:203-215
    [129] Agrama H.A., Eizenga G.C., Yan W. Association mapping of yield and its componentsin rice cultivars[J]. Molecular Breeding,2007,19:341-356
    [130] Breseghello F., Sorrells M.E. Association mapping of kernel size and milling quality inwheat (Triticum aestivum L.) cultivars[J]. Genetics,2006,172:1165-1177
    [131] Jun T.H., Van K., Kim M.Y., et al. Association analysis using SSR markers to findQTL for seed protein content in soybean[J]. Euphytica,2008,162:179-191
    [132] Malosetti M., van der Linden C.G., Vosman B., et al. A mixed-model approach toassociation mapping using pedigree information with an illustration of resistance tophytophthora infestans in potato[J]. Genetics,2007,175:879-889
    [133] Casa A.M., Pressoira G., Brown P.J., et al. Community resources and strategies forassociation mapping in sorghum[J]. Crop Sciences,2008,48:30-40
    [134] Andersen J.R., Lübberstedt T. Functional markers in plants[J]. Trends in plant science,2003,8:554-560
    [135] Lübberstedt T., Zein I., Andersen J.R., et al. Development and application of functionalmarkers in maize[J]. Euphytica,2005,146:101-108
    [136] Andersen J.R., Schrag T., Melchinger A.E., et al. Validation of Dwarf8polymorphismsassociated with flowering time in elite European inbred lines of maize (Zea mays L.)[J].Theoretical and Applied genetics,2005,111:206-217
    [137] Bao J.S., Corke H., Sun M. Nucleotide diversity in starch synthase IIa and validation ofsingle nucleotide polymorphisms in relation to starch gelatinization temperature andother physicochemical properties in rice (Oryza sativa L.)[J].Theoretical and appliedgenetics,2006,113:1171-1183
    [138]万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462
    [139] Aranzana M.J., Kim S., Zhao K., et al. Genome-wide association mapping inArabidopsis identifies previously known flowering time and pathogen resistancegenes[J]. PLoS Genetics,2005,1: e60
    [140] Beló A., Zheng P.Z., Luck S., et al. Whole genome scan detects an allelic variant offad2associated with increased oleic acid levels in maize[J]. Molecular Genetics andGenomics,2008,279(1):1-10
    [141] Kover P.X., Valdar W., Trakalo J., et al. A multiparent advanced generation inter-crossto fine-map quantitative traits in Arabidopsis thaliana[J]. PLoS Genetic,2009,5:e1000551
    [142] Atwell S., Huang Y.S., Vilhjálmsson B.J., et al. Genome-wide association study of107phenotypes in Arabidopsis thaliana inbred lines [J]. Nature,2010,465:627-631
    [143] Yu J., Holland J.B., McMullen M.D., et al. Genetic design and statistical power ofnested association mapping in maize[J]. Genetics,2008,178:539-551
    [144] Stich B., Yu J., Melchinger A.E., et al. Power to detect higher-order epistaticineractions in a metabolic pathway using a new mapping strategy[J]. Genetics,2007,176:563-570
    [145] Doebley J. A tomato gene weighs in, Science,2000,289:71-72
    [146] Ye X.D., AlBabili S., Kl ti A., et al. Engineering the provitamin A (β-carotene)biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science,2000,287(5451):303-305
    [147] Szalma S.J., Buckler Ⅳ E.S., Snook M.E., et al. Association analysis of candidate genesfor maysin and chlorogenic acid accumulation in maize silks[J]. Theoretic and AppliedGenetic,2005,110(7):1324-1333
    [148] Wang R.L., Stec A., Hey J., Lukens L., et al. The limits of selection during maizedomestication[J]. Nature,1999,398:236-239
    [149] Wang H., Nussbaum-Wagler T., Li B.L., et al. The origin of the naked grains ofmaize[J]. Nature,2005,436:714-719
    [150] Vollbrecht E., Springer P.S., Goh L., et al. Architecture of floral branch systems inmaize and related grasses[J]. Nature,2005,436:1119-1126
    [151]王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡[J].遗传,20077,29(11):1317-1323
    [152] Kraakman A.T.W., Niks R.E., van den Berg P.M.M.M., et al. Linkage disequilibriummapping of yield and yield stability in modern spring barley cultivars[J]. Genetics,2004,168:435-446
