用户名: 密码: 验证码:
石脑油管式裂解炉数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯是石油化工中最重要的基础原料之一。烃类热裂解是乙烯工业生产乙烯和丙烯的主要方法,而裂解炉是整个乙烯工业的核心装置。建立裂解炉数学模型,对裂解炉内流动、传热、传质和反应等过程进行详细、定量的研究与分析,成为裂解炉设计和优化裂解炉操作的有效手段。
     在综合考虑裂解炉裂解过程发生的化学反应、传热和裂解气流动压力降等过程基础上,建立了乙烯裂解炉稳态操作数学模型。该模型包括管内化学反应动力学模型、炉膛辐射室传热模型、管内外传热模型、裂解气流动压力降模型等。对Kumar石脑油裂解过程分子动力学模型进行了系统研究,并根据文献数据推导了二次反应动力学参数。分别采用实验数据和工业数据对裂解炉稳态操作数学模型进行了验证,裂解产物收率与实测数据吻合良好,表明建立的裂解炉稳态操作数学模型是可靠的。
     建立了能够描述裂解炉动态过程的数学模型。采用本文完善了Kumar结焦动力学模型,模拟反应管内的结焦过程。利用模型对国内某一台裂解炉进行了动态仿真,预测了生产周期及产品收率、压力降、停留时间、能耗和结焦速率等生产参数随生产时间的变化规律,与工业运行规律吻合良好。
     采用以上裂解炉动态数学模型,研究了影响乙烯裂解炉操作的温度、稀释蒸汽比、压力和扩径比等参数,定量考虑以上操作参数对产品收率、停留时间、耗能、结焦过程和生产周期等生产参数的影响。结果表明:(1)在相同进料情况和一定温度操作范围内,沿管长不断升高裂解气温度可以提高石脑油裂解深度和乙烯收率,同时裂解炉能耗增大、裂解气停留时间缩短、结焦速度增大、操作周期缩短。(2)固定石脑油流量,随着蒸汽稀释比的增大,石脑油裂解深度减轻、乙烯收率下降、丙烯的收率稍微上升,同时裂解炉能耗增加、裂解气停留时间缩短、结焦速度下降、操作周期延长。(3)固定总摩尔流量,随着蒸汽稀释比的增大,石脑油裂解深度稍有加深,乙烯收率稍有增大,丙烯的收率稍微下降;裂解炉能耗下降、裂解气停留时间增长、结焦速度下降、操作周期延长。(4)固定进料流量与组成不变,保持裂解气沿管长的温度分布与原操作一致,随着出口压力的增大,石脑油裂解深度减轻、乙烯收率上升、丙烯的收率稍微下降;裂解炉能耗增加、裂解气停留时间增长、结焦速度上升、操作周期缩短。(5)固定进料流量与组成不变,保持裂解气沿管长的温度分布与原操作一致,固定炉管出口压力与原操作一致,随着扩径比的增大,石脑油裂解深度加深、乙烯收率上升、丙烯的收率下降;炉管压力降下降、裂解气停留时间增长、结焦速度上升、操作周期大致缩短。
     建立了包含原料、燃料、水蒸汽和清焦等操作成本的、符合实际生产过程条件约束的乙烯裂解炉过程操作优化数学模型,对实际的工业裂解炉进行操作参数优化,可使经济效益提高20%以上。
     建立了裂解炉管自由基反应理论和计算流体力学耦合数学模型,同时建立了针对石脑油裂解自由基反应机理的FLUENT物性数据库,对裂解炉管内所发生的流体流动、热量传递、质量传递和自由基链反应理论的裂解反应等复杂过程进行系统的综合数值模拟研究。
     本文建立的模型可以对乙烯裂解过程进行可靠的模拟与预测,对工业装置的设计和运行具有指导意义。
Ethylene is the one of the most important building blocks used in the petrochemical industry. Thermal cracking of hydrocarbons (e.g. naphtha) is the main route for the manufacturing of ethylene and propylene. Thermal cracking furnace is the‘heart’of the whole ethylene manufacturing process. Building of cracking furnace mathematical model to investigate the flow, heat transfer, mass transfer and cracking reactions is becoming an effective way to decide furnace design and optimal production operation.
