用户名: 密码: 验证码:
花苜蓿生长特性、逆境响应及生态分异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花苜蓿是一种非常优良的多年生豆科牧草,在我国畜牧业发展中占有重要地位。它是苜蓿属中唯一可以适应干旱环境、极低降雨量的石质化环境和寒冷冬季的物种,并且比紫花苜蓿具有更加优越的抗寒性和营养利用效率,是公认的适合在寒冷地域种植的极佳豆科牧草。即便如此,国内外对花苜蓿的研究仍然较少,并且缺乏系统性,花苜蓿的生长过程、种子发育和收获、根系特征以及盐碱胁迫下逆境生理生态学研究都寥寥无几。花苜蓿生态幅较广,包含许多适应于各自原始生境的生态型,对花苜蓿生态型分异的研究对选育和杂交育种都具有重大意义。
     本论文通过对两种生态型花苜蓿形态分异、不同密度条件下的生长发育、种子最佳收获时期的研究,得出:1)林下和草甸两种生态型花苜蓿叶片、荚果和种子具有显著的形态分异,并且这种分异不随生长环境的变化而发生变化,具有适应性特征,是局域适应的结果;2)种植密度对花苜蓿株高、主茎直径、叶片数、分枝数和各器官生物量的影响在不同生活史阶段具有差异。在生长季初期,出苗后30天,种植密度对各密度下的花苜蓿生长无显著影响;在生长季末期,种植密度对两种生态型花苜蓿的株高、主茎直径、叶片数、分枝数和各器官生物量都具有显著影响,株高、主茎直径、叶片数、分枝数和单株总生物量都随密度增大而减少;3)种植密度与林下花苜蓿的主茎直径、叶片数、叶生物量和单株总生物量显著相关,与草甸花苜蓿的叶片数和叶生物量显著相关,两种生态型花苜蓿的单株总生物量都与株高、主茎直径、叶片数、分枝数和各器官生物量显著相关。林下和草甸两种生态型花苜蓿的最适种植密度都是278株/m~2,可获得最大干草产量分别为2916.7 kg/hm~2和2794.5 kg/hm~2,最大繁殖生物量分别为333.33 kg/hm~2和622.23 kg/hm~2;4)由于花苜蓿开花不齐、荚果成熟期不一致的原因,不同收获时期的花苜蓿种子具有不同的产量和质量,种子的最佳收获时期就是在获得较高种子产量的同时,种子质量也较高的时期。草甸花苜蓿的种子最佳收获期是在初花期后57~60天,种子产量可达92.67~99.00 kg/hm~2;林下花苜蓿的种子最佳收获期是在初花期后51~60天,产量可达93.33~116 kg/hm~2;5)林下花苜蓿具有叶片数多,分枝数多,单株生物量较大;花期较短、结荚相对集中、果序数量多,种子千粒重大、发芽百分数高、种子产量高、根系发育能力强等优点,是花苜蓿选育和杂交等工作的优良材料,具有潜在的发展前景。
     通过对三份花苜蓿材料根系特征的研究发现:不同花苜蓿材料的根系主根长、侧根发生位置和主根生物量差异极显著;林下花苜蓿具有比直立型和草甸花苜蓿更强的根系发育能力,表现为主根入土更深、侧根数更多、根系生物量更大。花苜蓿根系的垂直分布格局是主根直径、主根生物量和侧根生物量随土层深度增大而减小,主根生物量主要分布在根颈下0~10cm主根段,侧根生物量主要分布在根颈下0~20cm主根段。主根直径、根颈直径和根颈入土深度适合用来作为花苜蓿材料的选育指标。
     通过对林下花苜蓿种子发育过程及与硬实形成关系的研究发现:随发育天数的增加,林下花苜蓿种子含水量、电导率逐渐减低;鲜重、发芽百分数、千粒重先升高后降低;干重、硬实率逐渐升高。种子种皮的栅栏细胞和种脐的两层栅栏细胞均不透水是导致林下花苜蓿种子硬实的原因之一。
     通过对花苜蓿在混合盐碱胁迫条件下生长、光合、无机离子和有机溶质积累的研究,我们发现:1)混合盐碱胁迫中,盐度(盐浓度)、碱度(pH)和二者交互作用都显著影响花苜蓿幼苗的地上部分含水量、相对生长速率、根系活力和存活率。花苜蓿地上部分和根系的相对生长速率、地上部分的含水量都随盐度和碱度的增加而降低。幼苗的根系活力被低碱度和盐度的联合作用促进而有所升高,在高碱度和盐度处理下,幼苗的根系活力随盐度增加而逐渐降低。碱度对幼苗存活率的影响大于盐度;2)混合盐碱胁迫处理下,盐度(盐浓度)和碱度(pH)显著影响花苜蓿幼苗的叶绿素a、叶绿素b和类胡萝卜素含量,这些色素的含量都随着盐度和碱度的增加而表现出降低的趋势。盐度、碱度及其交互作用都显著影响花苜蓿幼苗叶片的光合速率、气孔导度和胞间CO_2浓度。光合速率、气孔导度和胞间CO_2浓度都随盐浓度和pH值增加而降低;3)花苜蓿地上部分和根系对混合盐碱胁迫的生理响应不同。草酸积累在花苜蓿对混合盐碱胁迫的响应中具有重要作用。在花苜蓿地上部分,盐度和缓冲能力更能体现混合盐碱胁迫的作用;在花苜蓿根系中,pH和缓冲能力更能体现混合盐碱胁迫的作用。
Medicago ruthenica (Linn.) Trautv.is one of the most important and outstanding perennial forage legume in the world, and it plays an important role on livestock husbandry in China. It is a unique species of Medicago adapted to dry, stony locations with extremely low snowfall and very cold winters. It has more superior cold-tolerance and nutrition utilization efficiency than Alfalfa (Medicago sativa L.), and was considered to be the most optimal forage legume cultivated in cold region. Nevertheless, the research on M. ruthenica is still less and lack systematicness, especially on the growing, development and harvest of seed, characteristics of root system, physioecological responses under salt-alkaline stress. M. rithenica distributes widely and contains many ecotypes which adapted to each original habitat, research on the ecotypic differentiation is of great significance for crossbreeding and hybridization.