    [153] Rostoks N., Ramsay L., MacKenzie K., et al. Recent history of artificial outcrossingfacilitates whole-genome association mapping in elite inbred crop varieties[J]. PNAS,2006,103:18656-18661
    [154] Comadran J., Thomas W.T., van Eeuwijk F.A., et al. Patterns of genetic diversity andlinkage disequilibrium in a highly structured Hordeum vulgare association mappingpopulation for the Mediterranean basin[J]. Theoretical and Applied Genetics,2009,119:175-187
    [155] Comadran J., Russell J.R., Booth A., et al. Mixed model association scans ofmulti-environmental trial data reveal major loci controlling yield and yield related traitsin Hordeum vulgare in Mediterranean environments[J]. Theoretical and AppliedGenetics,2011,122:1363-1373
    [156] Comadran J., Russell J.R., van Eeuwijk F.A., et al. Mapping adaptation of barley todroughted environments[J]. Euphytica,2008,161:35-45
    [157] Roy J.K., Smith K.P., Muehlbauer G.J., et al. Association mapping of spot blotchresistance in wild barley[J]. Molecular Breeding,2010,26:243-256
    [158] Cockram J., White J., Zuluaga D.L., et al. Genome-wide association mapping tocandidate polymorphism resolution in the unsequenced barley genome[J]. PNAS,2010,107:21611-21616
    [159] Wang M., Jiang N., Jia T., et al. Genome-wide association mapping of agronomic andmorphologic traits in highly structured populations of barley cultivars[J]. Theoretical andApplied Genetetics,2012,124:233-246
    [1]杨建明,汪军妹,朱靖环,等.“十一五”我国专用大麦的消费需求与发展目标[J].浙江农业学报,2005,17:228-230
    [2]杨涛,曾亚文,萧凤回,等.药用大麦及其活性物质研究进展[J].麦类作物学报,2007,27:1154-1158
    [3]任嘉嘉,相海,王强,等.大麦食品加工及功能特性研究进展[J].粮油加工,2009,4:99-102
    [4] Molina-Cano J.L., Roca de Togores F., Royo C., et al. Fast germinating low beta-glucanmutants induced in barley with improved malting quality and yield[J]. Theoretical andApplied Genetics,1989,78:748-754
    [5] Ehrenbergerová J., Belcrediová N., Pryma J., et al. Effect of cultivar, year grown, andcropping system on the content of tocopherols and tocotrienols in grains of hulled andhulless barley[J]. Plant Food for Human Nutrion,2006,61:145-150
    [6] Greenberg D.C. A diallel cross analysis of gum content in barley (Hordeum vulgare)[J].Theoretical and Applied Genetics,1977,50:41-46
    [7] Peterson D.M., Qureshi A.A. Genetic and environmental effects on tocols of barley andoats[J]. Cereal Chemistry,1993,70:157-162
    [8] Stuart I.M., Loi L., Fincher G.B. Varietal and environmental variations in (1-3,1-4)-β-glucan levels and (1-3, l-4)-β-glucanase potential in barley:relationships tomalting quality[J].Journal of Cereal Science,1988,7:61-71
    [9] Marquez-Cedillo L.A., Hayes P.M., Jones B.L., et al. QTL analysis of malting quality inbarley based on the doubled-haploid progeny of two elite North American varietiesrepresenting different germplasm group[J]. Theoretical and Applied Genetics,2000,101:173-184
    [10] Thomas W.T.B., Powell W., Waugh R., et al. Quantitative trait loci in a North WestEuropean spring barley cross-Blenheim×E22413[J].Barley genetics newsletters,1994,24:41-45
    [11] Kicherer S., Backes G., Walther U., et al. Localising QTLs for leaf rust resistance andagronomic traits in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetic,2000,100:881-888
    [12] Thornsberry J.M., Goodman M.M., Doebley J., et al. Dwarf8polymorphisms associatewith variation with variation in flowering time[J]. Nature genetics,2001,28:286-289
    [13] Flint-Garcia S.A., Thuillet A.C., Yu J.M., et al. Maize association population: ahigh-resolution platform for quantitative trait locus dissection[J]. Plant Journal,2005,44:1054-1064
    [14] Pinheiro F., Santos M.O., Barros F., et a1. Isolation and characterization of microsatelliteloci in the Brazilian orchid Epidendrum fulgens[J]. Conserv Genet,2008,9:1661-1663
