用户名: 密码: 验证码:
茎瘤芥(Brassica juncea var. tumida Tsen et Lee)种质资源遗传多样性与育种潜势分析及起源进化探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茎瘤芥(Brassica juncea var. tumida Tsen et Lee)是双子叶植物,十字花科,芸苔属,芥菜种的变种。作为中国特有作物资源,仅在长江流域种植,其加工产品“涪陵榨菜”蜚声海内外,与欧洲甜酸甘兰、日本腌菜并称世界三大名腌菜。本研究以从全国收集的133份茎瘤芥、7份父本系及8份不育系和72份茎瘤芥及其近缘植物为供试材料,采用表型分析和SSR分子标记对133份种质材料进行遗传多样性分析,选用的7个父本系8个不育系按不完全双列杂交组配56个组合,并分析茎瘤芥主要性状配合力、瘤茎产量杂种优势以及瘤茎产量杂种优势与亲本间遗传距离的相关性,通过单拷贝核Chs基因序列分析茎瘤芥及其近缘植物的系统发育关系,对茎瘤芥的起源进化进行初步探讨。主要结果如下:
     (1)表型变异系数分析表明,调查的21个农艺、经济性状除裂叶对数、沟间深度、茎叶比和瘤茎产量的变异系数较大外,其余性状材料间的变异系数均在一个较小的范围内。
     (2)表型性状主成分分析表明,可用前8个主成分(累计贡献率达87.41%)概括21个性状的总信息量,并以此对供试的133份材料进行综合评价,结合各主成分表现较为明显性状的分析,可以看出各份茎瘤芥材料都具有相应的特点,在茎瘤芥种质保存及育种中可以有针对性地进行利用。
     (3)表型性状系统聚类分析表明,茎瘤芥材料间的遗传距离变幅为0.01-7.77,平均值为2.50,供试材料间遗传距离变幅较小,平均值较小,且有88.93%的遗传距离小于4.00。当遗传距离为2.21时,可将供试材料分成8类。所聚类型较少,A81.20%供试材料集中在第3、6和8类,茎瘤芥种质间遗传差异较小,遗传基础相对狭窄。
     (4)从600对引物中筛选出81对扩增条带清晰,具明显多态性的共同引物。81对引物共扩增到810个条带,每对引物扩增到5-16个条带,平均10.0个,其中多态性条带724个,占89.38%。81对引物共检测到2846个基因型,每对引物检测到6-52个基因型,平均35.14个,其中有效基因型998.32个,平均12.32个,有效基因型比例为35.08%。Shannon多态性指数变幅为0.52-3.72,平均值为2.74。材料间的遗传相似系数变幅为0.77-0.91,平均值为0.85,遗传相似系数值在0.85-0.91的分布较多,占65.99%。当相似系数为0.83时,可将供试材料分成6类,所聚类型较少,且有90.23%的材料集中在第5和6类。进一步说明茎瘤芥种质间相似程度较高,遗传差异较小,遗传基础相对狭窄。
     (5)基于SSR分子标记的主成分分析表明,前3个主成分所能解释的遗传变异分别为85.47%、0.67%和0.61%,可将供试材料分为6类,第1类包括50和86,第2类包括8、11和64,第3类包括14、15和65,第4类包括9、26、99和125,其余材料被分到第5和6类,且多数材料在第5和6类,同样说明茎瘤芥间遗传差异较小。
     (6)根据地理来源将供试茎瘤芥材料分成长江上游、长江中游和长江下游3个类群,基于表型和SSR标记的分析均表明,3个类群遗传多样性水平从高到低的顺序为:长江中游>长江上游>长江下游。基于SSR分子标记数据的主成分分析还表明,长江中游茎瘤芥基本位居133份茎瘤芥种质特征根分布3维图的中心区域。据此,推测长江中游的重庆市可能是茎瘤芥的起源地或遗传多样性中心,在其传播过程中主要是以重庆市为中心,沿长江流域向其上游或下游传播。
     (7)配合力分析表明,同一性状不同亲本间及同一亲本不同性状间一般配合力存在较大差异。瘤茎产量一般配合力相对效应值变幅为-29.88-13.48,其中显著或极显著正向效应值5个,占33.33%,父本系60和156一般配合力正向效应值达极显著水平,不育系133.2A、118-3A和145-1A一般配合力正向效应值达显著水平。瘤茎产量特殊配合力相对效应值变幅为-35.86-39.93,其中显著或极显著正向效应值24个,占42.86%。瘤茎产量一般配合力和特殊配合力效应共同作用强优势组合,强优势组合一般具有较好的特殊配合力,或双亲具有较好的一般配合力,或二者兼备。在茎瘤芥杂种优势利用中,既要重视一般配合力选择,更要重视特殊配合力选择。
     (8)瘤茎产量平均超亲优势为6.24%,变幅为-46.345-77.22%,正向优势组合占64.29%,说明茎瘤芥亲本系间瘤茎产量存在较明显的杂种优势。利用父本系19和60,不育系140-5A、122-3A和133-2A组配出瘤茎产量高杂交组合的几率较大。相关分析表明,瘤茎产量的超亲优势与特殊配合力间相关系数达极显著水平,且相关系数较大,说明可用特殊配合力效应预测瘤茎产量杂种优势。瘤茎产量、超亲优势、特殊配合力效应与亲本间表型遗传距离和SSR标记的遗传距离相关系数不显著,且相关系数较小,不能用表型遗传距离和SSR标记遗传距离来预测瘤茎产量杂种优势和特殊配合力。
     (9)利用单拷贝核Chs基因序列对茎瘤芥及其近缘植物系统关系的分析表明,可将117个Chs基因序列分成11个分支。网状结构分析表明,茎瘤芥及其近缘植物间不仅存在树状的进化关系,还大量存在非树状的进化史,在茎瘤芥及其近缘植物植物进化史上存在较多的网状进化事件。网状支系分析表明,白菜可能是茎瘤芥A基因组亲本的供体,黑芥可能是茎瘤芥B基因组亲本的供体,茎瘤芥可能是由白菜和黑芥杂交后产生的某种芥菜发生自然突变再经人工驯化选择产生的,但具体是由哪一种芥菜变种进化而来还需要做进一步的研究。
Tuber mustard (Brassica juncea var.tumida Tsen et Lee), a variation in the species Brassica juncea belonging to the genus Brassica in the Cruciferae family, is an agriculturally and economically important crop merely cultivated along the Yangtze river in China. Fuling hot pickled tuber mustard, a product of mustard tuber, as well as European pickled vegetable and Japanese pickles, are hailed as the three most famous pickled vegetables in the world. In present study analysis of phenotypic characters and SSR molecular markers were made to invetigate the genetic diversity in 133 tuber mustard accessions. Fifteen tuber mustard inbred lines were used to detected their genetic diversity by SSR markers, among them, seven inbred lines (male) and eight sterile male inbred lines (female) were crossed to get 56 hybrids. The heterosis and combining ability were analyzed among these hybrids. And the low-copy nuclear Chs gene sequences of seventy-two brassica accessions were used to estimate the phylogenetic relationships among tuber mustard and its related genera. The main results are as follows:
     (1) The results showed that the variation coefficients of the twenty-one phenotypic characters changed in a small range except the number of bilobed leaf, depth of inter-nodule and stem weight per plant.
     (2) The principal component analysis of the twenty-one phenotypic characters showed that the first eight principal components can explain the genetic variation with 87.41% which can summarize the total information of the twenty-one phenotypic characters. From the first eight principal of the 133 tuber mustard accessions and the characteristic of each accessions, we can see that each tuber mustard accession has its characteristics correspondingly which could be used in the conservation and breeding of tuber mustard.
