用户名: 密码: 验证码:
枇杷属植物亲缘关系及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对枇杷属植物亲缘关系和遗传多样性进行了研究,取得以下主要研究结果:
     1.在采用ISSR标记对41份枇杷属植物材料进行亲缘关系研究和遗传多样性分析方面:
     (1)进行了枇杷属植物DNA提取方法的优化。采用改良的蛋白酶-K法,在裂解细胞核之前加入不含CTAB的提取介质Ⅰ,经低速离心后可有效将多糖、多酚等物质与细胞核分离。蛋白酶K的加入能有效降解与DNA结合的蛋白质,避免蛋白质与DNA共沉淀。0.3mmol/L的NaAc可以使多糖和小分子rRNA不沉淀而只沉淀DNA。所提DNA纯度较高,能满足ISSR扩增要求。
     (2)优化并建立了枇杷属植物ISSR反应体系和扩增程序。优化后的枇杷属植ISSR反应体系为:PCR扩增总体积为25μL,10×buffer2.5μL, Mg2+浓度2.0mmol/L,Taq酶1.5U,引物0.3μmol/L,模板60ng, dNTPs0.15mmol/L。反应程序为94℃预变性5mim;94℃变性1mim,退火70s,72℃延伸1.5mim,40次循环;72℃延伸7mim,4℃保存。
     (3)在41份供试材料中,20条ISSR引物分别产生436条带,多态性带分别为392条,多态性为89.9%。
     (4)根据ISSR数据分析,各供试材料间的相似系数分别为0.6216—0.9106之间。聚类结果首先将41份供试材料分为非栽培类群和栽培类群,但栽培类群分类存在一定差异,并且与传统的枇杷分类有所不同。说明枇杷品种分类是由多因素共同决定的,其表现型也受多因素共同影响。
     (5)研究结果并未发现枇杷属植物春季开花型或秋冬开花型的特异谱带,并且聚类结果也不支持将枇杷属植物按花期分为春季开花和秋冬开花两大类,说明开花时期可能为多基因控制性状,将枇杷属植物依开花时期分类是不可靠的。
     2.在对普通枇杷、栎叶枇杷及大渡河枇杷叶、果实、种子等形态特征观测及RAPD和ISSR两种分子标记综合分析,探讨栎叶枇杷、大渡河枇杷和普通枇杷的亲缘关系方面:
     (1)栎叶枇杷、大渡河枇杷和普通枇杷间存在着极显著的差异性,大渡河枇杷的各种性状(叶、果实、种子)都处于栎叶枇杷和普通枇杷之间;
     (2)大渡河枇杷不同单株的许多性状也有不同程度的分离,有些偏向于栎叶枇杷,有些偏向于普通枇杷;
     (3) RAPD和ISSR相似系数分析,大渡河枇杷总是处于栎叶枇杷和普通枇杷之间,偏向于栎叶枇杷,是连接枇杷属其他植物与普通枇杷之间的纽带。以大渡河枇杷作为待定杂种获得了最高的叠加性(44.9%和45.8%)。通过DNA指纹图谱分析发现,栎叶枇杷和普通枇杷的特异性谱带在大渡河枇杷上均有不同程度的表现。形态特征聚类分析及RAPD和ISSR相似系数分析均支持大渡河枇杷为栎叶枇杷和普通枇杷种间杂种的观点。
     3.在采用RAPD技术对四川枇杷产区的8个枇杷品种(系)进行品种(系)鉴定和系谱分析方面:
     (1)采用RAPD分析,利用选出的能稳定扩增的6个引物对‘大五星’、‘龙泉1号’、‘川农1号’等8个枇杷品种(系)进行了扩增,共扩增出54条带,其中26条具有多态性,多态性比例为48.15%。
     (2)利用NTSYSpc 2.1软件进行统计分析,得到8个品种(系)间的遗传距离。其中,‘早钟6号’与‘解放钟’的遗传距离最小,只有0.042,相似系数达到95.8%;‘川农1号’与‘早钟6号’的遗传距离最大为0.217,相似系数为78.3%。
     (3)初步建立了大五星、龙泉1号、川农1号等品种(系)的DNA指纹图谱,并找到部分特异谱带,利用DNA指纹图谱和特异谱带成功地对参试品种(系)进行了鉴别。
     (4)对供试品种(系)进行了聚类分析。
     4.在采用ISSR分子标记技术对‘大五星’、‘龙泉1号’、‘龙泉5号’及其小种子株系进行遗传多样性分析方面:18条ISSR引物在62份供试材料中共扩增出324条带,其中310条为多态性带,多态性比率为95.7%,18条引物在62份枇杷材料的平均有效等位基因数、平均Nei's基因多样性指数、平均Shannon信息指数分别为1.5654,0.3249,0.5283,表明枇杷小种子株系具有丰富的遗传多样性,是极好的育种材料。
In the present study, the genetic relationship and diversity in Eriobotrya were investigated using morphology and molecular markers. The main results were as follows.