    [15] Ivandic V., Hackett C.A., Nero E., et a1. Analysis of simple sequence repeats (SSRs) inwild harley from the Fertile Crecent:associations with ecology, geography and floweringtime[J]. Plant Molecular Biology,2002,48:511-527
    [16] Andersen J.R., Schrag T., Melchinger A.E., et al. Validation of Dwarf8polymorphismsassociated with flowering time in elite European inbred lines of maize (Zea mays L.)[J].Theoretical and Applied genetics,2005,111:206-217
    [17] Pritchard J.k., Stephens M., Donnelly P. Inference of population structure usingmultilocus genotype data[J]. Genetics,2000,155:945-959
    [18] Morgante M., Hanafey M., Powell W. Microsatellites are preferentially associated withnonrepetitive DNA in plant genomes[J]. Nature Genetics,2002,30:194-200
    [19] Cardle L., Ramsay L., Milbourne D., et al. Computational and experimentalcharacterization of physically clustered simple sequence repeats in plants[J]. Genetics,2000,156:847-854
    [20]郝晨阳,王兰芬,贾继增,等. SSR荧光标记和银染技术的比较分析[J].作物学报,2005,31:144-149
    [21]陆宁海,郑文明,王建锋,等.陇南地区小麦条锈菌群体遗传多样性SSR分析[J].中国农业科学,2009,42:2763-2770
    [22]张赤红,张京,赵会英,等.应用SSR标记对61个国家大麦遗传多样性的研究[J].植物遗传资源学报,2008,9:15-19
    [23] Hearnden P.R., Eckermann P.J., McMichael G.L., et al. A genetic map of1,000SSR andDArT markers in a wide barley cross[J]. Theoretical and Applied Genetics,2007,115:383-391
    [24] Ramsaya L., Macaulaya M., Ivanissevichb S.D., et al. A Simple Sequence Repeat-BasedLinkage Map of Barley[J]. Genetics,2000,156:1997-2005
    [25] Malysheva-Otto L.V., Ganal M.W., R der M.S. Analysis of molecular diversity,population structure and linkage disequilibrium in a worldwide survey of cultivatedbarley germplasm (Hordeum vulgare L.)[J]. BMC Genetic,2006,7:6
    [26] Matus I.A., Hayes P.M. Genetic diversity in three groups of barley germplasm assessedby simple sequence repeats[J].Genome,2002,45:1095-1106
    [27] Hamza S., Ben Hamida W., Rebai A., et al. SSR-based genetic diversity assessmentamong Tunisian winter barley and relationship with morphological traits[J]. Euphytica,2004,135:107-118
    [28]李荣华,夏岩石,刘顺枝,等.改进的CTAB提取植物DNA方法[J].实验室研究与探索,2009,28:14-16
    [29] Feau N., Jacobi V., Hamelin R.C., et al. Screening of ESTs from Septoria musiva(teleomorph Mycosphaerella populorum) for detection of SSR and PCR–RFLPmarkers[J]. Molecular Ecology Notes,2006,6:356-358
    [30] Zerr T., Henikoff S.(2005) Automated band mapping in electrophoretic gel image usingbackground information[J]. Nucleic Acids Research,2005,33:2806-2812
    [31]文自翔.中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析[D].南京:南京农业大学,2008
    [32] Excoffier, Laval L.G., Schneider S. Arlequin ver.3.0: An integrated software package forpopulation genetics data analysis[J]. Evolutionary Bioinformatics Online,2005,1:47-50
    [33] Weir B.S., Hill W.G. Estimating F-statistics[J]. Annual Review of Genetics,2002,36:721-750
    [34] Liu K., Muse S.V. PowerMarker: an integrated analysis environment for genetic markeranalysis[J]. Bioinformatics,2005,21:2128-2129
    [35] Varshney R.K., Baum M., Guo P., et al. Features of SNP and SSR diversity in a set ofICARDA barley germplasm collection[J]. Molecular Breeding,2010,26:229-242
    [36]张学勇,童依平,游光霞,等.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39:1526-1535
    [37] Malysheva-Otto L.V., Ganal M.W., R der M.S. Analysis of molecular diversity,population structure and linkage disequilibrium in a worldwide survey of cultivatedbarley germplasm (Hordeum vulgare L.)[J]. BMC Genetics,2006,7:6
    [38] Pozzi C., Rossini L.,Vecchietti A., et al. Genes and genome changes duringdomestication of cereals[M]. In: Gupta PK, Varshney Rk (eds) Cereal genomics.2004,Kluwer, Dordrecht, PP:165-198
    [1] Li R., Guo P., Baum M., et al. Evaluation of chlorophyll content and fluorescenceparameters as indicators of drought tolerance in barley. Agricultural Sciences in China,2006,5:751-757
    [2] Till B.J., Colbert T., Tompa R., et al. High-Throughput TILLING for FunctionalGenomics[J]. Plant Functional Genomics,2003,10:205-219