     (3) The results of system cluster analysis of 21 phenotypic characters showed that the genetic distances among the 133 tuber mustard accessions ranged from 0.01 to 7.77, with an average of 2.50. It was indicated that the genetic distance among the accessions raged in a small degree and the mean among them was small with 69.5% of all genetic distances were less than 4.00. Cluster analysis indicated that all the tuber mustard accession could be divided into eight Clusters. So litter Clusters were obtained and Cluster 3,6 and 8 included 81.20% of all accessions. It was indicated that the genetic distance was small and the genetic diversity was narrow among the 133 mustard tuber accessions.
     (4) Eighty-one pairs of SSR primers from 600 pairs of SSR primers in Brassica produced stable amplified bands and 810 bands were detected among the accessions with 724 polymorphic bands, accounting for 89.38%. The average number of bands per locus was 10.0 with a range from 5 to 16. The observed number of alleles was 2846 with 35.08% was effective number of alleles. The average number of observed number of alleles per locus was 35.14 with a range from 6 to 52. The values of Shannon's information index for each SSR locus varied from 0.52 to 3.72 with an average of 2.74. The coefficients of genetic similarity in the SSR marker patterns among the 133 accessions ranged from 0.77 to 0.91, with an average of 0.85. There were 5793 pairs of genetic similarity, in which 65.99% were 0.85 to 0.91. The cluster analysis showed that the accessions could be classified into six clusters when the genetic similarity was 0.83, with 90.23% of the accessions included in Cluster 5 and Cluster 6. It was also indicated that the similarity was high and the genetic diversity was narrow among the 133 mustard tuber accessions.
     (5) Principal component analysis was carried on based on the SSR data. The result showed that the first three principal components can explain the genetic variation with 85.47%,0.67% and 0.61%, and the 133 accessions could be divided into six Clusters according to the nearest phylogenetic relationship. Cluster 1 included the accessions 50 and 86. Cluster 2 included the accessions 8,11 and 64. Cluster 3 included the accessions 14,15 and 65. Cluster 4 included the accessions 9,26,99 and 125. The remains were included in Cluster 5 and 6. It was also indicated that the genetic diversity was narrow among the 133 mustard tuber accessions.
     (6) The accessions of mustard tuber in this study can be divided into up-Yangtze river group, mid-Yangtze river group and down-Yangtze river group based on their geographical distributions. According to analysis of phenotypic characters and SSR data, the order of genetic diversity level in the three groups was mid-Yangtze river group>up-Yangtze river group> down-Yangtze river group. The accessions of the mid-Yangtze river group was in the central region of the 3-D dendrogram by principal component analysis. It was presumed that the origin center or genetic diversity center of tuber mustard was the mid-Yangtze river valley, and the crop was transmited along the Yangtze River to it's upstream and downstream.
     (7) The analysis of combining ability indicated that the GCA relative effects among different parents in the same trait and among different traits in the same parent showed great different. The GCA relative effects of stem yield among different parents ranged from-29.88 to 13.48. There were five effects showed significant positive, accounting for 33.33%. Two male inbred lines (60 and 156), and three male sterile inbred lines (133-2A, 118-3A and 145-1A) had significant positive (P< 0.01) GCA relative effect. The SCA relative effects ranged from -35.86 to 39.93 with twenty-four effects were significant, accounting for 42.86%. The heterosis among parents was related to GCA and SCA. The hybrids with strong heterosis had excellent SCA or the parents had excellent GCA, or had both excellent SCA and GCA. During the using of heterrosis in tuber mustard, therefore, it should pay attention to both GCA and SCA.
     (8) The hight-parent heterosis of stem yield ranged from -46.35% to 77.22% with an average of 6.24%. There were 64.29% hybrids showed positive and significant hight-parent heterosis. It was indicated that there were significant heterosis of stem yield among parents. The results also showed some strong heterosis were existed, it indicated that two male inbred lines (19 and 60) and three female inbred lines (140-5A,122-3A and 133-2A) were the elit inbred lines which can be used to develop strong superiority hybridized hybrids. The correlation coefficient among the stem yield, hight-parent heterosis SCA were big and highly significant, which indicating that the heterosis can be reflected by SCA. The correlation coefficient of genetic distance based on phenotypic characters and SSR data with stem yield, hight-parent heterosis and SCA were small and not significant. It couldn't use the genetic distance based on phenotypic characters and SSR markers to predict the heterosis and combining ability in tuber mustard.
     (9) The sequences of the single-copy nuclear gene Chs were used to study the phylogenetic relationships among tuber mustard and its related plants. Sequence analysis indicated that the one hundred and seventeen Chs gene sequences could be classified into 11 branches. The split analysis indicated that there not only existed tree evolution, but also existed reticulate evolution among tuber mustard and its related plants. There were many reticulate evolution events during the evolutionary history of tuber mustard and its related plants. Median-joining(MJ) network analysis indicated that Brassica pekinensis was the parent donor of A genome in tuber mustard, while Brassica nigra was the other parent donor of B genome in tuber mustard. It was presumed that tuber mustard was origin from a natural mutation of Brassica juncea by artificial domestication and selecting, while the certain Brassica juncea was a crossing of Brassica pekinensis and Brassica nigra.
引文
[1]胡延吉等.植物育种学.北京:高等教育出版社,2003:21-23.
    [2]潘家驹主编.作物育种学总论.中国农业出版社,2000,5:22-34.
    [3]孔繁玲.植物数量遗传学.中国农业大学山版社,北京,2006:217-219.
    [4]葛颂,洪德元主编.生物多样性研究的原理与方法.中国科学技术出版社,1994:123-140.
    [5]陈灵芝,马克平主编.生物多样性科学:原理与实践.上海科学技术出版社,2001:3-7,93-107.
    [6]陈灵芝.生物多样性保护现状及其研究.植物杂志,1993,8(5):7-9.
    [7]陈玉清,郑有良,周永红.应用亲缘系数分析四川小麦种质资源的遗传多样.南京师大学报(自然科学版),2002,25(2):22-27.
    [8]Murphy J P, Cox T S, Rodgers D M. Cluster analysis of red winter wheat cultivars based upon coefficient of parentage. Crop Sci.,1986,26:672-676.
    [9]Souza E, Sorrells M E. Pedigree analysis of North American oat cultivars released from 1951 to 1985. Crop Sci,1989(29):595-602.
    [10]Mercado L. A., Souza E., Kephart K. D. Origin and diversity of North American hard spring wheats. Thero Appl Genet,1996,116 (93):593-599.
    [11]盖钧锰,赵团结.中国1923-1995年育成的651个大豆品种的遗传基础.中国油料作物学报,1998,20(1):17-23.
    [12]邹小云,宋宇贺,浩华一,傅军如.作物杂种优势群与杂种优势模式研究进展.种子,2004,23(6):44-48.
    [13]王懿波,王振华.中国玉米主要种质杂种优势群的划分及其改良利用.华北农学报,1998,13(1):74-80.
    [14]沈裕琥,王海庆,黄相国,窦全文,葛菊梅,张怀刚.数量性状水平上甘、青两省春小麦品种间的遗传多样性现状及演变趋势.西北植物学报,2002,22(5):1056-1065.
    [15]Engels J. M. M. Relationship between genealogical distance and breeding behavior in oats(Avenasativa L.). Genetic Resources and Crop Evolution,1994,41 (2):67-72.
    [16]游俊梅,陈惠查,金桃叶,阮仁超.贵州地方旱稻种质资源遗传多样性评价.种子,2005,24(4):79-84.
    [17]Puertas M J. Nature and evolution of B chromosomes in plant:A non-coding but information-rich part of plants genomes[. Cytogenet Genome Res.,2002, (96):198-205.
    [18]Carlson R W. The B chromosome of maize. CRC. Crit. Rev. Plant Sci.,1986, (3):201-226.