     1 In the study on genetic relationship and diversity of Eriobotrya accessions using ISSR markers:
     (1) Methods for genomic DNA extraction in loquat were optimized. The improved CTAB-protease K method was suitable to remove polysaccharides and polyphenols by low-speed centrifugal because the solvents I, which did not contain CTAB, could not dissolve karyon but membrane. The protein, which was combined with DNA could be degraded by protease K, and avoided precipitating with DNA. Only DNA but not polysaccharides and small rRAN could be precipitated by 0.3mmol/LNaAc.
     (2) Amplification system of ISSR for loquat was established and optimized systematically. The optimal amplification system of ISSR was as follows. The total 25μL contained 10×buffer2.5μL,2.0mmol/LMg2+,1.5U Taq Polymerase,0.3μmol/L primer, 60ng template DNA, and 0.15mmol/L dNTPs. The temperature profile used for PCR was: 94℃for 5min, followed by 40 cycles of 94℃for70s, annealing temperature for 70s,72℃for1.5mim, and was terminated with a 7min DNA extension step at 72℃. Amplification products were conserved at 4℃.
     (3) 436 bands were amplified by 20 ISSR primers, among which 392 bands were polymorphic, and the percentage of polymorphism was 89.9%.
     (4) Similarity coefficients and dendrograms were obtained based on ISSR data. The similarity coefficients were 0.6216—0.9106. The 41 loquat accessions were divided into two groups based on both dendrograms. One group was non-cultivated type while the other was cultivated type. But the classification of sub-groups of cultivated type was somewhat different between two dendrograms, and also a little different from traditional classification.
     (5) No specific bands were gained between spring florescence and autumn-winter florescence according to ISSR markers. And also the accessions could not be divided into spring florescence and autumn-winter florescence according to the dendrogram.
     2 In the study on the genetic relationships between E. prinoides, E. prinoides var. dadunensis and E. japonica using phenotypic characters, RAPD and ISSR markers:
     (1) The results of variance analysis, multiple comparisons, correlation coefficients, cluster analysis on the phenotypic character data showed that E. prinoides, E. prinoides var. dadunensis and E. japonica displayed very significant differences. E. prinoides var. dadunensis was between E. prinoides and E. japonica.
     (2) Different individuals of E. prinoides var. dadunensis also had varying degrees of separation:some were close to E. prinoides, and some were close to E. japonica.
     (3) The results from RAPD and ISSR showed that the similarity coefficient between oakleaf loquat and common loquat was minimal (0.6996 and 0.7219, respectively) and the similarity coefficient between oakleaf loquat and Daduhe loquat was maximal (0.8403 and 0.8211, respectively), while the similarity coefficient between Daduhe loquat and common loquat was intermediate (0.7195 and 0.7219, respectively). The highest additivity was obtained when Daduhe loquat was regarded as the undetermined hybrid (44.9% and 45.8%, respectively). The specific bands of oakleaf loquat and common loquat were present in Daduhe loquat. Thus, it could be concluded that Daduhe loquat was a hybrid of oakleaf loquat and common loquat.