     The first part is the development of cracking furnace steady-state mathematical model considering cracking reactions, heat transfer and pressure drop when process gas flow through tube reactor. The mathematical model consists of a continuity equation for each component, an energy equation and a pressure drop equation. Kinetics data for reverse reactions were not given in Kumar paper. Reverse reaction kinetic parameters were calculated. The reaction equilibrium constants for these reverse reactions were extracted from original reference. Experiment data and industrial production data were used to verify steady-state mathematical model. Simulation results were consistent with experiment data and industrial production data very well.
     The second part is the development of cracking furnace dynamic-state mathematical model on the base of strict chemical process conservation mechanism. Coke buildup on the internal tube wall was also included using Kumar coke deposit model. Dynamic production process of an industrial furnace was simulated. Run length (i.e. the time between two consecutive decoking operations) and other production parameters changing with manufacture time were predicted, including product yields, pressure drop, process gas residence time, energy consumption and coke rate. The simulation results matched the industrial production data very well.
     Based on the cracking furnace dynamic-state mathematical model, various case studies were then carried out to investigate the impact of the process gas temperature profile, inlet steam to naphtha ratio, pressure and diameter ratio of second pass to the first pass so that the ethylene/propylene product yields, run length, residence time, energy consumption and other operation parameters can be evaluated. The results show that(1) With the same operation parameters, increasing process gas temperature along tube can raise ethylene yield and energy consumption, shorten process gas residence time and manufacture time.(2) Fixing naphtha feed and with the same operation parameters, increasing inlet steam to naphtha ratio can decrease ethylene yield and process gas residence time, raise energy consumption, prolong manufacture time.(3) Fixing total feed and with the same operation parameters, increasing inlet steam to naphtha ratio can raise ethylene yield and process gas residence time, decrease energy consumption, prolong manufacture time.(4) With the same operation parameters, increasing outlet pressure can raise ethylene yield and energy consumption, prolong process gas residence time, shorten manufacture time.(5) With the same operation parameters, increasing diameter ratio of second pass to the first pass can raise ethylene yield, decrease pressure drop of the whole tube, prolong process gas residence time, shorten manufacture time.
     Process optimization was applied to the operation of this industrial tubular reactor. Operation profit was used as objective function. The process gas temperature profile and steam to naphtha ratio in the feed were used as optimisation variables. The effects of coking on reduction of manufacturing time and the decoking cost have been considered. After optimization, the furnace profit can be improved obviously.
     Numerical simulation model for cracking tube reactor was developed. Naphtha free radical reaction model and computation fluid mechanics model were considered at the same time in the cracking tube reactor simulation model. FLUENT physical property data library was set up for naphtha free radical reaction model. Cracking tube reactor can be simulated considering fluid flow, heat transfer, mass transfer, and free radical reactions contemporaneously.