     The results of morphological differentiation of two ecotypes, growing development under different density, seed optimal harvest time research indicated (1) The morphological differentiations of leaves, pods and seed in two ecotypes of M. ruthenica were evident. The differentias were adaptive, did not change with the environment alteration, results of local adaptation.(2) The effects of planting diversity on height, stem diameter, number of leaves, number of branches and biomass of every organ were diverse in different stage of M. ruthenica life history. On the beginning period of M. ruthenica growing season, 30 days after emergence, the effects of planting density on growth under all density treatments were unremarkable. In the final stage of growing season, planting density showed significantly effets on height, stem diameter, number of leaves, number of branches and biomass of every organ in both ecotypes of M. ruthenica. Height, stem diameter, number of leaves, number of branches and biomass of individual plant decreased with density increasing. (3) Planting density showed significant correlativity with stem diamter, number of leaves, leaves biomass and individual plant biomass in Woodland M. ruthenica; also showed significant correlativity with number of leaves and leaves biomass in Meadow M. ruthenica. Individual plant biomass markablely correlated with height, tem diameter, number of leaves, number of branches and biomass of every organ in both ecotypes. The optimal planting density for two ecotypes was 278 plants/m~2,maximal hay yield for woodland and meadow M. ruthenica respectively were 2916.7 kg/hm~2 and 2794.5 kg/hm~2, maximal reproductive biomass were 333.33 kg/hm~2 and 622.23 kg/hm~2.(4) Seed of M. ruthenica which harvested on different period had diverse yield and quality due to irregular blossomming and pod maturation. The optimal harvest time was the period that can gain higher yield and higher quality of seeds. The optimal harvest time for meadow M. ruthenica was 57~60 days after initial anthesis, with seeds yield was 92.67~99.00 kg/hm~2; for woodland M. ruthenica was 51~60 days after initial anthesis, with seeds yield was 93.33~116.00 kg/hm~2. (5) The merits of woodland M. ruthenica such as more leaves, more branches, more individual plant biomass, shorter blooming period, fructification more synchronous, more infructescence, bigger thousand seeds weight, higher germination percentage, more seed yield and better root development ability were basis for breeding and hybridization work. It is a eminent material and had potential developmental prospect.
     Differences of taproot length, lateral root position and taproot biomass between three M. ruthenica were remarkable. Woodland M. ruthenica had better root development ability than Zhili and meadow, showed longer taproot, more lateral root and bigger root biomass. Vertical distribution pwttern of M. ruthenica root system was taproot diameter, biomass od taproot and lateral root decreased with soil depth increasing; taproot biomass mainly distributed in 0~10cm section under root crown, lateral biomass mainly distributed in 0~20cm section under root crown. Taproot diameter, diameter and depth of root crown were acceptable indexes for breeding excellent M. ruthenica.
     The results of seed development and its relationship with hardseedness indicated that with the increasing of development days, water content and electrical conductivity of woodland M. ruthenica seeds decreased; fresh weight, germination percentage and thousand seeds weight raised at first reduced finally; dry weight and hard seed percentage rised gradually. The impermeability of palisade cells in spermoderm and seed hilum was one of the reason for seed hardness in woodland M. ruthenica.
     According to the physioecological responses of M. rithenica to mixed salt-alkaline stresses, we found that: (1) Salinity(concentration), alkalinity(pH) and their interaction significantly influenced water content, relative growth rate, root activity and survival rate of M. ruthenica under mixed salt-alkali stresses. RGR and water content of shoots decreased with the increasing of salinity and alkalinity. Root activity was promoted by the combine of low salinity and low alkalinity, but decreased with salinity increasing under high alkalinity and salinity stresses. The influence of alkalinity on survival rate was bigger than salinity. (2) Salinity(concentration) and alkalinity(pH) significantly influenced the content of chloropyll a ,b and carotenoid in M. ruthenica under mixed salt-alkali stresses. The contents were all lower with salinity and alkalinity raising. Salinity(concentration), alkalinity(pH) and their interaction significantly influenced photosynthetic rate, stomatal conductance and intercellular CO_2 concentration of M. ruthenica leaves. The photosynthesis indexes reduced with salt concentration and pH increasing.(3) Physioloucal responses of shoots and roots to mixed salt-alkali stresses in M. ruthenica were different. Oxalate accumulation showed very important effect on responses to mixed salt-alkali stresses in M. ruthenica. Salinity and buffer capacity reflected the mixed salt-alkali stresses better in shoots of M. ruthenica, but in roots, pH and buffer capacity reflected the mixed salt-alkali stresses better.