     3 In the RAPD analysis on 8 cultivars or lines of Loquat cultivated in Sichuan:
     (1) 6 primers producing polymorphic RAPD products were selected from 80 random primers and successfully used for amplifying the DNAs.54 bands were obtained, among which 26 bands showed polymorphism, amounting to 48.15%.
     (2) The genetic distances and similarities among the cultivars or lines were estimated By using NTSYSpc 2.1 software.'Zaozhong 6'and'Jiefangzhong'showed the smallest genetic distance (0.042) and a greatest genetic similarity (95.8%), while'Chuannong 1' and'Zaozhong 6'showed the greatest genetic distance (0.217) and the smallest genetic similarity (78.3%).
     (3) The DNA fingerprints of the cultivars or lines were established. The specific bands of some cultivars or lines were found out. All the cultivars or lines could be identified by DNA fingerprints and the specific bands.
     (4)Genetic distances and cluster analysis were also performed for the cultivars or lines.
     4 In the analysis on the genetic diversity of maternal plants ('Dawuxing','Longquan No.1'and'Longquan No.5') and their 59 offsprings derived from miniature seeds by ISSR markers:18 ISSR primers were applied to the amplification, producing 324 bands, in which 310 bands (95.7%) were polymorphic. The average value of effective number of alleles, Nei's gene diversity (H) and Shannon's information index were 1.5654,0.3249 and 0.5283, respectively. The genetic difference between these cultivars and miniature seed derived plants was revealed based on similarity coefficients and cluster analysis. The results showed that the miniature seed derived plants had an abandant genetic diversity which could provide excellent germplasm resources for breeding in loquat.
引文
白晶,张月学,杨冬鹤.几种重要的分子标记原理及应用[J].哈尔滨师范大学自然科学学报,2004(2):89-90.
    蔡礼鸿,李作洲,黄宏文,等.枇杷属植物等位酶遗传变异及品种基因型指纹[J].武汉植物学研究,2005,23(5):405-416.
    蔡礼鸿.枇杷属的等位酶遗传多样性和种间关系及品种鉴定[D].武汉,华中农业大学,2000.
    曹后男,高先出.桃属植物随机扩增多态性DNA技术在桃品种分类上的应用[J].延边大学学报.2000,22(1):1-5.
    陈桂枝,胡波.枇杷果实性状的系统聚类分析[J].福建果树,2000,1(12):1-2.
    陈杰钟.果树栽培学各论(南方本)[M].中国农业出版社,2003:185.
    陈菁英,陈义挺,赖钟雄.福建省12个地方解放钟枇杷的RAPD分析[J].亚热带农业研究,2006,2(2):142-145.
    陈菁瑛,陈卉,张丽梅,等.用于扫描电镜观察的花粉不同制样方法对枇杷花粉形态的影响[J].福建农业学报,2003,18(2):107-111.
    陈瑞阳,李秀兰,宋文芹.国部分热带水果染色体研究武汉植物学研究[J].1985,3(4):405-410.
    陈延惠,李洪涛,等.RAPD分子标记在猕猴桃种质资源鉴定上的应用[J].河南农业大学学报,2003,37(4):360-364.
    陈义挺,赖钟雄,陈菁英,等.65份枇杷种质资源的RAPD分析[J].热带作物学报,2007,28(1):65-71.
    陈义挺,赖钟雄,陈菁英.枇杷品种早钟6号与解放钟、森尾早生亲缘关系的RAPD分析[J].福建农林大学学报:自然科学版,2004,33(1):46-50.
    陈义挺,赖钟雄,陈青英,等.枇杷种质资源研究进展[J].亚热带农业研究,2006,2(2):85-90.
    陈义挺,赖钟雄,郭志雄,等.枇杷主要种类的RAPA分析[J].江西农业大学学报,2003,25(2):258-261.