引文
[1]陈滨,乙烯工学,北京:化学工业出版社,1997.3~5
    [2]陈乐怡,世界石油化工发展趋势,中外能源,2006,11(1):11~16
    [3]胡玉梅,覃伟中,活力持续旺盛,机遇挑战并存——2007年世界和中国石化工业综述,国际石油经济,2008,5:21~27
    [4]张朝环,乙烯裂解炉内燃烧与裂解反应过程数值模拟:[硕士学位论文],天津:天津大学,2008
    [5]袁晴棠,世界乙烯产业发展减速,中国面临巨大挑战,中国化工信息网,2008年,42期
    [6]王天普,全球及中国石油石化工业发展展望,当代石油石化,2007,15 ( 1):1~6
    [7]李永芹,世界背景下的我国石化产业分析(上),中国石油和化工经济分析,2006(19):60~65
    [8]李永芹,世界背景下的我国石化产业分析(下),中国石油和化工经济分析,2006(30):30~33
    [9]汤彬,10万吨大型乙烯裂解炉研发成功,科技日报,2006,04(11)
    [10]王卫,我国乙烯产业链发展研究分析,中国石油和化工分析,2007,10:32~36
    [11]李南南,我国石油石化工业发展现状及趋势,市场经营化工之友,2007(05):31~32
    [12]张福琴,张子鹏,孙宝文,瞿亮,乙烯工业发展存在的有关问题及对策,中国石油和化工经济分析,2007,(16):32~37
    [13]刘均安,中国石油石化土业的现状和发展,中外能源,2007,10(12):68~72
    [14]杨伟才,“十一五”期间石油和化工行业投资重点解析,中国石油和化工经济分析,2007,(12):5~9
    [15]《石油和化学工业“十一五”发展指南》要点,中国石油和化学工业协会,新疆化工,2006,(04):35~37
    [16]高春雨,世界及中国乙烯工业发展现状和预测,当代石油石化,2007,15(5):41~44
    [17]钱伯章,朱建芳,国内外乙烯生产与发展趋势,石化技术,2007,14(1):50~54
    [18]李玉芳,伍小明,国内外乙烯工业现状及发展趋势,精细化工原料及中间体,2007,(11):33~36
    [19]本刊编辑部,近年来我国石油石化产业政策回顾与展望,当代石油化工,2007,(15):7~19
    [20]世界乙烯工业发展,中华商务网,2002-7-11
    [21]徐兆瑜,国内外乙烯生产概况与市场动态,甘肃石油和化工,2008,(2):39~44
    [22] 2009~2012年中国乙烯行业投资分析及前景预测报告(上下卷),中国投资咨询网,2009年2月
    [23]王松汉,何细藕,乙烯工艺与技术,北京:中国石化总公司情报研究所,2008.198~266
    [24]卢成锹,俞翊棠,浅谈我国裂解制乙烯的原料,石油炼制与化工,1996,27(5):1~10
    [25]周巍,国产化CBL裂解技术及其市场推广,乙烯工业,2005,17(2):33~35
    [26]李玉民,国产CBL裂解炉运行总结,乙烯工业,1991,z1:167~175
    [27] FO Rice. Thermal Decomposition of Hydrocarbons, Resonance Stabilizationand Isomerization of Free Radicals1. Journal of the American Chemical Society.1931.53:1959~1973.
    [28] FO.Rice, A.Kossiakoff. Thermal Decomposition of Hydrocarbons, Resonance Stabilization and Isomerization of Free Radicals. Journal of the American Chemical Society,1933.55:3035~3040
    [29] FO Rice, A Kossiakoff. Thermal Decomposition of Hydrocarbons, Resonance Stabilization and Isomerization of Free Radicals 4. Journal of the American Chemical Society, 1933.55:4245~4247
    [30] FO Rice, A Kossiakoff.Thermal Decomposition of Hydrocarbons, Resonance Stabilization and Isomerization of Free Radicals 6. Journal of the American Chemical Society, 1934.56:284~289.
    [31] SundaramKM, Froment GF. Modeling of thermal cracking kinetic-I: Thermal cracking of ethane, propane and their mixtures.Chem.Eng.Sci., 1977, 32:601~608.
