用户名: 密码: 验证码:
折流板厌氧反应器(ABR)启动过程中颗粒污泥的分形特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了ABR反应器启动过程中及启动成功后颗粒污泥的物理性质和不同拓扑空间下的分形维数。结果表明,启动过程中,在水平投影方向下测得的各格室的颗粒污泥粒径范围为1.02~2.49 mm,垂直投影方向下粒径范围为1.59~3.02 mm;有效密度用Allen方程计算和Logan-Allen方程计算分布范围用分别为0.76~77.58 kg·m-3和0.96~91.08 kg·m-3;自由沉降速率在1.96~45.27mm·s-1之间。反应器启动成功后,形成了边界较为清晰的黑色颗粒污泥,它们的SVI值为25~35ml·g -1,污泥浓度MLSS在9.20~19.10g·L-1之间,水平投影方向下粒径范围为1.70~1.98 mm,垂直投影方向下粒径范围为2.23~2.68mm;有效密度用Allen方程计算和Logan-Allen方程计算分布范围用分别为0.85~66.7 kg·m-3和1.04~76.96 kg·m-3;自由沉降速率在2.43~41.14mm·s-1之间。有效密度主要集中在1.02g·ml-1以下,自由沉降速率主要集中在14.40~86.40m·h-1之间。
     对颗粒污泥沉降速率的研究发现,各阶段颗粒污泥水平投影方向和垂直投影方向平均粒径的比值在被测颗粒污泥足够多时有可能会趋于常数,但阶段间的这一常数是不同的。对颗粒污泥粒径分布的研究与反应器运行状态结合考虑,适合本文设定的负荷(4.195 kgCODCr·m-3·d-1)的颗粒污泥平均粒径为大于1.70mm。
     依据沉降速率-当量圆直径的双对数图计算出的各格室中颗粒污泥的质量分形维数Df在启动过程中处于2.019~2.905之间,启动成功后在2.097~2.801之间,大小顺序为:第5格>第3格>第2格≥第1格>第4格,表明第5格室中形成的颗粒污泥较为密实,而第4格室的密实程度最小,但密实的颗粒污泥并不一定意味着较高的平均沉降速率。
     依据投影法计算出的ABR各格室中颗粒污泥在低维拓扑空间下的几分形维数之间的关系与其理论公式之间的关系相符,一维拓扑空间的分形维数在多在1.0左右,说明颗粒污泥的边界不规则程度小。二维拓扑空间的分形维数的平均值启动过程中在1.39~1.87之间(投影面积-当量圆直径)和1.37~1.80之间(投影面积-长轴)。启动成功后二维拓扑空间的分形维数的平均值在1.60~1.90之间(投影面积-当量圆直径),大小顺序为:第1格室>第3格室>第5格室>第4格室>第2格室;1.69~1.84(投影面积-长轴),大小顺序为:第3格室>第1格室>第5格室>第4格室>第2格室。这些D2不等于2,即不符合Meakin的结论。
Abstract: The physical properties and fractal dimensions within different topological spaces of the granular sludge in anaerobic baffled reactor (ABR) were investigated. During the process of ABR start-up, diameters of granules measured at horizontal projected view were 1.02~2.49 mm, and were 1.59~3.02 mm at vertical projected view; the results of effective density calculated by Allen equation and Logan-Allen equation were different, the front one showed the range were between 0.76 kg·m-3 and 77.58 kg·m-3 when the latter showed 0.96~91.08 kg·m-3; ree setting rates were 1.96~45.27mm·s-1. After complete the ABR start-up, the black and granules with distinct boundary were found in all five compartments of ABR, their SVI values were between 25 ml·g -1 and 35 ml·g -1; their diameters measured at horizontal projected view were 1.70~1.98mm, and were 2.23~2.68mm at vertical projected view; effective density calculated by Allen equation were between 0.85 kg·m-3 and 66.70 kg·m-3 when Logan-Allen equation showed the range were 1.04~76.96 kg·m-3; free setting rates were 1.96~45.27mm·s-1.