    陈义挺.枇杷种质资源的RAPD分析[D].福州,福建农林大学,2005.
    戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析[J].植物学报,1998,40(11):1053-1059.
    丁长奎.中国枇杷种质资源与枇杷的品种改良[J].作物品种资源,1993(4):8-10.
    丁晓东,吕柳新,陈晓静,等.利用RAPD标记研究荔枝品种的亲缘关系[J].热带亚热带植物学报,2000,8(1):49-54.
    杜道林,苏杰,周鹏等.香蕉33个品种的RAPD研究[J].植物学报,2001,43(10): 1036-1042.
    范建新,罗楠,王永清.8个枇杷品种(系)的RAPD分析[J].四川农业大学学报,2006,24(1):65-67.
    方德秋,章恢志.枇杷属植物过氧化物同工酶研究[J].华中农业大学学报,1989,8(2):144-150.
    冯键君,王学德,刘权,等.优质枇杷新品种‘宁海白’[J].园艺学报,2004,31(2):279.
    何风华.DNA分子标记及其在植物遗传育种上的应用[J].生物学教学,2004,29(1):8-9.
    何桥,郭启高,何建,等.几个早熟枇杷品种的ISSR鉴定[A].2005年全国枇杷学术研讨会[C],杭州,2005:53
    何正文,刘运生,陈立华,等.正交设计直观分析法优化条件PCR[J]湖南医科大学学报,1998,23(4):403-404.
    胡适宜.被子植物生殖生物学[M].北京:高等教育出版社,2005.
    黄金松.特早熟大果型枇杷新品种—早钟6号[J].中国果树,1993(4):4-5.
    姜静,杨传平,刘桂丰,等.利用RAPD标记技术对桦树种间亲缘关系的分析[J].林业科学,2002,38(1):154-156.
    蒋启林,王化木,白廷先等.晚熟枇杷新品系“红灯笼”[J].中国南方果树,2001,30(6):27.
    寇宗爽(宋).本草衍义[M].北京:人民卫生出版社,1990.
    乐史(北宋).太平环宇记[M].北京:中华书局,2008.
    李保印,张启翔.我国园艺作物核心种质研究进展[J].果树科学,2007,24(2):204-209.
    李时珍(明).本草纲目(较点本)[M].北京:人民卫生出版社,1982.
    李晓林,江宁拱,蒋建国.四川枇杷属Eriobotrya Lindl.植物种间亲缘关系探讨[J].西南农业大学学报,1992,14(6):539-542.
    梁国鲁,任振川,阎勇,等.四川8个枇杷品种染色体变异研究[J].园艺学报,1999,26(2):71-78.
    梁国鲁,任振川,阎勇,等.四川8个枇杷品种染色体变异研究[J].园艺学报,1999,26(2):71-76.
    廖明安,李湘麒.梨RAPD分析技术体系的建立及遗传多样性研究[J].中国农学通报,2002,18(5):39-42.
    林伯年,徐林娟,贾春蕾,等RAPD技术在杨梅属植物园分类研究中的应用[J].园艺学报,1999,26(4):221-226.
    林其华,许奇志.枇杷种质资源坐果的遗传多样性及相关性研究[J].福建果树.2009(1):4-10.
    林顺权,胡又厘.枇杷属种数及Eriobotrya hookeriana汉译的商榷[J].果树学报,2000,17(4):294-298.
    林顺权,杨向晖,刘成明,等.中国枇杷属植物的自然地理分布[J].园艺学报,2004,31(5):569-573.
    林同香,陈振光,戴思兰,等RAPD技术在龙眼品种分类中的应用研究[J].植物学报.1998,40(12):1159-1165.
    刘丹,乔玉山,聂贽,等.枇杷遗传交异的ISSR标记鉴定[C],2005.
    陆维忠,郑企成.植物细胞工程与分子育种技术研究[M].北京:中国农业科学技术出版社,2003:248-253.