    [32] Paul A. Willems and Gilbert F. Froment.Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 1. Calculation of Frequency Factors. Ind. Eng. Chem. Res.,1988,27: 1959~1966
    [33] Paul A. Willems and Gilbert F. Froment. Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 2. Calculation of Activation Energies. Ind. Eng. Chem. Res.,1988,27: 1966~1971
    [34] K. Meenakshi Sundaram and Gllbert F. Froment. Modeling of Thermal Cracking Kinetics. 3. Radical Mechanisms for the Pyrolysis of Simple Paraffins, Olefins, and Their Mixtures. Ind. Eng. Chem. Fundam., 1978, 17(3):174~182
    [35] Depeyre D. Modeling of thermal steam cracking of an atmospheric gas oil. Ind. Eng. Chem. Res., 1989, 28(7) : 967~976
    [36] Depeyre D. Modeling of thermal steam cracking of n-hexadecane. Ind. Eng. Chem. Res.,1991, 30(6):1116~1130
    [37] Aribike D S, Susu A A. Kinetics and mechanism of the thermal cracking of n-heptane. Hermochimica Acta, 1988,127:247~258
    [38] Aribike D S, Susu A A .Mechanistic modeling of the pyrolys of n-heptane.Her-mochimica Acta, 1988, 127:259~273
    [39] Dominique D, Chantal F. Modeling of thermal steam of n-hexadecane. Ind.Eng.Chem.Res., 1991,30:1116~1130
    [40] GuozhongWu, YosukeKatsumura, ChihiroMatsuura, KenichiIshigure.Radiationeffect on the thermal cracking of n-hexadecane 2. A kinetic approach to chain reaction. Ind.Eng.Chem.Res., 1997,36:3498~3504
    [41] Zdenek Belohlav, Petr Zamostny, Tomas Herink. The kinetic model of ther-mal cracking for olefins production.Chemical Engineering and Processing, 2003, 42:461~473
    [42]王玮,石脑油裂解动力学模型的研究与开发:[硕士学位论文],上海;华东理工大学,1995
    [43] Eunjung Joo and Sunwon Park. Pyrolysis Reaction Mechanism for Industrial Naphtha Cracking Furnaces. Ind. Eng. Chem. Res., 2001, 40:2409~2415
    [44] A.G. Goossens, M. Dente and E. Ranzi , Simulation program predicts olefin-furnace performances. Oil Gas J.,1978,4:89~104
    [45] Dente,M., Ranzi,E.,Goossens, A.G., Detailed prediction of olefin yields fromhydrocarbon pyrolysis through a fundamental simulation model (SPYRO). Comp.Chem.Engng.,1979,3:61~75
    [46] Ranzi, E., M.Dente, S.Pierucci, and G.Biardl, Initial product distributions from pyrolysis of normal and branched paraffins, Ind.Eng.Chem.Fundam., 1983,22:131~139
    [47] J. Towfighi, R. Karimzadeh, Development of a Mechanistic Model for Pyrolysis of Naphtha, in: Proceedings of APCCHE/CHEMECA, Melbourne, Australia, 1993.
    [48] M.J.Shah, San.Jose. COMPUTER CONTROL OF ETHYLENE PRODUCTION. Ind. Eng. Chem., 1967, 59(5):70~85
    [49] Crynes B I, Albright L F. Pyrolysis of Propane in Tubular Flow Reactors Kinetics and Surface Effects.Ind.Eng.Chem.Process Des.Dev.,1969, 8(1):25~31
    [50] Ross L L, Shu W R. KINETIC MODEL AIDS OLEFIN-UNIT DESIGN.Oil Gas J.,1977,75(43):58~62
    [51] K. M. Sundaram,G. F. Froment. Two dimensional model for the simulationof tubular reactors for thermal cracking.Chem.Eng.Sci.,1980,35(1-2):364~371
    [52] Sundaram K M, Froment G F. Modeling of thermal cracking kinetics~ⅠThermal cracking of ethane, propane and their mixtures. Chem.Eng.Sci.,1977,32:601~608