引文
[1]中国科学院中国植物志编辑委员会.中国植物志(第42卷第二分册)[M].北京:科学出版社, 1998.
    [2] Small E, Jomphe M. A synopsis of the genus Medicago (leguminosae) [J]. Can J Bot, 1989, 67: 3260-3294.
    [3] Balabaev G A. Yellow lucernes of siberia, Medicago ruthenica (l.) lebd. and M. Platycarpos (l.) lebd.[J]. Bull App Bot Genet, Plant Breeding Service, 1934, 7: 13-123.
    [4] Sinskaya E N. Flora of cultivated plants of the USSR Xiii., in Perennial leguminous plants. Part i. Medic, sweet clover, fenugreek. Jerusalem: Israel Program for Scientific Translations, 1961.
    [5] Campbell T A, Bao G, Xia Z L. Agronomic evaluation of Medicago ruthenica collected in inner mongolia[J]. Crop Sci, 1997, 37: 599-604.
    [6] Campbell T A, Bao G, Xia Z L. Completion of the agronomic evaluations of Medicago ruthenica [(l.) ledebour] germplasm collected in inner mongolia[J]. Genetic Resources and Crop Evolution, 1999, 46: 477-484.
    [7]杨青川,耿华珠,孙彦.十种扁蓿豆生态型的研究[J].草业科学, 1995, 12(01): 13-16.
    [8] Campbell T A. Molecular analysis of genetic variation among alfalfa (Medicago sativa l.) and Medicago ruthenica clones[J]. Canadian Journal of Plant Science, 2000, 80(4): 773-779.
    [9] Yan J, Chu H J, Wang H C, et al. Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed disperal[J]. Annuals of Botany, 2009, 103: 825-834.
    [10] van Berkum P, Beyene D, Bao G P, et al. Rhizobium mongolense sp. Nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(l.) ledebour][J]. International Journal of Systematic Bacteriology, 1998, 48: 13-22.
    [11] Rogel M A, Orme?no-Orrillo E, Romero E M. Symbiovars in rhizobia reflect bacterial adaptation to legumes[J]. Systematic and Applied Microbiology, 2011, 34: 96-104.
    [12]李鸿雁,米福贵,宁红梅,等.扁蓿豆遗传多样性的SSR分析[J].中国草地学报, 2008(02): 34-38.
    [13]夏兰琴,蒋尤泉,阎福林.扁蓿豆遗传多样性的研究[J].中国草地, 1997(02): 30-35.
    [14]夏兰芹,蒋尤泉,阎福林.内蒙古地区扁蓿豆酯酶同工酶多样性及其地理分布的研究[J].中国草地, 1998(02): 59-63.
    [15]额尔敦嘎日迪,中田昇,李造哲.内蒙古干旱、半干旱地区野生扁蓿豆种子贮藏蛋白质的变异[J].中国草地学报, 2006(02): 52-55.
    [16]额尔敦嘎日迪,中田昇.内蒙古中东部野生扁蓿豆形态特征多变量分析[J].中国草地学报, 2006(04): 87-90.
    [17]杨青川,耿华珠,郝吉国.紫花苜蓿、扁蓿豆POD同工酶的测定[J].中国草地, 1994(02): 53-56.
    [18]张子仪,中国饲料学[M].北京:中国农业出版社, 2002. 612-613.
    [19]袁有福,王玉林,罗新义,等.扁蓿豆的主要经济性状及栽培技术的研究[J].中国草原, 1986, 2: 38-41.
    [20]额尔敦嘎日迪,中田昇.扁蓿豆生长发育规律的研究[J].中国草地学报, 2006(06): 103-105.
    [21]赵淑芬,孙启忠,韩建国,等.科尔沁沙地扁蓿豆生物量研究[J].中国草地, 2005(01): 26-30.
    [22]李海贤,石凤翎,高翠萍.扁蓿豆开花习性及花荚脱落现象的初步研究[J].种子, 2006, 25(04): 11-15.
    [23]李海贤,石凤翎.我国扁蓿豆种子生产研究现状及提高产量的途径[J].草原与草坪, 2006(03): 14-16.
    [24]李海贤.扁蓿豆种子发育特性和种子产量构成因子的研究[D].内蒙古:内蒙古农业大学, 2006.
    [25]王柳英,优良牧草种植技术[M].北京:中国农业出版社, 2001. 70-72.
    [26]杜宝红,石凤翎,锡林塔娜,等.扁蓿豆种子发育形态解剖学研究[J].种子, 2007(06): 7-11.
    [27]乌日娅,雍世鹏,包贵平.扁蓿豆生态生物学特性的比较研究[J].中国草地, 1994(02): 1-7.
    [28]穆春生,王颖,孟安华.松嫩草地主要豆科牧草种子硬实破除方法研究[J].四川草原, 2005, 119(10): 6-8.