    [3] Wright S.I., Bi I.V., Schroeder S.G., et al. The effects of artificial selection on the maizegenome[J]. Science,2005,308:1310-1314
    [4] Comai L., Young K., Till B.J., et al. Efficient discovery of DNA polymorphisms in naturalpopulations by EcoTILLING [J]. Plant Journal,2004,37:778-786
    [5] Till B.J, Burtner C., Comai L., et al. Mismatch cleavage by Single-strand specificnucleases[J]. Nucleic Acids Research,2004,32(8):2632-2641
    [6] Barkley N.A., Wang M.L. Application of TILLING and EcoTILLING as reverse geneticApproaches to elucidate the function of genes in plants and animals [J]. CurrentGenomics,2008,6:212-226
    [7] Coassin S., Brandstatter A., Kronenberg F. An optimized procedure for the design andevaluation of Ecotilling assays [J]. BMC Genomics,2008,9:510
    [8] Till B.J, Zerr T., Comai L., et al. A protocol for TILLIN G and EcoTILLING in plants andanimals [J] Nature Protocols,2006,1(5):2465-2477
    [9] Wu J., Sun R.F., Zhang Y.G., et al. Establishment of Ecotilling for discovery of DNApolymorphisms in brassicarapa natural population [J]. Agricultural Sciences in China,2005,4(9):654-659
    [10] Gilchrist E.J., Haughn G.W., Ying C.C., et al. Use of EcoTILLING as an efficient SNPdiscovery tool to survey genetic variation in wild populations of Populus trichocarpa[J].Molecular Ecology,2006,15:1367-1378
    [11] Wang J., Sun J., Liu D., et al. Analysis of Pina and Pinb alleles in the micro-corecollections of Chinese wheat germplasm by EcoTILLING and identification of a novelPinb allele [J]. Journal of cereal sciences,2008,48:836-842
    [12] Raghavan C., Naredo M.E.B., Wang H.H., et al. Rapid method for detecting SNPs onagarose gels and its application in candidate gene mapping[J]. Mol Breeeding,2007,19:87-101
    [13] Wienholds E., van Eeden F., Kosters M., et al. Efficient target-selected mutagenesis inzebrafish[J]. Genome Research,2003,12:2700–2707
    [14] Caldwell D.G., McCallum N., Shaw P., et al. A structured mutant population for forwardand reverse genetics in Barley (Hordeum vulgare L.)[J]. The Plant Journal,2004,40:143-150
    [15] Mejlhede N., Kyjovska Z., Backes G., et al. EcoTILLING for the identification of allelicvariation with the powdery mildew resistance genes mlo and Mla of barley[J]. PlantBreeding,2006,125(5):461-467
    [16]郭培国,李荣华.一种提取芹菜中CEL I核酸酶的方法[P].中国专利,200910038725.9,2009-9-23
    [17]林英,陈冬妹,杨瑜,等. TILLING技术应用于家蚕化学诱导突变检测的体系优化[J].蚕学通讯,2009,29(4):1-6
    [18] Henikoff S. and Comai L. Single-nucleotide mutations for plant functional genomics[J].Annual Review of Plant Biology,2003,54:375-401
    [19] Zerr T. Henikoff s. Automated band mapping in electrophoretic ge image usingbackground information[J]. Nucleic Acids Research,2005,33:2806-2812
    [20] Elias R., Till B., Mba C., et al. Optimizing TILLING and Ecotilling techniques for potato(Solanum tuberosum L)[J]. BMC Research Notes,2009,7:141
    [21] Colbert T., Till B.J., Tompa R., et al. High-Throughput Screening for Induced PointMutations[J]. Plant Physiology,2001,126:480-484
    [22] Till B.J., Reynolds S.H., Weil C., et al. Discovery of induced point mutations in maizegenes by TILLING[J]. BMC Plant Biology,2004,4:12
    [23] Yang B., Wen X., Kodali N.S., et al. Purification, cloning and characterization of theCELⅠnuclease[J]. Biochemistry,2000,39:3533-3541
    [24] Oleykowski C.A., Bronson Mullins C.R., Godwin A.K., et al. Mutation detection using anovel plant endonuclease [J]. Nucleic Acids Research,1998,26:4597-4602
    [25]林英,陈冬妹,赵萍,等. CELⅠ酶的粗纯化及活性分析[J].农业生物技术学报,2007,15(6):1006-1011
    [26]韩锁义,杨玛丽,盖钧镒,等. CEL I酶的粗提取及其活性检测[J].遗传,2006,28:1112-1116
    [1]牛广财,朱丹,董静.大麦深加工现状及其发展趋势[J].农业科技与装备,2011,201:11-15
    [2]夏向东,吕飞杰,台建祥.大麦中的生理活性成分及其生理功能[J].中国食品学报,2002,2(3):63-68
    [3] FDA Allows Barley Products to Claim Reduction in Risk of Coronary Heart Disease, FDANews,2005, December23.