    [19]Langdon T, Seago C, Jones R. N. De novo evolution of satellite DNA on the rye B chromosome. Genetics,2000, (154):869-884.
    [20]Shi L, Zhu T, Mogensen L. Sperm identification in maize by fluorescence in situ hybridization. Plant Cell,1996,(8):815-821.
    [21]Akagi H, Yokozeki Y, Inagaki A. Highly Poplymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet., 1997, (94):61-67.
    [22]张利国,关凤芝,吴广文,房郁妍,宋宪友,徐丽珍,康庆华.基于核型与RAPD标记的大麻地方品种遗传多样性分析.中国麻业科学,2009,31(3):169-172,181.
    [23]Moraes A P, Walter S S F, Marcelo G. Karyotype diversity and the origin of grapefruit. Chromosome Research,2007,15:115-121.
    [24]Roberto F A, Marcelo R V, Mara C A, Orlando M F, Luiz A C B. Karyotype diversity and fish conservation of southern field from South Brazil. Rev Fish Biol Fisheries,2009,19:393-401.
    [25]刘永安,冯海生,陈志国.植物染色体核型分析常用方法概述.贵州农业科学,2006,34(1):98-102.
    [26]Stebbins G L. Chromosome evolution in higher plants. Edward Arold,1971:87-89.
    [27]Deng Q H, Zeng Q T, Qian Y H, Li C X, Yang Y. Research on the karyotype and evolution of Drosophila melanogaster species group. Journal of Genetics and Genomics,2007,34(3):196-213.
    [28]姜丽,计巧灵,张丕鸿.三个亚麻品种染色体核型分析.中国麻业科学,2008,30(5):241-245
    [29]张兰.彩棉三个品种的核型对比分析.西北农业学报,2008,17(1):251-256.
    [30]Vaughan J G, Hemingway J S, Schofield HJ. Contributions to a study of variation in Brussica juncea Coss. Et Czem. Journal of Linnean Society (Botany),1963(374):435-447
    [31]Vaughan J G, Gordon E I. A taxonomic study of Brassica juncea using the techniques of electrophoresis, gasliquid chromatography and serology. Ann. Bot. (Oxford),1973(37):167-184.
    [32]徐杏连,姜微波,林琳.芥菜采后叶片中蛋白酶特性分析.中国农业大学学报,2005,10(5):49-51
    [33]刘华,王宇生,张辉.小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用.作物学报,1999,25(6):674-682
    [34]赵坚义,Becker H C同工酶分子标记研究中国和欧洲栽培油菜的遗传差异.作物学报,1998,24(2):213-220
    [35]蒋慧萍,李杨瑞.利用同工酶、RAPD技术及形态学标记对不同地域木豆品种的遗传多样性研究.西南农业学报,2010,23(2):483-486.
    [36]Tang S X, Wei X H, Jiang Y Z, Brar D S, Khush G S. Genetic diversity based on allozyme alleles of Chinese cultivated rice. Agricultural Sciences in China,2007,6(6):641-646.
    [37]王芸,刘玉平,刘义满,柯卫东.分子标记技术在莲遗传多样性分析中的应用.长江蔬菜,2009,(16):8-16
    [38]Chen G Y, Li L H. Detection of genetic diversity in synthetic hexaploid wheats using Microsatellite Markers. Agricultural Sciences in China,2007,6(12):1403-1410.
    [39]Xiang X, Deng Z A, Chen C X, Fred G G, Bowman K. Marker assisted selection in Citrus rootstock breeding based on a major gene Locus 'Tyrl' controlling Citrus Nematode resistance. Agricultural Sciences in China,2010,9(4):557-567.
    [40]Myint Y, Khin T N, Apichart V, Witith C, Theerayut T. Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crops Research, 2009,113(2):178-186.
    [41]Zhuang L F, Song L X, Feng Y G, Qian B L, Xu H B, Pei Z Y, Qi Z J. Development and chromosome mapping of new wheat EST-SSR markers and application for characterizing Rye chromosomes. Acta Agronomica Sinica,2008,34(6):926-933.
    [42]Liu F H, Niu Y C, Deng H, Tan G J. Mapping of a major stripe rust resistance gene in Chinese Native Wheat Variety Chike Using Microsatellite Markers. Journal of Genetics and Genomics,2007, 34(12):1123-1130.
    [43]Smith R L, Schweder M E, Chowdhury M K U, Seib J C, Schank S C. Development and application of RFLP and RAPD DNA markers in genetic improvement of Pennisetum for biomass and forage production. Biomass and Bioenergy,1993,5(1):51-62.
    [44]Chang C, Meyerowitz E M. Plant genome studies:restriction fragment length polymorphism and chromosome mapping information. Current Opinion in Genetics & Development,1991,1(1): 112-118.
    [45]孟金陵,Sharpe A, Bowman C,田志宏,傅廷栋.用RFLP标记分析甘蓝型油菜的遗传多样性.遗传学报,1996,23(4):293-306.
    [46]朱列层,唐国顺,HAZEN S P, KIM H S用RFLP方法研究陕西省主要小麦品种遗传多样性及其演变.西北植物学报,1999,19(2):208-213.
    [47]邱敦莲,Kim H S不同地理分布和不同育种课题来源的普通小麦种质库基于RFLP遗传多样性的带型.国外作物育种,2001,20(2):39-39.
    [48]Zheng D J, Liang Y F, Liu G M, Yan D H, Linghu C D, Tian Y H. RAPD Analysis of germplasm resources of Kudingcha species in oleaceae. Agricultural Sciences in China,2009,8(7):784-792.
    [49]Li J J, Pei G L, Pang H X, Bilderbeck A, Chen S S, Tao S H. A new method for RAPD primers selection based on primer bias in nucleotide sequence data. Journal of Biotechnology,2006,126(4): 415-423.
    [50]Halward T, Stalker T, LaRue E, Kochert G. Use of single-primer DNA amplifications in genetic studies of peanut (A rachisypogaea L.). Plant Molecular Biology,1992,189 (5):325-328.
    [51]Yu L X, Nguyen H T. Genetic variation detected with RAPD markers among upland and lowl and rice cultivars(O-ryzasativa L.). Theor. Appl. Genet,1994,87:668-672.
    [52]徐秋华,张献龙,聂以春.长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究.遗传学报,2001,28(7):683-690.
    [53]郭江勇,王义琴,吴明刚,张利明,刘丰疆,李文彬,刘海峰,孙勇如.利用RAPD标记对彩色棉遗传多样性的分析.棉花学报,2003,15(5):269-273.
    [54]刘文欣,孔繁玲,郭志丽,张群远,彭惠茹,付小琼,杨付新.建国以来我国棉花品种遗传基础的分子标记分析.遗传学报,2003,30(6):560-570
    [55]Vos P, Hogers R, Bleeker M. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414.
    [56]郝晨阳,王兰芬,董玉琛.我国西北春麦区小麦育成品种遗传多样性的AFLP分析.植物遗传资源学报,2003,4(4):285-291.
    [57]陈亮,梁春阳,孙传清,金德敏,姜廷波,王斌,王象坤AFLP和RFLP标记检测水稻亲本遗传多样性比较研究.中国农业科学,2002,35(6):589-595.
    [58]粟生群,荣廷昭,余跃辉,刘坚.利用AFLP标记鉴定小豆栽培型种质遗传多样性.四川农业大学学报,2005,23(2):156-162.
    [59]张书芬,傅廷栋,马朝芝,朱家成,王建平.3种分子标记分析油菜品种间的多态性效率比较.中国油料作物学报,2005,27(2):19-23.
    [60]相怀军,张宗文,吴斌.利用AFLP标记分析皮燕麦种质资源遗传多样性.植物遗传资源学报,2010,11(3):271-277.
    [61]Subramanian S, Mishra R K, Singh L. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol.,2003,4(2):13.