    [53] Sundaram K M, Froment G F.Modeling of thermal cracking kinetics-Ⅱ.Thermal cracking of ethane propane and their mixtures. Chem.Eng.Sci.,1977,32:609~617
    [54] Hirato M, Yoshioka S. Simulation of the Pyrolysis of Naphtha, Kerosene, and Gas Oil with a Tubular Reactor. Int. Chem. Eng.,1973, 13(2): 347~354
    [55] Kumar, P and Kunzru, D. Modelling of Naphtha Pyrolysis. Ind. Eng. Chem. Process Des. Dev., 1985,24:774~782
    [56] Kumar, P and Kunzru, D. Kinetics of coke deposition in naphtha pyrolysis, Canadian Journal of Chemical Engineering, 1985,63(4):598~604
    [57]钱锋,大型乙烯装置中裂解炉模型化与优化的研究:[博士学位论文],上海;华东理工大学,1995
    [58]解冬梅,钱锋,俞金寿, SRT-Ⅲ型裂解炉中石脑油裂解的工艺数学模型——清洁管模型与计算,石油化工,1993,24(2): 813~819
    [59]解冬梅,钱锋,俞金寿,SRT-Ⅲ形裂解炉中石脑油裂解的工艺数学模型(Ⅱ)结焦模型及运转特性分析,石油化工,1994,23(2): 96~100
    [60]徐强,陈丙珍,何小荣,等,石脑油在SRT-IV型工业炉清洁管中裂解的数学模型,计算机与应用,2001,18(3):223~228
    [61]徐强,陈丙珍,何小荣,SRT-IV型工业裂解炉裂解石脑油的全周期生产数学模型,计算机与应用,2001,18(4):303~306
    [62]胡益锋,石脑油裂解炉建模技术研究:[博士学位论文],北京;清华大学,2005
    [63]胡益锋,徐用懋,何细藕,石脑油裂解炉动态建模与仿真研究,石油学报(石油加工),2004,20(6):51~57
    [64]胡益锋,徐用懋,何细藕,石脑油裂解过程的建模与仿真,石油炼制与化工,2004,35(5):57~62
    [65] Renjun Zou, Qiangkun Lou, Sihong Mo, and Shubo Feng. Study on a Kinetic Model of Atmospheric Gas Oil Pyrolysis and Coke Deposition. Ind. Eng. Chem. Res.,1993, 32:843~847
    [66]侯凯湖,王宗祥,大庆馏份油蒸汽裂解制烯烃反应动力学模型,石油化工,1986,15(3):145~154
    [67]大庆石油学院化学反应工程研究室,油田轻质油热裂解制乙烯反应动力学数学模型[Ⅰ][J],大庆石油学院学报,1978(1):1~13
    [68]大庆石油学院化学反应工程研究室,油田轻质油热裂解制乙烯反应动力学数学模型[Ⅱ][J],大庆石油学院学报,1980(1):2~25
    [69]张海燕,王宗祥,大庆馏分油热裂解制乙烯反应动力学数学模型(Ⅰ),大庆石油学院学报,1985,9(1):1~10
    [70] Richard WJ and Deran H. An optimization study of the pyrolysis of ethane in a tubular reactor. Ind.Eng.Chem.Process Des. Dev.,1975,14(3):216~221
    [71] Partrick. M. G C Reyniers&G F Froment. Simulation of the run length of an ethane cracking furnace. Ind.Eng.Chem.Res., 1990, (29):636~641
    [72] P S Van Damme&G F Froment. Scaling up of Naphtha Cracking Coils. Ind. Eng.Chem. Process Des. Dev., 1981, 20:366~376
    [73] Kunzru. Paramesaram&Sharma. Modeling of naphtha pyrolysis in swaged coils. The Canadian Journal of Chemical Engineering, 1988,66:957~963
    [74] A. Niaei, J. Towfighi, S.M. Sadrameli, R. Karimzadeh. The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces. Applied Thermal Engineering, 2004,24: 2251~2265
    [75] Miresmaeil Masoumi, Mohammad Shahrokhi, Mojtaba Sadrameli, and Jafar Towfighi. Modeling and Control of a Naphtha Thermal Cracking Pilot Plant, Ind. Eng. Chem. Res., 2006, 45:3574~3582
    [76] M.E. Masoumi, S.M. Sadramelia, J. Towfighi, A. Niaei. Simulation, optimization and control of a thermal cracking furnace. Energy, 2006,31: 516~527
    [77] S.M. Sadrameli, A. Green. Systematics and modeling representations of naphtha thermal cracking for olefin production. J. Anal. Appl. Pyrolysis ,2005,73:305~313
    [78] A. Niaei, J. Towfighi, S.M. Sadrameli,R. Karimzadeh. The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces. Applied Thermal Engineering ,2004,24: 2251~2265