    [4]任嘉嘉,相海,王强,等.大麦食品加工及功能特性研究进展[J].粮油加工,2009,4:31-33
    [5]郭建华.麦绿素在国内的研究进展[J].农产品加工(学刊),2008,7:31-32
    [6] Molina-Cano J.L., Roca de Togores F., Royo C., et al. Fast germinating low beta-glucanmutants induced in barley with improved malting quality and yield[J]. Theoretical andApplied Genetics,1989,78:748-754
    [7] Ehrenbergerová J., Belcrediová N., Pryma J., et al. Effect of cultivar, year grown, andcropping system on the content of tocopherols and tocotrienols in grains of hulled andhulless barley[J]. Plant Food for Human Nutrion,2006,61:145-150
    [8] Greenberg D.C. A diallel cross analysis of gum content in barley (Hordeum vulgare)[J].Theoretical and Applied Genetics,1977,50:41-46
    [9] Peterson D.M., Qureshi A.A. Genetic and environmental effects on tocols of barley andoats[J]. Cereal Chemistry,1993,70:157-162
    [10] Stuart I.M., Loi L., Fincher G.B.Varietal and environmental variations in (1-3,1-4)-β-glucan levels and (1-3, l-4)-β-glucanase potential in barley:relationships tomalting quality[J].Journal of Cereal Science,1988,7:61-71
    [11] Cahoon E.B., Hall S.E., Ripp K.G. Metabolic redesign of vitamin E biosynthesis in plantsfor tocotrienol production and increased antioxidant content[J]. Nature Biotech,2003,21:1082-1087
    [12] Ajjawi I., Shintani D. Engineered plants with elevated vitam in E: A nutraceutical successstory [J]. Trends Biotechnology,2004,22:104-107
    [13] Garcia I., Rodgers M., Lenne C., et al. Subcellular localization and puririfi cation of ap-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization ofthe corresponding Cdna[J].Biochemistry,1997,325:761-769
    [14] Rippert P., Scimemi C., Dubald M., Matringe M. Engineering Plant Shikimate Pathwayfor Production of Tocotrienol and Improving Herbicide Resistance1[J]. Plant Physiology,2004,134:92-100
    [15] Falk J., Andersen G., Kernebeck B., et al. Constitutive overexpression of barley4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin Econtent in seeds but not in leaves[J]. FEBS Letters.2003,540:35-40
    [16] Han F., Ullrich S.E., Chirat S., et al. Mapping of β–glucan content and β-glucanaseactivity loci in barley grain and malt[J]. Theireticcal and Applied Genetics.1995,91:921-927
    [17] Castigioni P, Korte J, Bell E et al. Transgenic plants with increased glycine-betaine[P].US Patent,2005,20050160500
    [18] Ueda A., Yamamoto-Yamane Y., Takabe T. Salt stress enhances proline utilization in theapical region of barley roots[J]. Biochemical and Biophysical Research Communications,2007,355:61-66
    [19] Park S.Y., Yu J.W., Park J.S., et al. The Senescence-Induced Staygreen Protein RegulatesChlorophyll Degradation. Plant Cell,2007,19:1649-1664
    [20]王正航,武仙山,昌小平,等.小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析[J].作物学报,2010,36:217-227
    [21] Wang W., Vinocur B., Shoseyov O., et al. Role of plant heat-shock proteins andmolecular chaperones in the abiotic stress response. Trends in Plant Science,2004,9:244-252
    [22] Guo P., Baum M., Grando S., et al. Differentially expressed genes betweendrought-tolerant and drought-sensitive barley genotypes in response to drought stressduring the reproductive stage[J]. Journal of Experimental Botany,2009,12:3531–3544
    [23]郭培国,李荣华.一种提取芹菜中CEL I核酸酶的方法.中国专利,200910038725.9,2009-9-23
    [24]李荣华,夏岩石,刘顺枝,等.改进的CTAB提取植物DNA方法[J].实验室研究与探索,2009,28:14-16
    [25] Zerr T., Henikoff S. Automated band mapping in electrophoretic gel image usingbackground information[J]. Nucleic Acids Research,2005,33:2806-2812
    [26] Stephens M., Smith N.J., and Donnelly P. A new statistical method for haplotypereconstruction from population data[J]. American Journal of Human Genetics,2001,68:978-989
    [27] Stephens M., Scheet P. Accounting for decay of linkage disequilibrium in haplotypeinference and missing data imputation[J]. American Journal of Human Genetics,2005,76:449-462
    [28] Ng P.C., Henikoff S. SIFT: predicting amino acid changes that affect protein function[J].Nucleic Acids research,2003,31:3812-3814
    [29] Taylor N.E., Greene E.A. PARSESNP: a tool for the analysis of nucleotidepolymorphisms[J]. Nucleic Acids research,2003,31:3808-3811
    [30] Kota R., Varshney R.K., Prasad M., et al. EST-derived single nucleotide polymorphism(SNP) markers for assembling genetic and physical maps of the barley genome[J].Functional and Integrative Genomics,2007,3:223-233
    [31] Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNApolymorphism data[J]. Bioinformatics,2009,11:1451-1452
    [32] Hill W.G., Robertson A. Linkage disequilibrium in finite populations[J]. Theoretical andApplied Genetics,1968,38:226-231
    [33] Zhang Z., Li J., Zhao X.Q., et al. KaKs Calculator: Calculating Ka and Ks through modelselection and model averaging[J]. Genomics Proteomics Bioinformatics,2006,4:259-263.