    [62]Tang R H, Zhuang W J, GAO G Q, He L Q, Han Z Q, Shan S H, Jiang J, Li Y R. Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agricultural Sciences in China, 2008,7(4):405-414.
    [63]Li L Z, Wang J J, Guo Y, Jiang F S, Xu Y F, Wang Y Y, Pan H T, Han G Z, Li R J, Li S H. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Progress in Natural Science,2008,18(12):1485-1490.
    [64]Wang L X, Ceng X Z, Wang S H, Liu C Y, Liang H. Transferability of SSR Markers from Adzuki Bean into Mungbean. Acta Agronomica Sinica,2009,35(5):816-820.
    [65]Li L J, Yang K C, Pan G T, Rong T Z. Genetic diversity of maize populations developed by two kinds of recurrent selection methods investigated with SSR markers. Agricultural Sciences in China, 2008,7(9):1037-1045.
    [66]Tang R H, Zhuang W J, Gao G Q, He L Q, Han Z Q, Shan S H, Jiang J, Li Y R. Phylogenetic relationships in Genus Arachis based on SSR and AFLP markers. Agricultural Sciences in China, 2008,7(4):405-414.
    [67]Baranek M, Raddova J, Pidra M. Comparative analysis of genetic diversity in Prunus L. as revealed by RAPD and SSR markers. Scientia Horticulturae,2006,108(3):253-259.
    [68]徐如宏,任明见,杨英苍,张庆勤.贵州省区试小麦品系遗传多样性的SSR标记研究.山地农业生物学报,2005,24(1):12-16.
    [69]郭小丽,刘冬成,罗铮,张爱民.我国部分优质小麦品种遗传差异的SSR标记分析.麦类作物学报,2004,24(1):1-5.
    [70]耿惠敏,刘红彦,宋玉立,王俊美,李锁平.40个河南省审定小麦品种遗传多样性的SSR标记分析.西北农学报,2005,14(2):27-32.
    [71]张建勇,袁佐清,李仕贵.微卫星标记分析灿粳亚种间的遗传多样性.山东理工大学学报.2005,19(2):22-27.
    [72]李林海,邱丽娟,常汝镇,贺学礼.中国黄淮和南方夏大豆(Glycine max L.)SSR标记的遗传多样性及分化研究.作物学报.2005,31(6):777-783.
    [73]陈发波,杨克诚,荣廷昭,潘光堂.西南及四川区试玉米组合遗传多样性分析.作物学报,2007,33(6):991-998.
    [74]闵丽,许崇香,安英辉,李伟忠,王红霞,孙梅.48份玉米自交系的SSR遗传多样性分析.黑龙江农业科学,2010(6):8-10.
    [75]Huang J C, Sun M. Genetic diversity and relationship of sweet potato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet,2000,100:1050-1060.
    [76]Danilova T V, Danilov S S, Karlov G I. Assessment of geneticpolymorphism in Hop(Humulus lupulus L.)cultivars by ISSR-PCR analysis. Russian Journal of Genetics,2003,39(11):1252-1 257.
    [77]Fernandez M E, Figueiras A M, Benito C. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars withknown origin. Theor Appl Genet,2002,104:845-851.
    [78]何予卿,张宇,孙梅.利用ISSR分子标记研究栽培稻和野生稻亲缘关系.农业生物技术学报,2001,9(2):123-127.
    [79]吴卫,郑有良,陈黎.利用ISSR标记分析鱼腥草种质资源的遗传多样性,2007,5(1):70-77.
    [80]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based oil a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,103:455-461.
    [81]Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbitapepo using SRAP and AFLP markers. Theor Appl Genet,2003,107:271-282.
    [82]Ferriol M, Pico B, Cordova P F. Molecular diversity of a germplasm collection of quash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Science,2004,44:653-664.
    [83]Li G, Gao M, Yang B. Gene for gene alignment between the Brassica and Arabidopsis genomes by diret transcriptome mapping. Theoretical and Applied Genetics,2003,107:168-180.
    [84]Nasu S, Suzuki J, Ohea R. Searchh and analysis of sinde nueleotide polynaisms(SNPs)in rice and establishment of SNP mark.. DNARes,2002,9(5):163-171.
    [85]Feltus F A, Wan J, Schuize S R. An SNP resollree for rice genetics and breeding based on subspecies indica and japonica genome alits. Genome Res,2004,14(9):1812-1819.
    [86]Feltus F A, Wan J, Schuize S R. International rice cenanae sequencing project. The map-based sequence of the rice gena-re. Nature,2005,436:793-800.
    [87]Kulwal P L, Roy J K, Balyan H S, Gupta P K. QTL mapping for growth and leaf characters in bread wheat. Plant Science,2003,164 (2):267-277
    [88]Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL Mapping of isoflavone, oil and protein contents in Soybean (Glycine max L. Merr.). Agricultural Sciences in China,2010,9(8):1108-1116.
    [89]Emebiri L C, Moody D B, Panozzo J F, Read B J. Mapping of QTL for malting quality attributes in barley based on a cross of parents with low grain protein concentration. Field Crops Research, 2004,87(2):195-205.
    [90]Kumar A, Kumar J, Singh R, Garg T, Chhuneja P, Balyan H S, Gupta P K. QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Science,2009,177(2):114-122.
    [91]Mcndoza L, Thieffry D, Alvarez-Buylla E R. Genetic control of flower morphogenesis in arobidopsis thaliana:a logical analysis. Bioinformatics,1999,15:593-606.
    [92]谭远德.杂种优势的一种可能的分子机理-气杂合醉的协同效应.南京师大学报(自然科学版,1998,21:80-87.
    [93]钟金城.活性基因效应假说.西南民族学院学报(自然科学版),1994,20: 203-205.
    [94]向道权,黄烈健,戴景瑞.玉米产量QTL和杂种忧势遗传基础研究进展.中国农业大学学报,1994,4(增刊):1-7.
    [95]李竞雄,周洪生.杂种优势机理探讨:作雄性不育杂种优势研究进展.中国农业山版社,1996,1:1-12.
    [96]Kroon L P N M, Bakker F T, Bosch G B M, Bonants P J M, Fliera W G. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology,2004, (41):766-782.
    [97]Rogers J E, Leblond J D, Moncreiff C A. Phylogenetic relationship of Alexandrium monilatum (Dinophyceae) to other Alexandrium species based on 18S ribosomal RNA gene sequences. Harmful Algae,2006, (5):275-280.
    [98]Fan X, Zhang H Q, Sha L N, Zhang L, Yang R W, Ding C B, Zhou Y H, Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae:Triticeae) based on the sequences of a gene encoding plastid acetyl-CoA carboxylase. Plant Science,2007,172:701-707.
    [99]Yockteng R, Nadot S. Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular Phylogenetics and Evolution, 2004,31:379-396.
    [100]Sha L N, Fan X, Yang R W, Kang H Y, Ding C B, Zhang L, Zheng Y L, Zhou Y H. Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Acc1, DMC1 and chloroplast trnL-F sequences. Molecular Phylogenetics and Evolution,2010, (54):327-335.
    [101]Sha L N, Yang R W, Fan X, Wang X L, Zhou Y H. Phylogenetic analysis of Leymus (Poaceae: Triticeae) inferred from nuclear rDNA ITS sequences. Biochem Genet,2008,46:605-619.
    [102]Zhang C, Fan X, Yu H Q, Zhang H Q, Wang X L, Zhou Y H. Phylogenetic analysis of questionable tetraploid species in Roegneria and Pseudoroegneria (Poaceae:Triticeae) inferred from a gene encoding plastid acetyl-CoA carboxylase. Biochemical Systematics and Ecology, 2009,(37):412-420.