    [29]徐成体,德科加.用不同方法处理后直立型扁蓿豆种子的发芽效果[J].青海畜牧兽医杂志, 1996(06): 4-6.
    [30]乌云飞,白云军,乌恩,等.直立型扁蓿豆种子生活力与发芽率相关性的研究[J].内蒙古草业, 1995, 10: 20-21.
    [31]乌云飞,玉柱,陶格丹宝劳.温度对红豆草、扁蓿豆种子发芽率的影响[J].内蒙古草业, 1990(03): 50-51.
    [32]乌云飞,王建光.低频电流对扁蓿豆种子萌发的影响[J].内蒙古草业, 1990, 1: 31-37.
    [33]许大全.光合速率、光合效率与作物产量[J].生物学通报, 1999, 34: 88-10.
    [34]戚秋慧.扁蓿豆光合生态特性的研究[J].草地学报, 1996(02): 110-115.
    [35]杜占池,杨宗贵.扁蓿豆、冷蒿和木地肤枝条净光合速率与光照关系的动态特征[J].草地学报, 1997(03): 161-167.
    [36]石凤翎,郭晓霞,李红.扁蓿豆抗旱形态解剖结构观察与分析[J].干旱地区农业研究, 2005(02): 115-118.
    [37]石凤翎,王素巍,李俊海,等,扁蓿豆属牧草种子及其幼苗抗旱性的初步研究,中国呼和浩特:中国草学会第六届二次学术会议论文集, 2004. 497-503.
    [38]郝建辉.扁蓿豆抗旱性鉴定及抗旱指标的筛选[D].内蒙古:内蒙古农业大学, 2006.
    [39] Guan B, Zhou D, Zhang H, et al. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature[J]. Journal of Arid Environments, 2009, 73(1): 135-138.
    [40]乌云飞.“直立型”扁蓿豆生长发育规律的初步观察[J].内蒙古草原, 1987, 41: 29-32.
    [41]乌云飞,玉柱,石凤翎.直立型扁蓿豆的选育及其生物学特性的研究[J].内蒙古草业, 1993, 3(4): 51-53.
    [42] Campbell T A, Bauchan G.R, Organelle based molecular analyses of the genetic relatedness of cultivated alfalfa (Medicago sativa l) to Medicago edgeworthii sirjaev, and Medicago ruthenica (l.) ledebour[J]. Euphytica 2002, 125: 51-58.
    [43]罗新义,李红.扁蓿豆与肇东苜蓿远缘杂交品系的产草量稳定性[J].草地学报, 1997(03): 187-189.
    [44]李红,罗新义,王殿魁.扁蓿豆与肇东苜蓿杂交育种的研究[J].中国草地, 1990, 6: 20-23.
    [45]罗新义,李红,袁有福,等.扁蓄豆与肇东苜蓿远缘杂交育种的研究[J].中国草地, 1991(2): 14-19.
    [46]李红,罗新义,王殿魁.“龙牧801号”与“龙牧803号”苜蓿新品种选育报告[J].黑龙江畜牧科技, 1996(01): 3-7.
    [47]李红,罗新义,王殿魁.龙牧801和龙牧803号苜蓿新品种[J].黑龙江畜牧科技, 1995(02):43-46.
    [48]罗新义,李红,多立安,等.龙牧801,803号苜蓿新品种生产性能及适应性[J].黑龙江畜牧兽医, 1995, 1: 16-19.
    [49]徐成体.高寒牧区直立型扁蓿豆引种试种研究[J].青海畜牧兽医杂志, 1999, 29(5): 14-15.
    [50]乌日娅,雍世鹏,包贵平.扁蓿豆属植物在内蒙古的生态地理分布[J].中国草地, 1996(02): 5-6.
    [51] Turreson G. The genotypic response of the plant species to the habit[J]. Hereditas, 1922, 3: 211-350.
    [52] Clausen J, Keck D D, Hiesey W M. Experimental studies on the nature of species. I. The effect of varied environments on western north american plants[J]. Publ Carnegie Inst Washington, 1940, 520: 1-452.
    [53] Clausen J, Keck D D, Hiesey W M. Experimental studies on the nature of species iii. Environmental responses of climatic races of achillea[J]. Publ Carnegie Inst Washington, 1948, 581: 1-189.
    [54] Clausen J, Keck D D, Hiesey W M. Regional differentiation in plant species[J]. The American Naturalist, 1941, 75: 231-250.
    [55] Mooney H A. Plant physiological ecology-determinants of progress[J]. Functional Ecology, 1991, 48: 127-135.
    [56]郭永兵,张友德,秦天才.植物种内多样性与生态型的划分[J].环境科学与技术, 2000, 49(3): 49-58.
    [57] Keller M, Kollman J, Edwards P J. Palatability of weeds from different european origins to the slugs Deroceras reticulatum müller and Arion lusitanicus mabille[J]. Acta Oecologica, 1999, 20(2): 109-118.
    [58]龙先达,严文贵,黄观武.生态型杂优理论及其验证[J].种子, 1995, 79(5): 49-50.