    [34] Hofinger B.J., Russell J.R., Bass C.G., et al. An exceptionally high nucleotide andhaplotype diversity and a signature of positive selection for the eIF4E resistance gene inbarley are revealed by allele mining and phylogenetic analyses of natural populations[J].Molecular Ecology,2011,20:3653-3668
    [35] Zeng X., Wei Y., Jiang Q., et al. SNP analysis and haplotype identification inchymotrypsin inhibitor-2(CI-2) gene of barley[J]. Agricultural Sciences in China,2009,8:8-14
    [36] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNApolymorphism[J]. Genetics,1989,123:585-595
    [37] Fu Y.X., Li W.H. Statistical tests of neutrality of mutations[J]. Genetics,1993,133:693-709
    [38] Gilchrist E.J., Haughn G.W., Ying C.C., et al. Use of EcoTILLING as an efficient SNPdiscovery tool to survey genetic variation in wild populations of populus trichocarpa[J].Molecular Ecology,2006,15:1367-1378
    [39] Cseri A., Cserhati M., von Korff M., et al. Allele mining and haplotype discovery inbarley candidate genes for drought tolerance[J]. Euphytica,2011,181:341-356
    [40] Bundock P.C., Henry R.J. Single nucleotide polymorphism, haplotype diversity andrecombination in the Isa gene of barley[J]. Theoretical and Applied Genetics,2004,109:543-551
    [41] Chen G., Yang S., Li W.T., et al. Variations of single nucleotide polymorphism (SNP) ofHordoindoline a Gene (hina) and its relationships with kernel hardness in92northAmerican barley varieties (Hordeum vulgare L.)[J]. Agricultural Sciences in China,2009,12:1440-1447
    [42] Duran C., Appleby N., Vardy M., et al. Single nucleotide polymorphism discover inbarley using autoSNPdb[J]. Plant Biotechnology Journal,2009,7:326-333
    [43] Russell J., Booth A., Fuller J., et al. A comparison of sequence-based polymorphism andhaplotype content in transcribed and anonymous regions of the barley genome[J].Genome,2004,47:389-398
    [44] Bundock C., Christopher T., Eggler P., et al. Single nucleotide polymorphisms incytochrome P450genes from barley[J]. Theoretical and Applied Genetics,2003,106:676-682
    [45] Kanazin V., Talbert H., See D., et al. Discovery and assay of single-nucleotidepolymorphisms in barley (Hordeum vulgare)[J]. Plant Molecular Biology,2002,48:529-537
    [46] Varshney R.K., Baum M., Guo. P., et al. Features of SNP and SSR diversity in a set ofICARDA barley germplasm collection[J]. Molecular Breeding,2010,26:229-242
    [47] Malysheva-Otto L.V., Ganal M.W., R der M.S. Analysis of molecular diversity,population structure and linkage disequilibrium in a worldwide survey of cultivatedbarley germplasm (Hordeum vulgare L.)[J]. BMC Genetic,2006,7:6
    [48] Varshney R.K., Thiel T., Sretenovic-Rajicic T., et al. Identification and validation of acore set of informative genic SSR and SNP markers for assaying functional diversity inbarley[J]. Molecular Breeding,2008,22:1-13
    [49] Olsen K.M., Womack A., Garrett A.R., et al. Contrasting evolutionary forces in theArabidopsis thaliana floral developmental pathway[J]. Genetics,2002,160:1641-1650
    [50] Rose L.E., Bittner-Eddy P.D., Langley C.H., et al. The maintenance of extreme aminoacid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana[J]. Genetics,2004,166:1517-1527
    [1]文自翔,赵团结,郑永战,等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ:群体结构及关联标记[J].作物学报,2008,34(7):1169-1178
    [2] Thornsberry J.M., Goodman M.M., Doebley J, et al. Dwarf8polymorphisms associatewith variation in flowering time[J]. Nature Genetic,2001,28:286-289