    刘可慧.瘪籽沙田柚的获得及三倍体柑桔新种质创建研究[D].长沙:湖南农业大学,2004.
    刘权,王桂荣,吕均良,等.枇杷品种资源的数量分类[J].果树科学,1993,10(3):137-141
    刘权.浙江果树资源调查—枇杷(水网地区).浙江省科委情报处,1963.
    刘月学,杨向晖,林顺权.枇杷属植物基因组DNA提取方法的改进和应用[J].果树学报,2005,22(2):182-185.
    卢华琼,苏志先.部分枇杷品种主要果实性状变异及相关性研究[J].中国农学通报.2006,22,12:220-222.
    陆修闽,陈菁瑛,张丽梅,等.枇杷杂交新品种‘早钟6号’与亲本花粉形态观察[J].园艺学报,2002,29(3):271-273.
    罗正荣,米森敬三,杉浦明.应用RAPD技术进行柿种类和品种鉴定[J].园艺学会杂志,1995,64:535-541.
    马翠兰,刘星辉,张玉兰.DNA分子标记技术在果树上的应用[J].内蒙古农业大学学报2001,22(2):105-112.
    马三梅,王永飞,叶秀,等.2002.植物无融合生殖鉴定方法的研究进展[J].西北植物
    学报,22(4):985-993.
    马玉敏,陈学森,何天明,等.中国板栗3个野生居群部分表型性状的遗传多样性[J].园艺学报,2008,35(12):1717-1726.
    明军,张启翔,茹广欣,等.园林及园艺植物品种鉴定的DNA分子标记技术[J].世界林业研究,2003,16(5):12-16.
    孟诜(唐).食疗本草[M].北京:人民卫生出版社,1984.
    孟祥勋,潘新法,曹广力,等.枇杷栽培种的随机扩增多态性(RAPD)研究[J].生物技术通报,2003(3):33-37.
    潘新法,孟祥勋,曹广力,等RAPD在枇杷品种鉴定中的应用[J].果树学报,2002,19(2):136-138.
    潘新法RAPD技术在果树遗传育种研究中的应用[J].生物学杂志,2002,18(2): 26-28.
    彭建营,束怀瑞,孙仲序,等.中国枣种质资源的RAPD分析[J].园艺学报,2000,27(3):171-176.
    乔燕春,林顺权,刘成明,等SRAP分析体系的优化及在枇杷种质资源研究上的应用[J].果树学报,2008,25(3):348-352.
    邱武凌,张恢志.中国果树志.龙眼枇杷卷[M].北京:中国林业出版社,1996.
    邱英雄,傅承新,孔航辉.杨梅不同品种的ISSR分析[J].农业生物技术学报,2002,10(4):343-346.
    曲柏宏,金香兰,陈艳秋,等.梨属种质资源的RAPD分析[J].园艺学报,2001,28(5):460-462
    沈向,郑学勤.杏43个品种资源的RAPD分类.园艺学报[J],2000,27(1):55-56.
    盛良明,王化坤,徐春明,等.白沙枇杷优良株系苏白1号的ISSR分析[J].江苏农业科学,2006(03):97-98.
    司马迁(西汉).史记,卷一百一十七,司马相如列传第五十七[M].北京:中华书局,1959.
    苏颂(北宋).图经草木(辑复本)[M].福建:福建科学技术出版社,1988.
    唐蓓.栎叶枇杷、大渡河枇杷、普通枇杷的亲缘关系探讨[D].重庆,西南农业大学,1997.
    陶弘景(梁).名医别录(辑校本)[M].北京:人民卫生出版社,1986.
    汪结明,项艳,吴大强,等.杨树ISSR反应体系的建立及正交设计优化[J].核农学报,2007,21(5):470-473.
    汪永庆,许来祥,张知彬RAPD技术的标准化问题[J].动物学杂志,2000,35(4):57-60.