     During free setting process with equal rates for these granules, the ratio between the average diameters for them in each stage at horizontal projected view and at vertical projected view was nearly constant, but every stage was different.
     Their mass fractal dimensions Df, calculated by bi-logarithm relation between setting rates and equivalent circle diameters, were 2.019~2.905 during the process of ABR start-up, and were 2.097~2.801 after that. Moreover, the Df value for granules in the 5th compartment was the highest one among them, indicating that the most compact granules were formed. The least compact granules were observed in the 4th compartment, and the granules in the 1st and 2nd compartments show close compactness. However, the highest average setting rate for granules was detected in the 1st compartment.
     In addition, the relation among the calculated fractal dimensions in 1-D and 2-D topological spaces for these ABR granules with image analysis method gives accordance with the relation among theirtheory equations. The fractal dimensions in 2-D topological space for these granules based on the projected area-maximum diameter bi-logarithm relation were 1.39~1.87 during the process of ABR start-up and between 1.69~1.84 after that, and they show an order of D2 values: in 3rd compartment > in 1st compartment > in 5th compartment > in 4th compartment > in 2nd compartment. The fractal dimensions in 1-D topological space of 0.99~1.03 indicate little irregular boundary of these granules and no distinct difference in the five compartments.
引文
[1] 北京水环境技术与设备研究中心等.三废水处理工程技术手册(废水卷).北京:化学工业出版社,2000.
    [2] 陈玉,刘峰,王健晨.上流式厌氧污泥床(UASB)处理制药废水的研究[J].环境科学,1994,15(1):50~52.
    [3] 曹京哲. ASBR 反应器中污泥沉降性能研究[J].工业水处理,2006,26(2):36~39.
    [4] 戴友芝,施汉昌,钱易.有毒物冲击负荷对厌氧折流板反应器的影响[J].中国环境科学,2000,20(1):40-44.
    [5] 冯亮,吴静,陆正禹.高温厌氧颗粒污泥的培养试验研究[J].中国沼气,2003,21(3)::5~7.
    [6] 方骁.厌氧颗粒污泥性质与颗粒化研究新进展[J].江苏环境科技,2005,18(4).
    [7] 国家环境保护局.水和废水监测分析方法(第 3 版)[M].北京:中国环境科学出版社,1997:213-215.
    [8] 胡细全,刘大银,蔡鹤生. ABR 反应器结构对水力特性的影响[J].中国地质大学学报,2004,29(3).
    [9] 贺延龄.废水的厌氧生物处理[M]. 北京: 中国轻工业出版社,1998.
    [10] 贺嵩邡,易辰俞,戴友芝.厌氧折流板反应器处理有机磷农药废水的研究[J].工业用水与废水,2002,33(4):26-28.
    [11] 黄永恒,王建龙,文湘华,钱易.折流式厌氧反应器的工艺特性及其运用[J].中国给水排水.1999,15(7):18~20.
    [12] 金鹏康,,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J]. 环境科学学报,2001,21(增刊):23~29.
    [13] 芦家娟,王毅力,侯立安,张征. ABR 反应器成熟颗粒污泥的分形特征与尺度效应[J].环境科学,2005,26(4):118~123.
    [14] 芦家娟,王毅力,赵洪涛,韦红才. ABR 反应器的启动及颗粒污泥特征的研究[J].环境化学,2007,26(1):10~16.
    [15] 刘豆豆,乔梁,赵大传,吴娟. ABR 处理甘薯淀粉废水的试验研究[J].山东大学学报(工学版),2006,36(4).
    [16] 李清雪,范超,李龙和,宋树华,滕晖.ABR 处理高浓度硫酸盐有机废水的性能[J].中国给水排水,2007,23(15).
    [17] 李晓明.厌氧折流板反应器处理高浓度有机污水的研究[J].Journal of maoming college, 2006,16(3).