    [79]黄苏南,钱锋,俞金寿,区域法在SRT-Ⅲ型裂解炉模拟计算中的应用,华东化工学院学报,1992. (18增刊):160~166
    [80]陈虹,王宗祥,轻烃、轻质油热裂解制乙烯裂解炉工艺数学模型(Ⅱ),大庆石油学院学报,1984,3:70~88
    [81] K. M. Sundaram and G. F. Froment. Two dimensional model for the simu-lation of tubular reactors for thermal cracking. Chemical Engineering Scien-ce,1980,35(1-2):364~371
    [82] K. M. Van Geem, G. J. Heynderickx, and G. B. Marin. Effect of Radial Temperature Profiles on Yields in Steam Cracking. American Institute of Chemical Engineers, 2004,50: 173~183
    [83]张红梅,轻质油热裂解制乙烯裂解炉管二维工艺数学模型:[硕士学位论文].大庆;大庆石油学院,1989
    [84]张红梅,王宗祥,轻质油裂解炉反应管的二维数学模型,石油学报(石油加工),1995,11(4): 68~77
    [85]张红梅,贺永殿,曹胜先,稀释比对管式裂解炉工况影响的模拟计算,炼油与化工,2006,4: 4~6
    [86]张红梅,关志文,毛国梁,用二维模型分析裂解炉管操作工况,大庆石油学院学报, 1998,22(01):29~31
    [87]张红梅,郭小强,蓝兴英,徐春明,高金森,管式裂解炉二维模型两种不同计算方法的对比,高校化学工程学报,2008,22(2):240~246
    [88]沙利,蓝兴英,高金森,徐春明,热裂解制乙烯裂解炉的工艺数学模型和模拟,化工生产与技术,2002,9(5):7~10
    [89]辛凤影,乙烯管式裂解炉计算方法的研究及应用: [硕士学位论文].大庆;大庆石油学院,2004
    [90] S.V.帕坦卡著,张政译,传热与流体流动的数值计算,科学出版社,1992.78~95
    [91]周力行,湍流气粒两相流动和燃烧的理论与数值模拟,北京:科学出版社,1993.24~133
    [92] Libby P A, Williams F A, Fundamental aspects and review. In Libby P A, Williams F A, ed. Turbulent Reacting Flows. Academic Press, 1993.1~62
    [93] Givi P. Model free simulations of turbulent reactive flows. Progress in Energy and Combustion Science, 1989,15(1):1~107
    [94] Robert W Bilger, New directions in turbulent combustion research. In Proceedings of the First. Asian-Pacific Conference on Combustion, Osaka Japan, May, 1997.1~8
    [95] Pope S B. Computations of turbulent combustion: progress and challenges. In: 23rd Symposium (int) on Combustion, 1990.591~612
    [96] Jaberi F A, James S. A dynamic similarity model for large eddy simulation of turbulent combustion. Physics of Fluids, 1998, 10(7):1175~1177
    [97] Colucci P J. Jaberi F A. Givi P. Filtered density function for large eddy simulation of turbulent reacting flows. Physics of Fluids, 1998, 10(2): 499~515
    [98] Dopazo C. Recent developments in PDF methods. In Libby P A, Williams F A, ed. Turbulent Reacting Flows. Academic Press, 1993.375~474
    [99] Anand M S. Pope S B. Calculations of premixed turbulent flames by PDF methods. Combustion and Flame, 1987, 67(2): 127~142
    [100] Pope S B, Cheng W K. Statistical calculation of spherical turbulent flames. In 21st Symposium (Int) on Combustion, 1986.1473~1481
    [101] Pope S B, Cheng W K. The stochastic flamelet model of turbulent premixed combustion. In 22nd Symposium (Int) on Combustion, 1998.781~789
    [102] Chen J Y, Kollmann W. Chemical models for PDF modeling of hydrogen~air nonpremixed turbulent flames. Combustion and Flame, 1990,79(1):75~99
    [103] Pope S B. New developments in PDF modeling of nonreactive and reactive turbulent flows. In Proceedings of the Second International Symposium on Turbulent, Heat and Mass Transfer, Delft. The Netherlands. June. 1997.35~45
    [104] Klimenko A Yu, Bilger R W. Conditional Moment Closure for Turbulent Combustion. Progress in Energy and Combustion Science, 1999, 25(6):595~687