    [59] M'Seddi K, Visser, Marjolein, et al. Seed and spike traits from remnant populations of Cenchrus ciliaris l. In south tunisia: High distinctiveness, no ecotypes[J]. Journal of Arid Environment, 2002, 50: 309-324.
    [60] Smith Q L, Smith T M. Elements of ecology (fourth edition)[M]. Florida: The Benjamin/ Cummings Publishing Company, 1998.
    [61] Theunissen J D. Selection of suitable ecotypes within Digitaria eriantha for reclamation and restoration of disturbed areas in southern africa[J]. Journal of Arid Environment, 1997, 35(3): 429-439.
    [62] Jung S, Steffen K L, Hee J L. Comparative photoinhibition of a high and a low altitude ecotype of tomato (Lycopersicon hirsutum) to chilling stress under high and low light conditionis[J]. Plant Science, 1998, 134(1): 69-77.
    [63] Sanderson M A, Reed R L. Switchgrass as a sustainable bioenergy crop[J]. Bioresource Techonology, 1996, 56(1): 83-93.
    [64] Baric S, Sturmbauer C. Ecological parallelism and cryptic species in the genus ophiothrix derived from mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 1999, 11(1): 157-162.
    [65]骆世明,农业生态学[M].北京:中国农业出版社, 2001. 27-29.
    [66]刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[M].北京:气象出版社, 2002.
    [67]李彬,王志春,孙志高.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究, 2005, 23(2): 152-158.
    [68] Munns R T M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
    [69] Ashraf M, Salinity and water stress-improving crop efficiency[M]. Springer Science+Business Media, 2006.
    [70] Rehman S. The effect of sodium chloride on germination and the potassium and calcium contents of acacia seeds[J]. Seed Sci Technol, 1996, 25: 45-57.
    [71] Ungar I A. Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (chenopodiaceae)[J]. Am J Bot, 1996, 83: 604-607.
    [72] Lovato M B. Germinationin stylosanthes humilis population in the presence of NaCl[J]. Aust J Bot, 1994, 42: 717-723.
    [73] Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotox Environ Safe, 2005, 60: 324-349.
    [74] Longstreth D J, Nobel P S. Salinity effects on leaf anatomy[J]. Plant Physiol., 1979, 63: 700-703.
    [75]董钻.作物栽培学总论[M].北京:中国农业出版社, 2000. 1896-1892.
    [76]尹钓,高志强.农业生态基础[M].北京:经济科学出版社, 1996. 165.
    [77] Adam N M, McDonnald M B, Henderlong P R. The influence of seed position, planting and harvesting dates on soybean seed quality[J]. Seed Science and Technol, 1989, 17: 143-152.
    [78] Copeland P J, Crookston R K. Visible indicators of physiological maturity in barley[J]. Crop Science, 1985, 25: 843-847.
    [79] Hampton J G. Herbage seed lot vigour: Do problems start with seed production[J]. Appl Seed Produ, 1991, 9: 87-93.
    [80]徐是雄,唐锡华,付家瑞.种子生理的研究进展[M].广州:中山大学出版社, 1987.
    [81] Abdul-Baki A A. An evaluatioin of various germination indices for predicting differences in seed vigor[J]. HortScience, 1980, 15: 765-771.
    [82] Nikolaeva M G. Physiology of deep dormancy in seeds[M]. Jerusalem: IPST Press, 1969.
    [83] Barton L V. Dormancy in seeds imposed by the seed coat. in Encyclopedia of plant physiology, W. Ruhland, Editor. Springer-Verlag: Berlin. 1965. 727-745.
    [84] Ballard L A T. Physical barriers to germination[J]. Seed Sci & Technol, 1973, 1: 285-303.
    [85] Baskin C C, Baskin J M. Seeds: Ecology,biogeography, and evolution of dormancy and germination[M]. San Diego, CA: Academic Press, 1998.
    [86]郭博,马宗仁.牧草种子的硬实及其生态学意义[J].中国草地, 1989, 4: 8-12.
    [87] Crocker W, Barton L V, Physiology of seeds. An introduction to the experimental study of seed and germination problems[M].Waltham: Massachusetts: Chronica Botanica Co, 1953.
    [88] Sanchez-Yelamo M D, Tortsa M E, Perez-Garcia F. Variability among seed coats in some species of the genus Onobrychis miller (leguminosae-fabaceae)[J]. Phytomorphology, 1992, 42: 485-492.
    [89] Dexter S T. Alfafa seedling emergence from seed lots varying in origin and hard seed conternt[J]. Agron J, 1955, 47: 357-361.
    [90] Perry D A, Handbook of vigour test methods[M]. ISTA: Switzerland, 1981.
    [91]李海贤,石凤翎,王明君,等.扁蓿豆种子产量构成因子的分析[J].种子, 2006, 25(12): 1-5.
    [92] Smith M L. Factors affecting flower abscission in field bean (Vicia fabal. Minor)[D]. University of Durham, 1982.
    [93] Gates P, Varwood J N, Harris N. Cellular changes in the pedical and peduncle during flower abscission in Vicia foba[J]. In Vicia foba Physiology and Breeding World Crop, 1981, 14: 299.
    [94] Russell R S, Plant root systems: Their function and interaction with the soil. 1997, Mc Gnaw Hill: London. 12 -15.