    [18] 李克勋,徐智华,张振家.水力作用对颗粒污泥形成的影响[J].中国沼气,2003,21(1):8~10.
    [19] 刘双江,唐一,胡纪萃. UASB 反应器中厌氧污泥颗粒化的微生物学机理[J].中国沼气,1991,9(2):1~5.
    [20] 孟春,郭养浩,石贤爱,邱宏端,吴陵.水力分级作用对UASB反应器中污泥颗粒化的影响[J].福州大学学报(自然科学版),1997,25(1) .
    [21] 强绍杰.ABR-接触氧化工艺处理漂染废水[J].给水排水,2003,29(4):47-48.
    [22] 裘湛.高速厌氧反应器处理城市污水的现状与发展[J].合肥工业大学学报,2002,25(1):118~121.
    [23] 任南琪,王宝贞.有机废水发酵发生物制氢技术[M].哈尔滨黑龙江科技出版社,1994,30~31.
    [24] 涂保华,王建芳,张雁秋.UASB 反应器中颗粒污泥的培养[J].污染防沼技术,2003,(3):3.
    [25] 孙霞, 吴自勤, 黄畇.分形原理极其应用[M].合肥:中国科技大学出版社,2003.
    [26] 王海云.混沌、分形学应用于环境科学的实证分析与探讨[J].环境技术,2004(4).
    [27] 王健.废水厌氧反应器工艺的未来发展方向[J].污染防治技术,2002,15(2):13~15.
    [28] 王建龙.生物固定化技术与水污染控制[M].北京: 科学出版社, 2002.
    [29]
    [30] 王长辉.微量元素在厌氧生化处理中的应用[J].福建环境,1999,16(3):24~25.
    [31] 王晓昌,丹保宪仁.絮凝体形态学和密度的探讨-Ⅰ.从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257~262.
    [32] 徐金兰.HRT 与有机负荷对 ABR 各隔室净化功能的影响分析[J].西安建筑科技大学学报(自然科学版),2004,36(1).
    [33] 徐金兰.ABR 系统中酸解过程的污泥特性及分析[J].环境污染治理技术与设备,2004,15(2).
    [34] 谢和平.分形-岩石力学导论[M].北京:科学出版社. 1996.
    [35] 严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社. 1999.
    [36] 严月根,钱易.两相厌氧工艺的理论基础及实际应用[J].中国沼气.1989,7(4):1~6.
    [37] 张希衡等.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    [38]竺建荣.二相升流式厌氧污泥床工艺.微生物学特性研究,北京:清华大学,1990.
    [39] 周磊.厌氧折流板反应器处理粪便污水的试验研究[J].亚热带资源与环境学报,2006,11(2).
    [40] 周宏伟.岩石节理表面形貌的各向异性与尺度效应[R].中国矿业大学北京校区博士后出站报告,2000.
    [41] 赵丹.厌氧折流板反应器(ABR)的水动力学及污泥特性[J]. 环境工程,2001,19(2):12~15.
    [42] Alphenaar, A. Anaerobic granular Sludge: Characterization and Factors Affecting Its Functioning. Ph. D. Thesis. The Netherlands: WAU, 1994.
    [43] Alphenaar, P. A. et al. Appl. Microbiol. Biotechnol.,1993,(39): 276~280.
    [44] Barber, W.P., Stuckey, D.C. The use of the anaerobic baffled reactor(ABR) for wastewater treatment: a review. Water Res., 1999. 33 (7):1559~1578.
    [45] Bachmann, A., beard, V. L., McCarty, P. L. Performance characteristics of the anaerobic baffled reactor[J].Wat.Res., 1985,19(1):99~106.
    [46] Boopath, R.and Sievers, D. M. Performance of a modified anaerobic baffled reactorto treat swine waster[J]. Trans.ASAE, 1991,34(6):2573~2578.