    [105] Kronenburg A, Bilger R W, Kent J. H. Second-order conditional moment closure for turbulent jet diffusion flames. In 27th Symposium (international) on Combustion, 1998
    [106] Bray K N C, Peters N. Laminar flamelets in turbulent flames. In Libby P A, Williams F A, ed. Turbulent Reacting Flows. Academic Press, 1993.63~114
    [107] Peters N, Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science,1984, 10(3):319~339
    [108] Bray K N C, Libby P A, Moss J B. Unified modeling approach for premixed turbulent combustion–Part 1: general formulation. Combustion and Flame, 1985, 61(1):87~102
    [109] Bray K N C, Libby P A. Passage times and flamelet crossing frequencies in premixed turbulent combustion. Combustion Science and Technology, 1986, 47:253~274
    [110] Maly R R, Bray K N C, Chew T C. An intelgral time scale of evolution for non-stationary turbulent premixed flames. Combustion Science and Technology, 1989, 66:139~147
    [111]周力行,湍流燃烧的新二阶矩模型,工程热物理学报,1996,17(31):383~356
    [112] Chen X L,Zhou L X,Zhang J. A new second-order moment model for simulating methane-air turbulent combustion, Proc. 2nd Asia-Pacific Conference on Combustion, Tainan, Taiwan, China, 1999.366~397
    [113] Spalding D B. Mathematical models of turbulent flames:a review. Combustion Science and Technology, 1976,13:3~25
    [114] Spalding D B. Mixing and chemical reaction in steady confined turbulent flames. In 13th Symposium (Int) on Combustion, The Combustion Institute.Pittsburgh,1971. 649~657
    [115] Spalding D B. The influence of laminar transport and chemical kinetics on the time-mean reaction rate in a turbulent flow. In 17th Symposium (Int) on Combustion,1978,431~440
    [116] Spalding D B. A General theory of turbulent combustion. AIAA Paper, AIAA 15th Aerospace Meeting, Los Angeles, January, 1977,77~141
    [117] Chofin A J, Ghoniem A F, Oppenheim A K. Numerical modeling of turbulent flow in premixed combustion. In 18th Symposium (Int) on Combustion, The Combustion Institute, Pittsburgh PA, 1981
    [118] T. DETEMMERMAN and F. FROMENT.THREE DIMENSIONAL COUPLED SIMULATION OF FURNACES AND REACTOR TUBES FOR THE THERMAL CRACKING OF HYDROCARBONS.REVUE DE L’INSTITUT FRAN?AIS DU PéTROLE.1998,53(2):181~194
    [119]蓝兴英,乙烯裂解炉内燃烧、传热及裂解反应等过程的综合数值模拟研究:[博士学位论文],北京;石油大学化工学院,2004
    [120]蓝兴英,高金森,徐春明等,乙烯裂解炉内传递及反应过程综合数值模拟Ⅰ.数学模型的建立,石油学报(石油加工),2003,19(5):80~85
    [121]蓝兴英,张红梅,高金森等,乙烯裂解炉内传递和反应过程综合数值模拟Ⅱ.反应管内传递和反应过程的数值模拟,石油学报(石油加工),2003,19(6):64~69
    [122]蓝兴英,高金森,徐春明,乙烯裂解炉内传递和反应过程综合数值模拟研究Ⅲ.炉膛内燃烧和传热过程的数值模拟,石油学报(石油加工),2004,20(1):46~51
    [123] Emil H. Edwin, Jens G. Balchen. Dynamic optimization and production planning of thermal cracking operation. Chemical Engineering Science, 2001, 56:989~997
    [124] Lobo W E, Evans J E. Heat transfer in the radiant section of petroleum heaters. AIChE J., 1939, 24:743~756
    [125] Wimpress, R. N.. Generalized Method Predicts Fired-Heater Performance. Chemical Engineering, 1995,95~102