    [103]马兰,黄原.单拷贝核基因在昆虫分子系统学中的应用.昆虫知识,2006,43(6):6-9.
    [104]Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol. Biol.,2002,37(3):121-147.
    [105]Mort, M E, Crawford D J. The continuing search:low-copy nuclear sequences for lower-level plant molecular phylogenetic studies. Taxon,2004, (53):257-261.
    [106]Small, R L, Cronn R C, Wendel J F. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany,2004, (17):145-170.
    [107]Mason-Gamer R J. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst Biol,2004,53(1):25-37.
    [108]Poke F S, Martin D P, Steane D A, Vaillancourt R E, Reid J B. The impact of intragenic recombination on phylogenetic reconstruction at the sectional level in Eucalyptus when using a single copy nuclear gene(cinnamoyl CoA reductase). Molecular Phylogenetics and Evolution,2006 (39):160-170.
    [109]Smith J F, Funke M M, Woo V L. A duplication of gcyc predates divergence within tribe Coronanthereae (Gesneriaceae):phylogenetic analysis and evolution. Plant Syst. Evol.,2006, 261(1-4):245-256.
    [110]Thomas M M, Garwood N C, Baker W J, Henderson S A, Russell S J, Hodel D R, Bateman R M. Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. Molecular Phylogenetics and Evolution,2006 (38):398-415.
    [111]G6rniak M, Paun O, Chase M W. Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh:Congruence with organellar and nuclear ribosomal DNA results. Molecular Phylogenetics and Evolution,2010, (56):784-795.
    [112]Steele P R, Guisinger-Bellian M, Linder C R, Jansen R K, Phylogenetic utility of 141 low-copy nuclear regions in taxa at different taxonomic levels in two distantly related families of rosids. Molecular Phylogenetics and Evolution,2008 (48):1013-1026.
    [113]Rousseau-Gueutin M, Gaston A, Ainouche A, Ainouche M L, Olbricht K, Staudt G, Richard L, Denoyes-Rothan B. Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): New insights from phylogenetic analyses of low-copy nuclear genes. Molecular Phylogenetics and Evolution,2009 (51):515-530.
    [114]Bailey D C, Doyle J J. Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants:comparison to nrDNA ITS and trnL intron in Sphaerocardamum and Other Brassicaceae. Molecular Phylogenetics and Evolution,1999,13(1):20-30.
    [115]Whittall J B, Medina-Marino A, Zimmer E A., Hodges S A. Generating single-copy nuclear gene data for a recent adaptive radiation. Molecular Phylogenetics and Evolution,2006,39(1):124-134.
    [116]Adrian H B L, Dransfeld J, Chase Ma W, Baker W J. Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Molecular Phylogenetics and Evolution,2006 (39):598-618.
    [117]Shepherd L D, Perrie L R, Brownsey P J. Low-copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Molecular Phylogenetics and Evolution,2008,49:240-248.
    [118]Whittall J B, Medina-Marino A, Zimmer E A, Hodges S A. Generating single-copy nuclear gene data for a recent adaptive radiation. Molecular Phylogenetics and Evolution,2006 (39):124-134.
    [119]Huang S X, Sirikhachornkit A, Faris J D, Su X J, Gill B S, Haselkorn R, Gornicki P. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol,2002,48(5-6):805-820.
    [120]Kilian B, Ozkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol., 2007,24(1):217-227.
    [121]Fan X, Sha L N, Yang R W, Zhang H Q, Kang H Y, Ding C B, Zhang L, Zheng Y L, Zhou Y H. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evolutionary Biology,2009,9:247.
    [122]凡星,廖莎沙莉娜,刘静,王晓丽,周永红.猬草及其近缘属植物单拷贝核P冰1基因序列的系统发育分析.遗传,2009,31(10):1049-1058
    [123]Ferrer J I, Jez J M, Bowman M E, et al. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature,1999,6(8):775-840.
    [124]Lu X, Zhou W, Gao Fe. Cloning, characterization and localization of CHS gene from blood orange, Citrus sinensis (L.) Osbeck cv. Ruby. Molecular Biology Reports,2009,36(7):1983.
    [125]Jiang M, Cao J S. Sequence variation of chalcone synthase gene in a spontaneous white-flower mutant of Chinese cabbage-pak-choi. Molecular Biology Reports,2008,35(4):507.
    [126]Lanz T, Tropf S, Marner F J. The role of cysteines in polyketide synthase site directeted mutagenesis of resveratrol and chalcone synthase, two enzymes in different plant-specific pathways. J Biol Chem,1991,266:9971-9976.
    [127]Ursula N K, Barzen E B. Chalcone synthase gene in plants:a tool to study evolutionary relationships. Mol Evol,1987,26:213-225.
    [128]王金玲,瞿礼嘉,陈军.CHS基因外显子2的进化规律及其用于植物分子系统学研究的可行性[J].科学通报,2000,45(9):942-950.
    [129]Yang J B, Tian X, Li D Z. Molecular composition and evolution of the chalcone synthase(CHS) gene family in five species of camellia(Theaceae). Acta Botanica Sinica,2003,45(6):659-666.
    [130]Zhao B, Liu L, Tan D Y, Wang J B. Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences. Biochemical Systematics and Ecology,2010:1-9.
    [131]刘佩英.中国芥菜.中国农业出版社,北京,1996:15-23,45-49,52-55.
    [132]Song K M. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLP). Thero Appl Genet.1988,75:784-794.
    [133]Axelsson T, Sharpe A G, Bowman C M. Amphidiploid Brassica juncea contains conserved proge nitor genomes. Genome,2000,43:679-688.
    [134]Cheung W, Y, Landry B, S. Molecular mapping of seed quality traits in Brassica jncea L.Czern and Coss. Acta Hort,1998,459:139-147.
    [135]Truco M J, Hu J, Sadowski. Inter- and intra-genomic homology of the Brassica genomes: implication for their origin and evolution. Theor Appl Genet,1996,93(8):1225-1233.
    [136]杨以耕,刘念慈,陈学群,陈材林,周光凡,廖克礼.芥菜分类研究.园艺学报,1989,16(2):114-121.
    [137]陈材林,周源,周光凡,陈学群,范永红.中国的芥菜起源探讨.西南农业学报,1992,5(3): 6-10.
    [138]陈材林,周光凡,杨以耕,陈学群,刘念慈.中国芥菜分布的研究.西南农业学报,1990,3(1):17-21.
    [139]刘义华,周光凡,范永红,彭福英,李娟,张建红.茎瘤芥(榨菜)产量生境敏感性的初步研究.植物遗传资源学报,2004,5(4):374-377.
    [140]童南奎.菜用芥菜不同变种的核型及杂种染色体行为的观察.西南农业大学学报,1991(3):321-324.
    [141]王建波,利容千.芥菜不同变种的核型变异初探.园艺学报,1992,9(3):245-249.
    [142]孟秋峰,汪炳良,皇甫伟国.芥菜花粉形态特征及分类初探.浙江大学学报(农业与生命科学版),2006(1):65-70.
    [143]陈竹君,汪炳良,龚兰,吴根良,张明方.光周期与温度对榨菜发育的影响.浙江农业学报,1997,9(1):10-15.
    [144]陈竹君,陈迪峰,汪炳良,陈学军.榨菜花芽分化早期的生化特性研究.浙江农业学报,2000,12(4): 187-190.
    [145]陈竹君,陈迪锋,汪炳良,陈学军.榨菜花芽分化早期形态发育及细胞超微结构初探.浙江文学学报(农业与生命科学版),2000,26(1):79-84.
    [146]张明方Tsatsai vegetative growth and flowering response to Paclobutrazol浙江农业学报.1996,8(2):110-112.
    [147]马全民,饶立华,陆定志.钾调节茎用芥菜同化物运输及茎部膨大的作用机理.园艺学报,1992,19(4):347-352.