    [95] Parao F T, Paningbatan E. Drought resistance of rice varieties in relation to their root growth[J]. Philippine J Crop Sci, 1997, 1: 50-55.
    [96]孙洪仁,武瑞鑫,李品红,等,紫花苜蓿根系入土深度[J].草地学报, 2008, 16(3): 307-312.
    [97]马其东,孟维国.不同苜蓿地方品种根系发育能力的评价和筛选[J].草业学报, 1999, 1: 42-49.
    [98]姚爱兰.紫花苜蓿根系生物学特性的研究[J].牧草与饲料, 1989, 2: 23-26.
    [99]吴新卫,韩清芳,贾志宽.不同苜蓿品种根颈和根系形态学特性比较及根系发育能力[J].西北农业大学学报, 2006, 16(2): 80-86.
    [100]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000. 14-24.
    [101]熊顺贵.基础土壤学[M].北京:中国农业大学出版社, 2001. 95-152.
    [102]白文明. Effect of water supply on root growth and water uptake alfalfa in wulanbuhe sandy region[J].植物生态学报, 2001, 25(1): 35-41.
    [103]王月胜.不同苜蓿品种根系特征及其抗寒性关系的研究[D].甘肃农业大学, 2008.
    [104] Lamba P S, Ahlgren H L, Muckenhirn R J. Root growth of alfalfa, medium red clover, bromegrass, and timothy under various soil conditions[J]. Agronomy Journal, 1949, 41(10): 451-458.
    [105] Upchurch R P, Lovvorn R L. Gross morphological root habits of alfalfa in north carolina [J]. Agronomy Journal, 1951, 43: 493-498.
    [106] Saini G R. Root elongation and plant growth in a basal till compact soil treated with 3, 5-diiodo-4-hydroxybenzoic acid and gibberellic acid[J]. Agronomy Journal, 1979, 71(6): 1067-1070.
    [107] Oddie T A, Bailey A W. Subsoil thickness effects on yield and soil water when reclaiming sodic minespoil[J]. Journal of environmental quality, 1988, 17(4): 623-627.
    [108]杨吉华,张光灿,刘霞.紫花苜蓿保持水土效益的研究[J].土壤侵蚀与水土保持学报, 1997, 3(2): 91-96.
    [109] Fehrenbacher J B, Ray B W, Edwards W M. Rooting volume of corn and alfalfa in shale influenced soils in northwestern il linois[J]. Soil Sci Soc Am Proc, 1965, 29: 591-594.
    [110] Fox R L, Lipps R C. Subirrigation and plant nutrition. I. Alfalfa root distribution and soil properties[J]. Soil Sci Soc Am Proc, 1955, 19: 468-473.
    [111]刘法涛,杨志忠,条了汉.地下水位与紫花苜蓿根深关系及其灌溉方法[J].中国草地, 1995, 3: 48-49.
    [112]马其东,高振声,洪绂曾.黄河三角洲地区苜蓿生态适应性研究[J].草地学报, 1999, 7(1): 28-38.
    [113]王亚琴,孙红霞,鲍明道.浙江地区不同品种紫花苜蓿不同刈割期二茬性状表现[J].草业科学, 2005, 22(9): 41-44.
    [114]易克贤,刘斌,詹爱民.紫花苜蓿在江西红壤低丘岗地的生长观察[J].江西农业大学学报, 1991, 13(6): 55-61.
    [115]孙启忠,韩建国,桂荣.科尔沁沙地苜蓿根系和根颈特性[J].草地学报, 2001, 9(4): 269-276.
    [116] Bouton J H, Hammel J E, Sumner M E. Alafalfa, Medicago sativa l. , in highly weathered, acid soils. Iv. Root growth into acid subsoil of plants selected for acid tolerance[J]. Plant and Soil, , 1982, 65: 187-192.
    [117]郭彦军,徐恢仲,张家骅.紫花苜蓿根系形态学研究[J].西南农业大学学报, 2002, 24(6): 484-486.
    [118]郭正刚,王锁民,张自和.紫花苜蓿品种间根系发育过程分析[J].应用与环境生物学报, 2003, 9(4): 367-371.
    [119] Tanji K K. Nature and extent of agricultural salinity., in Agricultural salinity assessment and management., Tanji K K, Editor. 1990, Am Soc Civil Eng.: New York. 1-18.
    [120]邓伟,裘善文,梁正伟.中国大安碱地生态试验站区域生态环境背景[M].北京:科学出版社, 2006.
    [121]葛莹,李建东.盐生植被在土壤积盐——脱盐过程中作用的初探[J].草业学报, 1990, 1: 70-76.
    [122]石德成,殷丽娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报, 1993, 35(2): 144-149.
    [123] Yang C W, Chong J N, Kim C M, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294: 263-276.
    [124] Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J]. Photosynthetica, 2008, 46: 107-114.
    [125] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J]. Environ Exp Bot, 2005, 54: 8-21.
    [126] Campbell S A, Nishio J N. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system[J]. Journal of Plant Nutrition, 2000, 23(6): 741-757.
    [127] Hartung W, Leport L, Ratcliffe R G, et al. Abscisic acid concentration, root ph and anatomy do not explain growth differences of chickpea (Cicer arietinum l.) and lupin (Lupinus angustifolius l.) on acid and alkaline soils[J]. Plant Soil, 2002, 240: 191-199.