    王国安,张虎平,虎海防,等.适于核桃的RAPD-PCR反应体系的建立[J].新疆农业科学,2004,41(1):61-64.
    王军,葛玉香,包怡红,等.山葡萄种质RAPD研究[J].东北林业大学学报,2003,31(1):19-21.
    王三红,陈力耕,章镇,等,RAPD在柑橘品系鉴别上的应用[J].果树科学.2000,17(1):70-72.
    王晓梅,杨秀荣.DNA分子标记研究进展[J].天津农学院学报,2000,1(7):21-24.
    王娅丽,李毅,陈晓阳.祁连山青海天然群体表型性状遗传多样性分析[J].林业科学,2008,44(2):70-77.
    王永清,付燕,杨芩,等.枇杷属植物遗传多样性的ISSR分析[J].林业科学,2010(4):49-57.
    王永清,李俊强,邓群仙,等.制备植物单倍体胚和单倍体植株的方法[P].中国,国家
    知识产权局发明专利,专利号:ZL 200510022486X.
    吴耕民.中国温带果树分类学[M].北京:农业出版社,1984.
    吴汉珠,周永年.枇杷无公害栽培技术[M].北京:中国农业出版社.2003.
    吴锦程,杨向晖,林顺权.枇杷AFLP分析体系的建立与应用[J].果树学报,2006,23(5):774-778.
    吴锦程,杨向晖,林顺权.枇杷属植物RAPD反应体系的优化与运用[J].莆田学院学报,2006,13(5):31-39.
    吴树敬,陈学森.杏品种的RAPD分析.果树学报,2003,20(2):107-111.
    吴燕民,裴东,奚声珂,等.运用RAPD对核桃属种间亲缘关系的研究[J].园艺学报,2000,27(1):17-22.
    徐碧玉,金志强,彭世清,等.海南主栽芒果品种基因组DNA的RAPD分析[J].热带作物学报,1998,19(3):33-37.
    杨向晖,格拉贝,林顺权,等.枇杷属植物种类数及东南亚原产枇杷种类[J].果树学报,2005,22(1):55-59.
    杨向晖,林顺权,何小龙.枇杷属植物性状的补充描述与商榷[J].果树学报,2007,24(2):151-156.
    杨向晖,刘成明,林顺权.普通枇杷、大渡河枇杷和栎叶枇杷遗传关系研究——基于RAPD和AFLP分析[J].亚热带植物科学,2007,36(2):9-12.
    杨向晖,刘成明,吴锦程,等.云南枇杷属植物资源及其分布[J].果树学报,2007,24(3):324-328.
    杨向晖,枇.杷属植物的系统研究[D].广州,华南农业大学,2005.
    俞德浚.中国果树分类学[M],北京:农业出版社,1979,309.
    曾黎辉,洪自同,许家辉,等.龙眼ISSR反应体系的建立和优化[J].中国农学通报,2007,23(9):111-114.
    张俊卫,饱满珠.梅,桃,李,杏,樱桃的RAPD分析[J].北京林业大学学报,1998,20(2):12-15.
    张开春,伊淑萍,杨英军,等.分子标记在果树上的应用[J].果树科学,1999,16(3):210-218.
    张青林,罗正容ISSR及其在果树上的应用[J].果树学报,2004,21(1):54-58.
    张水明,宋丰顺,巩雪梅,等.砀山酥梨基组DNA提取和RAPD条件优选[J].安徽农业大学学报,2003,30(2):178-181.
    章恢志,彭抒昂,蔡礼鸿,等.中国枇杷种质资源及普通枇杷起源研究[J].园艺学报,1990,17(1):64-67.
    章恢志,彭抒昂.中国枇杷属种质资源及普通枇杷起源研究[J].园艺学 报,1990,17(1):5-11.
    章恢志.塘栖枇杷品种的研究[J].园艺学报,1957,1(1):15-21.
    章恢志.中国果树栽培学[M].北京:农业出版社,1987:1058-1078.