    [47] Boopathy, R. and Tilche, A. Pelletization of biomassin a hybrid anaerobic baffled reactor (HABR) treating acidfied waste-water. Bioresource Technol. 1992,40(2), 101~107.
    [48] Bushell, G. C., Yan, Y. D., Woodfield, D., Raper, J., Amal, R. On techniques for the measurement of the mass fractal dimension of aggregates[J]. Advances in Colloid and Interface Science, 2002,95:1-50.
    [49] Barber, W. P., Stuckey, D. C. The use of the anaerobic baffled reactor(ABR) for wastewater treatment: review.Wat.Res.1999,33(7):1559~1578.
    [50] Beeftink, H. H. and J. C. van den Heuvel. in: G. Lettinga et al. (eds.). Granular Anaerobic Sludge, Microbiology and Technology. The Nerthlands: Pudoc Wageningen,1988.
    [51] Dubourguier, H.C. Structure and metabolism of methanogenic microbial conglomerates. in: E. R. Hall and P. W. Hobson(eds.). Anaerobic Digestion. Pergamon Press,1988,13~23.
    [52] Dubourguier, H. C. Proc. GASMAT Workshop. The Netherlands: Lunteren,1988.18~23.
    [53] Fang, H. H. P., Yu, H. Q., Tay, J. H. Effects of added powdered and granular activated carbons on start-up performance of UASB reactors[J]. Environ Technol, 1999, (20):1095~1101.
    [54] Fizpatrick, J. A. Symp. Anaerobic Digestion, Taipeh, Taiwan.1989.
    [55] Grobicki, A., Stucky, D.C. Performance of the Anaerobic Baffled Reactor under steady﹣state and shock loading conditions[J]. Biot and Bioeng, 1991, 37:344~355.
    [56] G.V.T. Gopala Krishna, Pramod Kumar, Pradeep Kumar. Treatment of low-strength soluble waste water using an anaerobic baffled reactor (ABR). Journal of Environmental Management., 2007, 1~11.
    [57] Grotenhuis, J.T.C. Proc. 4th Int. Symp. Microbiol. Ecology. 1986:163~168. [] Guiot, P. et al. in: G. Lettinga et al.(eds.). Granular Anaerobic Sludge, Microbiology and technology. The Netherlands: Pudoc Wageningen, 1988.187~194.
    [58] Hulshoff Pol, L.W., Lopes, C.I.S., Lettinga, G., Lens, L.N.P. Anaerobic sludge granulation. Water Res., 2004, 38 (6): 1376~1389.
    [59] Hyun Seong Jeong, Yong Hwan Kima, Sung Ho Yeom, Bong Keun Song, Sang Il Lee. Facilitated UASB granule formation using organic - inorganic hybrid polymers [J]. Process Biochemistry, 2005, 40(1): 89~94.
    [60] He Yan-Ling. Environ. Technol.,1995(16):467~476.
    [61] Harada, H. Proc. 5th Int. Symp. Anaerobic Digestion. Bologna, Italy.1988.
    [62] Hulshoff Pol, L. W. The Phenomenon of Granulation of Anaerobic Sludge, Ph. D. Thesis. The Netherlands: WAU,1989.
    [63] Hulshoff Pol, L. W. Microbiology and chemistry of anaerobic digestion. in: 1st Int. Course on Anaerobic and Low Cost Treatment of Wastes and Wastewaters. The Netherlands: IAC and WAU,1994.
    [64] Ross, W. R. Water SA,1984(10) 197~204.
    [65] Jin B, Wilén B-M, Lanta P. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chemical Engineering Journal, 2003, 95: 221–234.
    [66] Kosaric, K. et al. Wat. Res.,1990(24):1473~1477.
    [67] Lettinga, G., Hulshoff Pol, L.W. UASB- process design for various type of wastewater[J]. Water Sci Technol, 1991, (24): 87~107.