    [3] March R.E. Gene mapping by linkage and association analysis[J]. MolecularBiotechnology,1999,13:113-122
    [4] Mackay I., Powell W. Methods for linkage disequilibrium mapping in crops[J]. TrendsPlant Science,2007,12:57-63
    [5] Yu J., Edward S.B. Genetic association mapping and genome organization of maize[J].Current Opinion in Biotechnology,2006,17:155-160
    [6] Cregan P.B., Jarvik T., Bush A.L., et al. An integrated genetic linkage map of the soybeangenome[J]. Crop Science,1999,39:1464-1490
    [7] Choi I.Y., Hyten D.L., Matukumalli L.K., et al. A soybean transcript map: Genedistribution, haplotype and SNP analysis[J]. Genetics,2006,176:685-696
    [8] Flint-Garcia S.A., Thuillet A., Yu J., et al. Maize association population: A high resolutionplatform for QTL dissection[J]. Plant Journal,2005,44:1054-1064
    [9] Eizenga G.C., Agrama H.A., Lee F.N., et al. Identifying novel resistance genes in newlyintroduced blast resistant rice germplasm[J]. Crop Science,2006,46:1870-1878
    [10] Maccaferri M., Sanguineti M.C., Enrico N., et al. Population structure and long-rangelinkage disequilibrium in a durum wheat elite collection[J]. Molecular Breeding,2005,15:271-289
    [11]石春林,朱艳,曹卫星.水稻叶片几何参数的模拟分析[J].中国农业科学,2006,39(5):910-915
    [12] Lakew B., Eglinton J., Henry R.J., et al. The potential contribution of wild barley(Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley(H. vulgare ssp. vulgare)[J]. Field Crop Research,2011,120:161-168
    [13] Vollmann J, Walter H, Sato T, et al. Digital image analysis and chlorophyll metering forphenotyping the effects of nodulation in soybean[J]. Computers and Electronics inAgriculture,2011(75):190-195.
    [14] Bessieres MA, Gibon Y, Lefeuvre JC et al. A single-step purification for Glycine Betainedetermination in plant extracts by isocratic HPLC[J]. Journal of Agriculture and FoodChemistry,1999(47):3718-3722.
    [15] Zhang Y, Shi C. The extracting techniques and analysis methods for flavonoids inplant[J]. Journal of Analytical Science,2009,25(1):102-107.
    [16] Pritchard J.K., Stephens M., Donnelly P. Inference of population structure usingmultilocus genotype data[J]. Genetics,2000,155:945-959
    [17] Bradbury P.J., Zhang Z., Kroon D.E., et al. TASSEL: software for association mappingof complex traits in diverse samples[J]. Bioinformatics,2007,23(19):2633-2638
    [18] Breseghello F., Sorrells M.S. Association mapping of kernel size and milling quality inwheat (Triticum aestivum L.) cultivars[J]. Genetics,2006,172:1165-1177
    [19] Ahmadi N., Negr o S., Katsantonis D., et al. Targeted association analysis identifiedjaponica rice varieties achieving Na+/K+homeostasis without the allelic make-up of thesalt tolerant indica variety Nona Bokra[J]. Theoretical and Applied Genetics,2011,123:881-895
    [20] Whitt S.R., Buckler E.S. Using natural allelic diversity to evaluate gene function[M]. In:Grotewald E, ed. Plant Functional Genomics: Methods and Protocols. Humana Press,2003, New York. pp.123-140
    [21] Varshney R.K., Baum M., Guo P., et al. Features of SNP and SSR diversity in a set ofICARDA barley germplasm collection[J]. Molecular Breeding,2010,26:229-242
    [22] Jilal A., Grando S., Henry R.J., et al. Genetic diversity of ICARDA’s worldwide barleylandrace collection[J]. Genetic Resources ang Crop Evolution,2008,55:1221-1230
    [1]武红霞,邬飞波,张国平.大麦麦绿素的营养价值和开发现状[J].中国粮油学报,2003,18(4):48-51
    [2]张立武.青稞麦绿素的制备及其抗疲劳和耐缺氧功能评价[D].西南农业大学,2005