    赵淑清,武维华.DNA分子标记和基因定位[J].生物技术通报,2000(6):1-4.
    郑少泉,蒋际谋,许家辉,等.优质大果晚熟白肉枇杷新品种—贵妃[J].福建果树,2006(2):8-9.
    朱元娣,李光晨,李春雨,等.苹果柱型基因的ISSR分子标记研究[J].园艺学报,2003,30(5):505-510.
    祝军,周爱群,王涛,等.苹果RAPD分析体系的建立[J].果树科学,2000,17(4):239-243.
    邹喻平RAPD分子标记简介[J].生物多样性,1995,3(2):104-108.
    Aruna M. Randomly amplified polymorphic DNA fingerprinting for identifying rabbiteye blueberry (Vaccinium ash ei Reade) cultivars. J Amer Soc Hort Sci,1995, 120(5):710-713.
    Badenes M L,Canyamas T,Romero C,et al. Characterization of under-utolizrd fruits by moleculer markers.A case study of loquat[J].Genetic Resources and Crop Evolution,2004,51:335-341.
    Badenes M L,Canyamas T.,Romero C,et al.Genetic diversity in European collection of'loquat.(Eriobotryajaponica Lincll.)[J].Acta Horticulturae,2003(620):169-174.
    Badenes M L,Martinez-Calvo J,Llacer GAnalysis of a germplasm collection of loquat(Eriobotrya japonica Lindl.)[J].Euphytica,2000(114):187-194.
    Basigalup H,Barnes D K,Stucker R E.Development of core collection for perennial Medicago plant introductions [J]. Crops Science,1995,35(4):1163-1168.
    Bell R L,Quamme H A,Layne R E C,et al. Fruit breeding,tree and tropical fruit[J]. 1996,1:441-514.
    Brown A H D.Collections:a practical approach to genetic resources management [J]. Genome,1989,31(5):818-824.
    Cardone S, Polci P, Selva J P, Mecchia M, Pessino S, Hermann P, Cambi V, Voigt P, Spangenberg G, Echenique V. Novel genotypes of the subtropical grass Eragrostis curyula for the study of apomixes[J].Euphytica,2006,115(2):263-272.
    Deng Z N, Gentile A., Nicoloci E., et al. Identification of in vivo and in vitro lemon mutants by RAPD markers [J]. J Hort Sci.1995,70:117-125.
    Fabbri A.Hormaza JI,Polito US. Random amplified polymorphic DNA analysis of Olive cultivars. J Amer Soc Hort Sci,1995,120:538-542.
    Fukuda S.Cultivar identification in loquat assessed by RAPD analysis [J].Journal of Japanese Society for Horticultural Science,2002,71(6):826-828.
    Galderisi.U. Identification of the edible fig "Bianco del cilento" by RAPD analysis[J]. HortScience,1999,34(7):1263-1265.
    Gao L M, Li D Z..A new species of Rhododendron(Ericaceae) from China[J]. Edi-nburgh Journal of Botany,2004,61 (1):1-5.
    Gianfranceschi L,Seglias N,Tarchini R.Simple sequence repeats for the genetic analysis of apple[J].Theor Appl.Genet.1998(96):1069-1076.
    Graham J. Identification of red raspberry cultivars and an assessment of their relatedness using fingerprints produced by random primers [J]. J Hort Sci.,1994,69(1): 123-130.
    Guifford P,Prakash S,Zhu J M,et et al.Microsatellites in Malus x demestica (apple): abandence polymorphism and cultivars identification[J].Theor.Appl. Genet.,1997, 94:249-254.
    Hancock J F,callow P A,shaw D V. RAPD, in the cultivated strawberry [J]. J Amer soc Hort Sci,1994,119:862-864.
    Ishtiaq Ahmad Rajwana,Nabila Tabbasam,Aman Ullah Malik,et al. Assessment of genetic diversity among mango (Mangifera indica L.) genotypes using RAPD markers [JJ.Scientia Horticulturae,2008,117(3):297-301.