    [68] Lee Kuo-Shing, Lo Yung-Sheng, Lo Yung-Chung. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor enzyme and microbial technology[J]. Biochemical Engineering Toward Global Biosociety, 2004, 35(6~7):605~612.
    [69] Lettinga, G., Field, J., Van Lier, J., Zeeman, G., Hulshoff Pol, L.W. Advanced anaerobic wastewater treatment in the near future, Wat Sci Tech, 1997, 35(10): 5~12.
    [70] Li, D. H., Ganczarczyk, J. Fractal geometry of particle aggregates generated in water and wastewater treatment[J]. Envion.Sci.Technol., 1989, 23(11):1385-1389.
    [71] Liu, A. B. and J. C. Hu. A Study on the Granular Sludge in UASB Reactor at Ambient Temperature and Its Properties, Research Report. Tsinghua Univ., Beijing.1988.
    [72] Mandelbrot, B. B. The fractal geometry of nature[M]. New York: W. H. Freeman and Company. 1982.
    [73] Meak, P. Fractal, Scaling and growth far from equilibrium[M]. Lodon: Cambridge university Press , 1998.
    [74] R. E. speece. 工业废水的厌氧生物技术[M]. 北京:中国建筑工业出版社, 2001.32~36.
    [75] Prensier, G. Specific immunological probes for studying the bacterial associations in granules and biofilms. in: G. Lettinga et al.(eds.), Granular Anaerobic Sludge, Microbiology and Technology. The Netherlands: Pudoc Wageningen,1988.
    [76] Schmidt, J. E., Ahring B K. Granular sludge formation in up flow anaerobic sludge blanket (UASB) reactors [J]. Biotech Bioeng, 1996, 49(3): 229~246.
    [77] Schmidt, E. J., Alberto, J. Effects of magmesium on methanogenic subpopulations in a thermophic a acetate-degrading granular consortium[J].Appl Environ Microbiol, 1992, 58(3) : 862~868.
    [78] Serra ,T., Logan, B. E. Collision frequencies of fractal bacterial aggregates with small particles in a sheared fluid[J]. Envion.Sci.Technol., 1999, 33(13): 2247-2251.
    [79] Seghezzo, L., Zeeman, G., Van Lier, J.B., Hamelers, H.V.M., Lettinga, G., A. Review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol., 1998, 65 (3):175~190.
    [80] Shen, Y. L. New anaerobic wastewater treatment process-anaerobic baffled reactor(ABR). Chongqing Environ Sci.1994,16(5):36~38.
    [81] Setiadi, A., Husaini,D. Palmoilmill effluent treatment by anaerobic baffled reactors: recycle effects and biokinetic parameters.Wat.Sci.Tech. 1996,34(11):59~66.
    [82] Tilche, A. and Yang, X. Light and scanning electron microscope observations on the granular biomass of ex-perimental SBAF and HABR treactors[J]. Proceedings of Gasmat Workshop, Netherlands. 1987, 170~178.
    [83] Thiele, J. H. and J. G. Zeikus. Appl. Environ. Microbiol., 1988(54): 20~29.
    [84] Tilche, A., Vieira, S. M. M. Discussion report on reactor design of anaerobic filters and sludge bed reactors. Wat.Sci.Tech. 1991,24(8):193~206.
    [85] Wu, W. Wat. Res.,1987(21):789~799.
    [86] Warnecke, H. J. The fractal company-a revolution in corporate culture[M]. Springer-Verlag, Heideling, New York, 1993.
    [87] Wiegant, M. Thermophilic Anaerobic Digestion for Waste and Wastewater Treatment, Ph. D. Thesis. The Netherlands: WAU.1986.
    [88] Wilén B-M, Jina, B., Lanta, P. Impacts of structural characteristics on activated sludge floc stability[J]. Wat Res , 2003, 37:3632–3645.
    [89] Zhao, Y. Q., Correlations between floc physical properties and optimum polymer dosage in alum sludge conditioning and dewatering. Chemical Engineering Journal, 2003, 92:227–235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700