    [148]汪柄良,朱祝军,陈竹君.采收期对榨菜空心率和氮磷钾及内源激素含量的影响.浙江农业大学学报,1996,32(3):185-190.
    [149]唐将,李勇,邓富银,赵琦,雷家立.涪陵榨菜不同器官元素含量分布特征.西南农业大学学报(自然科学版),2004,26(6):706-714.
    [150]李昌满,王贵学.钾肥对茎瘤芥产量和品质的效应.重庆大学学报(自然科学版),2007,30(2):111-119.
    [151]赵大云,汤坚,丁霄霖.雪里蕻腌菜特征风味物质的分离和鉴定.无锡轻工大学学报,2001,20(3):291-298.
    [152]林正奎,华映芳.四川榨菜香气成分研究.植物学报,1986,28(3):299-306.
    [153]Ludikhuyae L, Ooms V, Weemaes C et al. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracer L. Cv. halica). J Agri. Food Chem., 1999,47:1794-1800.
    [154]Palmieri S, Renato I, leoni O. Comparison of methods for determining myrosinase activity. J Agri Food Chem.,1987,35:617-621.
    [155]邓勇.四川榨菜后熟转化作用机制的研究.食品科学,1992,154(10):8-12.
    [156]刘柱明,张怀宇,邓海阳,吴中全,陈怀新,李顺意.榨菜中多酚氧化酶特性的研究.湖北大学学报(自然科学版),2005,27(4):381-384.
    [157]徐伟丽,赵国华,李洪军,陈宗道,余帮兵,向瑞玺.茎用芥菜芥子苷酶的特性研究.中国食品学报,2006,6(2):41-45.
    [158]周源,陈学群,周光凡.栽培芥菜、野生芥菜及其基本祖种的同工酶分析.西南农业学报,1990(4):42-46.
    [159]童南奎,陈世儒.芥菜及其原始亲本种的酸性磷酸酶同工酶分析.园艺学报,1990(4):293-298.
    [160]陈学群,周光凡,周源.芥菜脂酶同工酶分析.西南农业学报,1993(3):40-46.
    [161]孟秋峰,王毓洪,顿兰凤,汪炳良.八个芥菜品种的过氧化物同工酶分析.安徽农学通报,2006,12(11):70-71.
    [162]Rabbani M A, lwabuchi A, Murakami Y. Genetic diversity in mustard (Brassica juncea L.) germplasm from Pakistan as determined by RAPDs. Euphytica,1998,103(2):235-242.
    [163]Qiao A M, LuPY, Lei J J. RAPD analysis of sixteen varieties of mustard. Acta Botanica Sinica, 1998, (40):915-921.
    [164]Jain A, Bhatia S, Banga S. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Biassiea jucea) and its relationship to heterosis. Theor Appl Go net,1994,88:116-122.
    [165]Anand U, Rawart D S. Genetic diversity, combining ability and heterosis in brown mustard. Indian Journalof Genetics,1984(44):226-234.
    [166]童南奎,陈世儒.芥菜几个品种主要经济性状的遗传规律研究.园艺学报,1992,19(2):151-156.
    [167]刘义华.茎芥菜(茎瘤芥)单株产量与主要性状的关.中国蔬菜,1999,(3):17-19.
    [168]刘义华,周光凡,范永红,王彬,林合清.茎瘤芥各生育期农艺性状间的关系研究.西南农业学报,2004,17(5):633-635.
    [169]王旭祎,范永红,刘义华,林合清,王彬,李娟.播期和密度对茎瘤芥主要经济性状的影响.西南园艺,2006,34(4):17-20
    [170]刘义华,冷蓉,张召荣,高明泉,张建红.茎瘤芥(榨菜)性状间的遗传相关性研究.中国农学通报,2006,22(9):318-320.
    [171]刘义华,冷蓉,张召荣,高明泉,肖丽.茎瘤芥主要数量性状遗传力和遗传进度的初步研究.植物遗传资源学报,2006,7(4):442-445.
    [172]刘义华,冷蓉,张召荣.茎瘤芥(榨菜)数量性状遗传差异研究.中国农学通报,2007,23(3):328-331.
    [173]陈竹君,高其康,吴根良.榨菜胞质雄性不育系花器形态及遗传变异.浙江农业学报,1993,5(3): 172-176.
    [174]张明方,陈竹君.榨菜胞质雄性不育系选育初探.北京农业大学学报,1993,19(20):129-133.
    [175]陈竹君,张明方,汪炳良.榨菜胞质雄性不育系及其农艺性状的研究.园艺学报,1995,22(1):40-46.
    [176]陈竹君,张明方,汪炳良.榨菜胞质雄性不育系种子产量构成因索的相关性分折.浙江农业学报,1994,6(6):24-246.
    [177]张明方,陈竹君,汪炳良.榨菜胞质雄性不育系及其保持系花器发育过程中内源激素变化.浙江农业大学学报,1997,23(2):154-157.
    [178]潘家驹主编.作物育种学总论.中国农业出版社,1992:3-4.
    [179]卢宝容.稻种遗传资源多样性的开发利用及保护.生物多样性.1998,6(1):63-72.
    [180]辛业芸.分子标记技术在植物学研究中的应用.湖南农业科学.2002,(4):9-12.
    [181]曾三省.中国玉米杂交种的种质基础.中国农业科学,1990,23(4):1-93.
    [182]周太炎,郭荣麟,蓝永珍,陆莲立,关克俭,安静夕.中国植物志(33卷).北京:科学出版社,1987:16-30.
    [183]王建林,何燕,栾运芳,大次卓嘎,张永青.中国芸薹属植物的起源、演化与散布.2006,22(8):489-494
    [184]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull,1987,19:11-15.
    [185]顾红雅等.植物分子生物学实验手册.高等教育出版社,北京,1998:4-11.
    [186]Senior M L, Murphy J P, Goodman M M, Stuber C W. Utility of SSRs for determining genetic similarities and relationshipsin maize using an agarose gel system. Crop Sci,1998,38:1088-1098.
    [187]Heckenberger M, Bohn M, Melchinger A E. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines:I Simple sequence repeat from maize inbrids. Crop Sci,2005,45(3):1120-1132.
    [188]荣廷昭,潘光堂,黄玉碧.数量遗传学.北京.中国科学技术出版社,2003:131-233.
    [189]荣廷昭,李晚忱,吴渝生,王贵学,员海燕.田间试验与统计分析.成都.四川大学出版社,2001:178-189.
    [190]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The Clustal X Windows interface:flexible strategiesfor multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25(24):4876-4882.
    [191]Huelsenbeck J P, Ronquist F R. MrBayes:Bayesian inference of phylogenetic trees. Bioinformatics,2001,17(8):754-755.
    [192]孟秋峰,王毓洪,皇甫伟国,薛旭初,汪炳良.芥菜类蔬菜植物学性状鉴定及聚类分析.浙江农业科学,2006,(3):254-257.
    [193]蒋立希,陈曼玲.浙江省白菜型油菜地方品种聚类分析.中国油料,1991(1):12-16.
    [194]刘定富.甘蓝型油菜品种的聚类分析.湖北农学院学报,1993,13(3):170-17.
    [195]孟秋峰,王毓洪,任锡亮,何智龙,任明兴.芥菜类蔬菜不同品种园艺学性状初步研究.现代农业科技,2006,(11):24-26.
    [196]Yao Q L, Fang P, Yang K C, Pan G T. Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. Journal of Genetics,2008,87(3):287-292.
    [197]Giarrocco L E, Marassi M A, Salerno G L. Assessment of the genetic diversity in Argentine rice cultivars with SSR markers. Crop Science,2007,47 (2):852-859.
    [198]Peng J H, Bai Y, Haley S D, Lapitan N L V. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica, 2009,135:95-122.