    [3] Benedet J.A., Umeda H., Shibamoto T. Antioxidant Activity of Flavonoids Isolated fromYoung Green Barley Leaves toward Biological Lipid Samples[J]. Journal of Agricultureand Food Chemistry,2007,55:5499-5504
    [4] Osawa T., Katsuzaki H., Hagiwara Y., et al. A novel antioxidant isolated from younggreen barley leaves[J]. Journal of Agriculture and Food Chemistry,1992,40(7):1135-1138
    [5] Ohtake H., Yuasa H., Komura C., et al. Anitulcer activity of fractions from barley juice[J].Yakugaku Zasshi,1985,105(1):1046-1051
    [6]陈洪金,曹蕾.大麦保健茶的研究[J].粮食与饲料工业,1998,35(10):45-46
    [7]金铉煜,张道旭.麦绿素对大鼠的降血脂作用实验研究[J].中国食品卫生杂志,2006,18(3):244-245
    [8]毛孙忠,范小芳,吴小脉,等.麦绿素对实验性高脂血症大鼠血脂及M A、SOD、ET-1、NO的影响[J].食品科学,2007,28(1):306-308
    [9]严哲,毛孙忠,陈民新.麦绿素对高脂血症的防治作用[J].浙江临床医学,2006,8(3):268
    [10] Venugopal S., Iyer U.M. Management of diabetic dyslipidemia with subatmosphericdehydrated barley grass powder[J]. International Journal of Green Pharmacy,2010,(4):251-255
    [11]单鸣秋,朱慧芬,郭戎,等.麦绿素对免疫功能的影响[J].中国医用实药,2008,3(7):41-43
    [12]王天勇,俞荃,竹剑平,等.麦绿素调节免疫功能的实验研究[J].浙江临床医学,2008,10(10):1322-1323
    [13] Cremer L., Herold A., Avram D., et al. Inhibitory capacity of some fractions isolatedfrom a green barley extract upon TNF alpha production by the cells of the THP-1humanmonocytes line[J]. Romanian Archives of Microbiology and Immunology.1996,55:285-294
    [14]范燕青,陈元涛,张炜,等.青稞麦绿素提取工艺研究[J].食品工业科技,2011,8:252-254
    [15]吴晓霞,李建科,张研宇.蚕蛹油超声波辅助萃取及其抗氧化稳定性[J].中国农业科学,2010,43(8):1677-1687
    [16]王雅,赵萍,任海伟,等.微波辅助萃取葫芦巴茎叶挥发油工艺优化及抗氧化性研究[J].食品科学,2010,31(18):120-123
    [17]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006
    [18]张婷,糜漫天,唐勇,等.光皮木瓜酚类的提取和清除DPPH的抗氧化活性[J].营养学报,2007,29(5):485-489
    [19]刘薇,王宏君,赵建,等.邻二氮菲-Fe2+法测定保健食品的抗氧化能力[J].食品科学,2010,31(18):333-337
    [20]邹俊杰,王三根,周堂英.不同品种大麦营养生长与营养成分动态变化[J].西南农业大学学报,2002,24(2):155-158
    [21]许钢,王钱.不同品种大麦麦叶中主要营养成分的动态分析[J].中国粮油学报,1999,14(2):4-7
    [22]张秋英,叶定生,张绍南,等.大麦草营养研究及开发前景[J].福建农业科技,2002,(2):19-20
    [23]徐绍英.大麦栽培生理和遗传育种研究[M].北京:中国农业科技出版社,1999
    [24]郭辉力,邓泽元,彭游,等.微波/光波辅助提取茶皂素的研究[J].食品工业科技,2008,29(11):168-170
    [25]张尊听,杨伯伦,刘谦光,等.野葛根异黄酮成分的超声萃取及抗氧化作用[J].食品科学,2002,23(5):31-33
    [26] Kaufmann B., Christen P., Veuthey J.L. Parameters affecting microwave-assistedextraction of with anolides[J]. Phytochemical Analysis,2001,12:327-331.
    [27] Marinova K., Kleinschmidt K., Weissenbock G., et al. Flavonoid biosynthesis in barleyprimary leaves requires the presence of the vacuole and controls the activity of vacuolarflavonoid transport[J]. Plant Physiology,2007,144:432-444
    [28] Pekkarinen S.S., Heinonen I.M., Hopia A.I. Flavonoids quercetin, myricetin, kaemferoland (+)-catechin as antioxidants in methyllinoleate[J]. Journal of Science and FoodAgricultural,1996,79:499-506
    [29] Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships offlavonoids and phenolic acids. Free Radical Biology and Medicine,1996,20:933-956
    [30] Toma M., Vinatoru M., Paniwnyk L. et al. Investigation of the effects of ultrasound onvegetal tissues during solvent extraction[J]. Ultrasonics Sonochenistry,2001,8:137-142
    [31]王志高,鄢贵龙,武华宜,等.超声-微波协同萃取枇杷叶多糖的工艺研究[J].食品工业科技,2008,29(8):207-209
    [32]罗锋,汪河滨,杨玲,等.超声-微波协同萃取法提取甘草黄酮的研究[J].食品研究与开发,006,27(8):127-128
    [33]李莹,周剑忠,王功,等.超声波和微波联合提取银杏叶黄酮的研究[J].食品科,2008,6:153-155
    [34]耿兴敏,黄蓓丽,罗凤霞,等.唐菖蒲花粉低温保存过程中的生理生化特征[J].西北植物学报,2011,31(7):1417-1421
    [35]李一卓.麦绿素的生理功能及开发研究进展[J].中国食物与营养,2011,17(3):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700