    Kumar V, Sharma S, Kero S, et al..Assessment of genetic diversity in common bean (Phaseolus vulgaris L.) germplasm using amplified fragment length polymorphism (AFLP) [J]. Scientia Horticulturae,2008,116(2):138-143.
    Leguizamon J E,Badenes M L.Multivariate analysis as a tool for germplasm studies, example of analysis of germplasm loquat dataishs,Acta Horticultume 606 Internati-onal Workshop on Characterization of Genetic Resources of Temperate Zone Fruits for the Tropics and Subtropics,May,2003.
    Lin S Q, Sharpe R H,Janick J.Loquat:botany and horticulture [J].Horticultural Revi-ews,1999,23(8):233-276.
    Lin S Q.Plant materials in Asian countries,Proceedings from the first international loquat symposium [J].Options Mediterranees,2003(58):41-44.
    Miroslav B, Jana R,Miroslav P. Comparative analysis of genetic diversity in Prunus L. as revealed by RAPD and SSR markers[J]. Scientia Horticulturae,2006,108(3):253-259.
    MorinagaK.Chromosome unmbers of cultviated Plnats[J]. Bto.Mag,1929,345(15): 589-594.
    Muhammad J J, Khan M M, Khan I A. Fruit set, seed development and embryo germination in interploid crosses of citrus [J].Scientia Horticulturae,2005(107): 51-57.
    Nikoloudakis N,Banilas G,Gazis F,et al. Discrimination and genetic diversity among cultivated olive of Greece using RAPD markers[J]J. Amer. Soc. Hort. Sci.,2003, 128(5):741-746
    Ortiz Al. Analysis of plum cultivars with RAPD markers[J].Journal of Horticulture Science.,1997,72(1):1-9.
    Polat A A, Durgac C,Caliskan O.. Effect of protected cultivation on the precocity, yield and fruit quality in loquat [J]. Scientia Horticulturae.2005(104),(2):189-198.
    Rodriguez A E.cultivo del nispero en el Valle del Algar-Guadalest,Sociedad cooperative de Credito de Callosa dde Ensarria[J].Alicante,Spain,1983.
    Sofiano J M, Romero C, Vilanova S,et al.Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers [J], Genome, 2005(48):108-114.
    Tian H L, Xue J H, Wen J, et al.Genetic diversity and relationships of lotus (Nelumbo) cultivars based on allozyme and ISSR markers [J]. Scientia Horti-culturae,2008,116 (4):421-429.
    Vilanova S, Badenes M L, Martinez-Calva J, et al.Analysis of loquat germplasm (Eriobotrya japonica Lindl) by RAPD molecular makers [J].Euphytica,2001, 121(l):25-29.
    Welsh J.Fingerprinting genomes using PCR with arbitrary primers [J].Nucleic Acids Research,1990,18(24):7213-7218.
    Williams J G K, Kubelik A R, Kavik K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucl Acid Res,1990(18): 6531-6535.
    Xu C M, Liu D, Zhang Z, et al. Genetic relationship of loquat analyzed by ISSR[J]. Acta Hort.,2007(750):175-181.
    YamamotoT,KimuraT,Sawamura Y,et al.SSRs isolated from apple can identify polymorphism and genetic diversity in pear[J].Theor:Appl.Genet,2001,102:865-870.
    Ye Y M,Zhang J W,Ning G G,et al.A comparative analysis of the genetic diversity between inbred lines of Zinnia elegans using morporphological traits and ISSR markers[J]. Scientia Horticultuae,2008,118(1):1-7
    Zhu Y D, Li G C, Li C Y, et al. Studies on the ISSR Marker Analyses of the Columnar Gene in Apple [J]. Acta Horticulture Sinica,2003,30 (5):505-510.
    Ziekiewicz E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat(SSR) anchored polymerase chain reaction amplification[J]. Genomics,1994,20: 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700