    [199]Varshney R K, Salem K F M, Baum M, Roder M S. SSR and SNP diversity in a barley germplasm collection. Plant Genetic Resources,2008,6 (2):167-174.
    [200]Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella M E, Siligato F, Gian Soressi P, Tiranti B, Veronesi F. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet,2008,116: 657-669.
    [201]Akritidis P, Mylona P V, Tsaftaris A S, Polidoros A N. Genetic diversity assessment in greek Medicago truncatula genotypes using microsatellite markers. Biologia Plantarum,2009,53(2): 343-346.
    [202]Dikshit H K, Jhang T, Singh N K, Koundal K R, Bansal K C, Chandra N, Tickoo J L, Sharma T R. Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biologia Plantarum,2007, 51(3):451-457.
    [203]Hu X Y, Wang J F, Lu P, Zhang H S. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics,2009,36(8): 491-500.
    [204]Plieske J, Struss D. Microsatellite markers for genome analysis in Brassica.Ⅰ. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet,2001,102:689-694.
    [205]Suwabe K, Iketani H, Nunome T, Ohyama A, Hirai M, Fukuoka H. Characteristics of microsatellites in Brassica rapa genome and their potential utilization for comparative genomics in Cruciferae. Breed Sci.,2004,54:85-90.
    [206]Lowe A, Moule C, Trick M, Edwards K. EYcient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet,2004,108: 1103-1112.
    [207]Hopkins C J, Cogan N O I, Hand M, Jewell E, Kaur J, Li X, Lim G A C, Ling A E, Love C, Mountford H, Todorovic M, Vardy M, Spangenberg G C, Edwards D, Batley J. Sixteen new simple sequence repeat markers from Brassica juncea expressed sequences and their cross-species ampliWcation. Mol Ecol Notes,2007,7:697-700.
    [208]Federico L. Iniguez-Luy A V, Voort A E, Osborn T C. Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet, 2008,117:977-985.
    [209]Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K D. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131.
    [210]Szewc-McFadden A K, Kresovich S, Bliek S M, Mitchell S E, McFerson J R. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet,1996,93:534-538.
    [211]Zhao Y G, Ofori A, Lu C M. Genetic diversity of European and Chinese oilseed Brassica rapa cultivars from different breeding periods. Agricultural Sciences in China.2009,8(8):931-938.
    [212]乔爱民,刘佩瑛,雷建军.芥菜16个变种的RAPD研究.植物学报,1998,40(10):915-921.
    [213]Qi X H, Yang J H, Zhang M F. AFLP-based genetic diversity assessment among Chinese vegetable mustards (Brassica juncea (L.) Czern.). Genet Resour Crop Evol,2008,55:705-711.
    [214]Wu X M, Chen B Y, Lu G Y, Wang H Z, Xu K, Gao G Z, Song Y C. Genetic diversity in oil and vegetable mustard (Brassica juncea) landraces revealed by SRAP markers. Genet Resour Crop Evol, 2009,56:1011-1022.
    [215]Warwick S I, Guge R K, McDonaland T, Falk K C. Genetic variation of Ethiopian mustard (Brassica carinata A. Braun)germplasm in western Canada. Genetic Resources and Crop Evolution, 2006,53:297-312.
    [216]Wang T T, Li H X, Lu Y G, Zhang J H, Ye Z B. Identification and distribution of S haplotypes in Brassica vegetables from China. Scientia Horticulturae,2007,112:271-277.
    [217]Pradhan A, Yan G, Plummer J A. Development of DNA fingerprinting keys for the Identification of Radish Cultivars. Australian Journal of Experimental Agriculture,2004,44:95-102.
    [218]孔秋生,李锡香,向长萍,邱杨,沈镝.栽培萝卜种质亲缘关系的AFLP分析.中国农业科学,2005,38(5):1017-1023.
    [219]Zhu X W, Liu L W, Song X Y, Gong Y G, Wang Y, Ym Y, Zhao L P, Wang L Z. Analysis of Genetic diversity of radish(Raphanuss ativus L)Germplasm with RAPD, AFLP and SRAP Markers. IHC, Seoul, Korea,2006.
    [220]Hartan J R. Geographic patterns of variation in some cultivated plants. J. Hered,1975,66:84-101.
    [221]Barigozzi G. The origins and domestication of cultivated plants. Field Crops Research,1987,16, (4):363-365.
    [222]Hope M, McManus D P. Genetic variation in geographically isolated populations and subspecies of Oncomelania hupensis determined by a PCR-based RFLP method. Acta Tropica,1994,57(1): 75-82
    [223]何余堂,涂金星,傅廷栋,李殿荣,陈宝元.中国白菜型油菜种质资源的遗传多样性研究.作物学报,2002,28(2):697-703.
    [224]Li W, Dong P, Wei Y M, Cheng G Y, Zheng Y L. Genetic Variation in Triticum turgidum L. ssp. turgidum Landraces from China Assessed by EST-SSR Markers. Agricultural Sciences in China, 2008,7(9):1029-1036.
    [225]Kuroda Y, Tomooka N, Kaga A, Wanigadeva S M S W, Vaughan D A. Genetic diversity of wild soybean (Glycine soja Sieb. etZucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selectionof a core collection. Genet Resour Crop Evol, 2009,56:1045-1055.
    [226]Kenga R, Alabi S O, Gupta S C. Combining ability studies in tropical sorghum [Sorghum bicolor (L.) Moench]. Field Crop Res.,2004,88:251-260.
    [227]Heckenberger M, Bohn M, Klein D, Melchinger A E. Identification of essentially derived varieties obtained from biparental crossses of homozygous lines:Ⅱ. Morpharison with simple sequence repeat and amplified fragment length polymorphism data in maize. Crop Science,2005,45(3): 1132-1140.
    [228]Soengas P, Ordas B, Malvar R A, Revilla P, Ordas A. Combining abilities and heterosis for adaptation in flint maize populations. Crop Science,2006,46(6):2666-2669.
    [229]Yu C Y, Jiang L, Xiao Y H, Zhai H Q, Wan J M. Combining ability of yield-component traits for Indica chromosome substituted segments in Japonica hybrid rice. Acta Agron Sin,2008,34(8): 1308-1316.
    [230]Makanda I, Tongoona P, Derera J. Combining ability and heterosis of sorghum germplasm for stem sugar traits under off-season conditions in tropical lowland environments. Field Crops Research,2009,114:272-279.
    [231]Sun Q X, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Science,2004,166:651-657.
    [232]Hua C M, Yang X C. Fixation of hybrid vigor in rice:opportunities and challenges. Euphytica, 2008,160:287-293.
    [233]Radoev M, Becker H C, Ecke W. Genetic Analysis of heterosis for yield and yield components in Rapeseed(Brassica napus L.) by quantitative trait locus mapping. Genetics,2008,179:1547-1558.
    [234]Song S H, Huang Y F, Wang X, Wei G, Qu H Z, Wang W W, Ge X M, Hu S N, Liu G Z, Liang Y H, Yu J. HRGD:a database for mining potential heterosis-related genes in plants. Plant Mol. Biol., 2009,69:255-260.
    [235]Teklewold A, Becker H C. Heterosis and combining ability in a diallel cross of Ethiopian mustard inbred line. Crop Science,2005,45(6):26-29.
    [236]Qi X H, Yang J H, Yu J Q, Zhang M F. Genetic and heterosis analysis for important agronomic traits of Chinese vegetable mustard (Brassica juncea) in different environments. Genetica,2009, 136:89-95.
    [237]Reif J C, Melchinger A E, Xia X C. Use of SSRs for establishing heterotic groups in subtropical maize. Theor. Appl. Genet.,2003,107 (5):947-957.