    [126] Lobo W E. Design of furnaces with flue gas temperature gradients. Chemical Engineering Progress, 1974, (1):70~82
    [127]БелоконбН.И.,АналитическиеОсновыТепловогоРасчетаТрубачатыхПечей,НефтянаяПромъпцленностьC.C.C.P., 1941, 2:104~112
    [128] Mcadams W H. Heat Transmission, 3rd Ed., McGraw Hill Book Company, New York, 1954. 265
    [129] Hottel H C. Cohen E S. Radiant heat exchange in a gas filled enclosure, allowance for non-uniformity of gas temperature. AIChE J,1958,(1):3~14
    [130] Hottel H C, Sarofim A F. Radiative Transfer, McGraw Hill Book Company, New York,1967.199~255
    [131]史光梅,刘朝,工业炉内辐射换热模型研究进展,工业加热炉,2004,33(5):9~12
    [132] CVS默蒂,周炳利,火焰加热炉热辐射模型化研究,冶金能源,1994,13(4):55~62
    [133] Howell J. R. The Monte Carlo Method in radiative heat transfer. ASME J Heat Transfer, 1998, 120(3):547 -560
    [134] Steward F R, Cannon P. International Journal of Heat and Mass Transfer. 1971, 14:245~256
    [135] Jeans J H. The equations of radiative transfer of energy. Monthly Notices Royal Astronomical Society, 1917, 78:28~36
    [136] Lockwood F C, Shan N G. A new radiation solution method for incorporation in general combustion prediction procedure, the 18th Symposium (Int) on Combustion, the Combustion Institute, Pittsburgh, 1981.1405~1414
    [137] Turelove J S. Discrete ordinate solutions of the radiative heat transport equation. J. Heat Transfer, 1987, 109(4):1048~1051
    [138] Fiveland W A, Jessee J P. Comparison of discrete ordinate formulations for radiation heat transfer in multidimensional geometries. J. Thermophys. Heat Transfer, 1995, 9(1):47~54
    [139] Koch K, Krebs W, Witting S, et al. Discrete ordinate quadrature schemes for multidimensional radiative heat transfer. J. Quant. Spectrosc. Radiat. Transfer, 1995, 53(4):353~372
    [140]刘林华,余其铮,阮立明等,求解辐射传递方程的离散坐标法,计算物理,1998,15(3):337~343
    [141]李力,李容先,周力行等,三维湍流回流气相和媒粉燃烧辐射传热离散坐标模型和热流模型比较,燃烧科学与技术,2000,6(1):19~23
    [142] RAITHB G D. CHLI E H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. Journal of Heat Transfer, 1990, 112(5):415~423
    [143]黄祖祺等编著,石油化工管式炉的模拟与计算机计算,北京:化学工业出版社,1993.102~107
    [144] Fluent Inc, FLUENT user's guide release 5.4.8.Lebanon USA; Fluent Inc,2000
    [145] Patrick M. Plehiers, Geert C. Reyniers, Gilbert F. Froment. Simulation of the Run Length of an Ethane Cracking Furnace. Ind. Eng. Chem. Res., 1990, 29: 636~641
    [146]钱锋,杜文莉,化工过程模拟、控制与优化技术的现状与发展,2006年过程系统工程年会论文集,2006(11)
    [147]邓正龙,化工中的优化方法,北京:化学工业出版社,2000
    [148] Fan W C and W an YP. Model and calculation for flowage and combustion. Publishing Company of Science an d Technology University,l992
    [149] Lan XY,Zhang HM,Gao JS and Xu CM.Research on radial profiles of transfer and reactions progress in tubular reactors of ethylene pyrolyzer.2002 Symposium on Heavy Oil Processing an d Utilization.Beijing:Petrochemical Publishing Press,2002:3l8~322.
    [150] Magel H.C., Schnell U., Hein K.R.G., Twentysixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996
    [151]范维澄,万跃鹏,流动及燃烧的模型与计算,中国科学技术大学出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700