    [128] Tang C, Turner N C. The influence of alkalinity and water stress on the stomatal conductance, photosynthetic rate and growth of Lupinus angustifolius l. And Lupinus pilosus murr[J]. Aust J Exp Agric, 1999, 39: 457-464.
    [129] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25: 239-250.
    [130] Shi D C, Wang D L. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (trin.) kitag[J]. Plant Soil, 2005, 271: 15-26.
    [131] Peng Y L, Gao Z W, Gao Y, et al. Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses[J]. J Integr Plant Biol, 2008, 50: 29-39.
    [132] Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (poaceae)[J]. Environ Exp Bot, 2010, 68: 66-74.
    [133]朱广廉.植物生理学实验指南[M].北京:北京大学出版社, 1993.
    [134] Kingsbury R W, Epstein E, Pearcy R W. Physiological responses to salinity in selected lines of wheat[J]. Plant Physiol, 1984, 74: 417-423.
    [135] Comas L H, Eissenstat D M, Lakso A N. Assessing root death and root system dynamics in a study of grape canopy pruning[J]. New Phytologist, 2000, 147(1): 171-178.
    [136] Bell D T, Wilkins C F, Van Der Moezel P G, et al. Alkalinity tolerance of woody species used in bauxite waste rehabilitation, western australia[J]. Restoration Ecology, 1993, 1(1): 51-58.
    [137] Ben Amor N, Ben Hamed K, Debez A, et al. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity[J]. Plant Science, 2005, 168(4): 889-899.
    [138] Elmore A J, Manning S J, Mustard J F, et al. Decline in alkali meadow vegetation cover in california: The effects of groundwater extraction and drought[J]. Journal of Applied Ecology, 2006, 43(4): 770-779.
    [139]贾娜尔·阿汗,杨春武,石德成,等.盐生植物碱地肤对盐碱胁迫的生理响应特点[J].西北植物学报, 2007, 27: 79-84.
    [140] Jones H G, Jones M B. Introduction: Some terminology and common mechanisms, in Plant under stress: Biochemistry, physiology and ecology and their application to plant improvement. Jones H G, Flowers T J, Jones M B, Editor. 1989, Cambridge Univ Press: New York. 1-10.
    [141] Mayer A M, Poljakoff-Mayber A, The germination of seeds[M]. Oxford: Pergamon Press, 1963.
    [142] Lissner J, Schierup H H, Com?n F A, et al. Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation[J]. Aquat Bot, 1999, 64: 317-333.
    [143] Guo R, Shi L X, Ding X M, et al. Effects of saline and alkaline stress on germination, seedling growth, and ion balance in wheat[J]. Agronomy Journal, 2010, 102(4): 1252-1260.
    [144] Yang C W, Xu H H, Wang L L, at al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47: 79-86.
    [145] Yang C W, Jianaer A, Li C Y, et al. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata[J]. Photosynthetica, 2008, 46: 273-278.
    [146] Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants[J]. Plant Science, 2004, 166(1): 3-16.
    [147] Guo L Q, Shi D C, Wang D L. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J]. Journal of Agronomy and Crop Science, 2010, 196(2): 123-135.
    [148] De Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49(2): 107-120.
    [149] Marcum K B. Salinity tolerance mechanisms of grasses in the subfamily chloridoideae[J]. Crop Sci, 1999, 39: 1153-1160.
    [150] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1): 39-50.
    [151] Soussi M, Ocana A, Lluch C. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum l.)[J]. J Exp Bot, 1998, 49: 1329-1337.
    [152] Cramer G R, L?uchli A, Epstein E. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton[J]. Plant Physiol, 1986, 81: 792-797.
    [153] Short D C, Colmer T D. Salt tolerance in the halophyte Halosarcia pergranulata subsp. Pergranulata[J]. Ann Bot, 1999, 83: 207-213.
    [154] Khan M A, Ungar I A, Showalter A M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (l.) forssk[J]. J Arid Environ, 2000, 45: 73-84.
    [155] Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. Stocksii[J]. Ann Bot, 2000, 85: 225-232.
    [156] Shi D C, Zhao K F. Effects of NaCl and Na2CO3 on growth of puccinellia tenuiflora and on present state of mineral elements in nutrient solution[J]. Acta Pratacu Sin, 1997, 6: 51-61.
    [157] Reddy M P, Vora A B. Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides s & h) leaves under nacl salinity[J]. Photosynthetica, 1986, 20: 50-55.
    [158] Elstner E F. Oxygen activation and oxygen toxicity[J]. Annu Rev Plant Physiol, 1982, 33: 73-66.
    [159] Briat J. Iron dynamics in plants, in Incorporating advances in plant pathology. Advances in botanical research, Delseny M, Editor. 2007, Academic Press,: London. 138-169.
    [160] Jeong J, Guerinot M L. Homing in on iron homeostasis in plants[J]. Trends Plant Sci, 2009, 14: 280-285.
    [161] Sultana N, Ikeda T, Itoh R. Effect of nacl salinity on photosynthesis and dry matter accumulation in developing rice grains[J]. Environ Exp Bot, 1999, 42: 211-220.