    [238]番兴明,张世煌,谭静.根据SSR标记划分优质蛋白玉米自交系的杂种优势群.作物学报,2003,29(1):105-110.
    [239]朱作峰,孙传清,姜廷波.水稻品种SSR与RFLP及其与杂种优势的关系比较研究.遗传学报,2001,28(8):738-745.
    [240]Chen X, Li M T, Shi J Q, Fu D H, Qian W, Zou J, Zhang C Y, Meng J L. Gene expression profiles associated with inter sub genomic heterosis in Brassica napus. Theor Appl Genet,2008,117: 1031-1040.
    [241]Phumichai C, Doungchan W, Puddhanon P, Jampatong S, Grudloyma P, Kirdsri C, Chunwongse J, Pulam T. SSR-based and grain yield-based diversity of hybrid maize in Thailand. Field Crops Research,2008,108:157-162.
    [242]Schrag T A, Mohring J, Maurer H P, Dhillon B S, Melchinger A E., Piepho H P, Serensen A P, Frisch M. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Theor Appl Genet,2009,118:741-751.
    [243]K. Krystkowiak, T. Adamski, M. Surma (?), Z. Kaczmarek. Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica,2009,165:419-434
    [244]Xangsayasane P, Xie F, Hernandez J E., Boirromeo T H. Hybrid rice heterosis and genetic diversity of IRRI and Lao rice. Field Crops Research,2010,117:18-23.
    [245]Dudley J W, Saghai MA, Rufener G K. Molecular markers and grouping of parents in maize breeding programs. Crop Sci,1991,31(3):718-723.
    [246]Legesse B. W, Myburg A A, Pixley K V, Twumasi-Afriyie S, Botha A M. Relationship between hybrid performance and AFLP based genetic distance in highland maize inbred lines. Euphytica, 2008,162:313-323.
    [247]Ni X L, Zhang T, Jiang K F, Yang L, Yang Q H, Cao Y J, Wen C Y, Zheng J K. Correlations between specific com bining ability, heterosis and genetic distance in hybrid rice. Hereditas,2009, 31(8):849-854.
    [248]Yang J Y, Gai J Y. Heterosis, Combining ability and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys. Acta Agronomaca Sinica,2009,35(4):620-630.
    [249]Yockteng R, Nadot S. Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular Phylogenetics and Evolution, 2004,31:379-396.
    [250]Yang Y W, Taia P Y, Chena Y, Lib W H. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Molecular Phylogenetics and Evolution,2002,23(2):268-275.
    [251]Kroon L P N M, Bakker F T, Bosch G B M, Bonants P J M, Fliera W G. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology,2004,41:766-782.
    [252]Sun G L, Ni Y, Daley T. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymusspecies. Mol. Phylogenet Evol.,2008,46(3):897-907.
    [353]Straub S C K, Pfeil B E, Doyle J V J. Testing the polyploid past of soybean using a low-copy nuclear gene-Is Glycine (Fabaceae:Papilionoideae) an auto-or allopolyploid?. Molecular Phylogenetics and Evolution,2006,39:580-584.
    [254]Durbin M L, Learn G H, Huttley G A, Clegg M T. Evolution of the chalcone synthase gene family in the genus Ipomoea. Proc. Natl. Acad. Sci. U.S.A.,1995,92,3338-3342.
    [255]Kano R, Nakamura Y, Watanabe S, Tsujimoto H, Hasegawa A. Phylogenetic relation of Epidermophyton floccosum to the species of Microsporum and Trichophyton in chitin synthase 1 (CHS1) gene sequences. Mycopathologia,1999,146:111-113.
    [256]Koch M, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol.,2000,17:1483-1498.
    [257]Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol. Biol.,2002,37(3):121-147.
    [258]Petersen G, Seberg O. Phylogenetic analysis of Triticeae(Poaceae)based on rpoA sequence data. Mol. Phylogenet. Evol,1997,7:217-230.
    [259]Jakob S S, Blatmer F R. A chloroplast genealogy of Hordeum(Poaceae):long-term persisting haplotypes, incomplete lineage sorting, regional extinction,and the consequences for phylogenetic inference. Mol. Biol. Evol,2006,23:1602-1612.
    [260]Genetic map-based studies of reticulate evolution in plants. Trends in Plant Science,1998,3(7)7: 254-259.
    [261]Rieseberg L H, Noyes R D. Reconstructing reticulate evolutionary histories of plants. Trends in Plant Science,2006,11(8):398-404.
    [262]Wissemann V. Evolution by hybridisation. The influence of reticulate evolution on biosymmetrical patterns and processes in plants. Theory in Biosciences,2005,123(3):223-233.
    [263]Raymond O, Piola F, Sanlaville-Boisson C. Inference of reticulation in outcrossing allopolyploid taxa:caveats, likelihood and perspectives. Trends in Ecology & Evolution,2002,17(1):3-6.
    [264]Garcia P E, Schonswetter P, Aguilar J F, Feliner G N, Schneeweiss G M. Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). Molecular Phylogenetics and Evolution,2009,50:226-239
    [265]Aagaard S M D, Greilhuber J, Zhang X C, Wikstro N. Occurrence and evolutionary origins of polyploids in the clubmoss genus Diphasiastrum (Lycopodiaceae). Molecular Phylogenetics and Evolution,2009,52:746-754.
    [266]Bloch C, Weiss-Schneeweiss H, Schneeweiss G M, Barfuss M H J, Rebernig C A, Villasenor J L, Stuessy T F. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Molecular Phylogenetics and Evolution,2009,53: 220-233.
    [267]Willyard A, Cronn R, Liston A. Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution,2009,52:498-511.
    [268]Yamaji H, Fukuda T, Yokoyama J, Pak J H, Zhou C Z, Yang C S, Kondo K, Morota T, Takeda S, Sasaki H, Maki Masayuki. Reticulate evolution and phylogeography in Asarum sect. Asiasarum(Aristolochiaceae) documented in internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution,2007,44:863-884
    [269]Suarez-Santiag V N, Salinas M J, Garcia-Jacas Nuria, Soltis P S, Soltis D E, Blanca G. Reticulate evolution in the Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean: Origin and diversi Wcation of section Willkommia Blanca. Molecular Phylogenetics and Evolution, 2007,43:156-172.
    [270]Peng D, Wang X Q. Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between eastern Asia and North America. Molecular Phylogenetics and Evolution2008,47:1190-1202.
    [271]Tanksley S D, McCouch S R. Seed banks and molecular maps:Unlocking genetic potential from the wild. Science,1997,277(5):1063-1066.
    [272]Hadan J R, Yeatman C W, Kafton D, Wilkes G. Plant cenetic resources:A conservation imperative. West-view, Boulder,1987:111-129.
    [273]庄巧生.中国小麦育种中亲本选配的基本经验.庄巧生论文集,中国农业出版社,北京,1999:378-414
    [274]懂玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81.
    [275]贾继增,Devos K小麦21条染色体RFLP作图位点遗传多样性分析.中国农业科学,辑,2001,31(1):13-21.
    [276]刘宝海,宋福金,高存启,于良斌.黑龙江大面积推广水稻品种遗传基础研究.作物杂志,2004(2):48-52.
    [277]吴景锋,于香云.试论2020年我国玉米种质改良的战略目标.作物杂志,1998(2):6-11.
    [278]Kane R T, Wilkinson H T. Corn genetic stock resistant to southern blight released. Crops and Soils, 1973,26:3,24-25.
    [279]彭国亮,罗庆明,冯代贵等,四川稻瘟病菌致病性变异与病害流行的关系.西南农业大学学报,1996,18(6):561-564.
    [280]刘三才,郑殿,曹永生,宋春华,陈梦英.中国小麦选育品种与地方品种的遗传多样性.中国农业科学,2000,33(4):20-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700