    [162] Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (l.)[J]. Environ Exp Bot, 2006, 56: 136-146.
    [163] Wei Y, Xu X, Tao H, et al. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil[J]. Ann Appl Biol, 2006, 149: 263-269.
    [164] Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stresses[J]. Photosynthetica, 2010, 48: 127-134.
    [165] Larbi A, Abadía A, Abadía J, et al. Down coregulation of light absorption, photochemistry, and carboxylation in Fe deficient plants growing in different environments[J]. Photosynth Res, 2006, 89: 113-126.
    [166] Munns R, Termaat A. Whole-plant responses to salinity[J]. Aust J Plant Physiol, 1986, 13: 143-160.
    [167]郑国琦,许兴,徐兆桢,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北植物学报, 2002, 22: 1355-1359.
    [168] El-Samad H M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants[J]. J Plant Nutr, 1996, 19: 717-728.
    [169] Yang C W, Shi D C, Wang. D. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (bge.)[J]. Plant Growth Regul, 2008, 56: 179-190.
    [170] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenui?ora (griseb) scribn et merr. plants[J]. Acta Bot Sin, 1993, 3: 144-149.
    [171]石德成,盛艳敏,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报, 1998, 40,(12): 1136-1142.
    [172] López-Bucio J, Nieto-Jacobo M F, Ramírez-Rodríguez V L, et al. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Sci, 2000, 160: 1-13.
    [173] Athar H U R, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat[J]. Environ Exp Bot, 2008, 63: 224-231.
    [174] Chen Z H, Cuin T A, Zhou M X, et al. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance[J]. J Exp Bot, 2007, 58: 4245-4255.
    [175] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular andmolecular responses to high salinity[J]. Annu Rev Plant Biol, 2000, 51: 463-499.
    [176] Lee G, Carrow R N, Duncan R R, et al. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum[J]. Environ Exp Bot, 2008, 63: 19-27.
    [177] Sakamoto A, Murata N. Genetic engineering of glycine betaine synthesis in plants: Current status and implications for enhancement of stress tolerance[J]. J Exp Bot, 2000, 51: 81-88.
    [178] DiMartino C, Del?ne S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress[J]. New Phytol, 2003, 158: 455-463.
    [179] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environ Exp Bot, 2007, 59: 206-216.
    [180] Hare P D, Cress W A, Van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant Cell Environ, 1998, 21: 535-553.
    [181] Mansour M M F. Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress[J]. Plant Physiol Biochem, 1998, 36: 767-772.
    [182] Noiraud N, Maurousset L, Lemoine R. Transport of polyols in higher plants[J]. Plant Physiol Biochem, 2001, 39: 717-728.
    [183] Papageorgiou G C, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function in the oxygen-evolving photosystem ii complex[J]. Photosyn Res, 1995, 44: 243-252.
    [184] Yang C, Chong J, Li C, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294: 263-276.
    [185]曲元刚,赵可夫. NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究[J].作物学报, 2004, 30(4): 334-341.
    [186]曲元刚,赵可夫. NaCl和Na2CO3对盐地碱蓬胁迫效应的比较[J].植物生理与分子生物学学报, 2003, 29(5): 387-394.
    [187]朱光廉.植物体内游离脯氨酸的测定[J].植物生理学通讯, 1983, 1: 35-37.
    [188]王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯, 1995, 31(1): 50-52.
    [189]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 1981.
    [190] James S A, Bell D T, Robson A D. Growth response of highly tolerant eucalyptus species to alkaline pH, bicarbonate and low iron supply[J]. Aust J Exp Agric, 2002, 42: 65-70.
    [191] Sharma P C, Mishra B, Singh R K, et al. Adaptability of onion (Allium cepa) genotypes to alkali and salinity stresses[J]. Indian J Agric Sci, 2001, 70: 674-678.
    [192] Nuttall G, Armstrong R D, Connor D J. Evaluating physicochemical constraints of calcarosols on wheat yield in the victorian southern mallee[J]. Aust J Agric Res, 2003, 54: 487-497.
    [193] Degenhardt B, Gimmler H, Hose E, et al. Effect of alkaline and saline substrates on aba contents, distribution and transport in plant roots[J]. Plant Soil, 2000, 225: 83-94.
    [194] Yang C W, Guo W Q, Shi D C. Physiological roles of organica acisd in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata[J]. Agronomy Journal, 2010, 102(4): 1081-1089.
    [195] Li X F, Ma J F, Matsumoto H. Pattern of aluminuminduced secretion of organic acids differs between rye and wheat[J]. Plant Physiol, 2000, 123: 1537-1544.
    [196] Neumann G, Massonneau A, Martinoia E, et al. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin[J]. Planta, 1999, 208: 373-382.
    [197] Francoise F, Daniel L R, John G. Effects of salt stress on amino acid, organic acid and carbohydrate composition of roots, bacteroids and cytosol of alfalfa. [J]. Plant Physiol, 1991, 96: 1228-1236.
    [198] Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress[J]. Acta Bot Sin, 2002, 44: 537-540.
    [199] Liu J, Zhu J K. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of arabidopsis[J]. Plant Physiol, 1997, 114: 591-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700