用户名: 密码: 验证码:
土体弱化与地震动关联性理论及相互作用规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宏观震害经验表明,地震中软弱场地、土体非线性以及可液化土层等对上部工程结构、地基基础与地下工程结构物的破坏影响很大。而地震荷载对工程结构的影响主要从惯性力和变形两个方面考虑。对地上建筑结构而言,惯性力起控制作用,土体非线性对惯性力的影响在抗震设计中由反应谱体现,此部分由地震动的加速度反应谱控制:对于地基基础和地下结构而言,土体变形作用超过了惯性力的作用,此部分由地震动中位移响应控制。
     土体弱化主要表现在三个方面,一是场地本身很软;二是强震下土体强非线性引起的土体软化:三是地震下土层液化导致的土体软化。这三个方面对地震动加速度反应谱和土层变形均有很大影响。这类问题实际上是不同类别的场地上地震波引起场地土体弱化,弱化土层又引起地表地震波的变化,属于典型的地震波.土层弱化动力相互作用。这种相互作用研究的关键是地震波与弱化土层特征关联性的理解及相互作用规律的掌握,但目前国内外对其机理和规律还没有形成完整的认识,土体弱化与地震动之间关联性的量化关系研究尚少,理论基础较为缺乏。
     本论文将土体弱化(含液化)与地震动的关系进行统一考虑,利用波动理论和动力学原理,以土体弱化和地震动关联性理论及相互作用规律为主题,提出简化理论模型并给出频域和时域解答,分析讨论各参数影响,利用理论解的优势,初步提炼土体弱化和地震动关联性的量化关系及相互作用规律,主要工作和成果如下:
     1.利用大型振动台试验手段研究饱和砂土液化对地表运动的影响,了解场地液化地表运动规律及孔压升高地表运动变化过程;掌握土层在动荷载作用下弱化损伤条件地面运动和变形的发展过程,提出土体弱化下土表运动变化特征。
     2.分析现有孔压增长模型,提出适于水平土层应力条件的修正的孔压增量计算模型,采用逐波循环(Cycle-by-Cycle)迭代法逐循环累积计算孔压比发展进程,给出随机荷载下孔压比增长计算方法,并利用振动台试验结果验证修正模型的合理性。
     3.建立水平工程场地土体弱化下地面运动的简化计算模型,根据稳态波频域解推导地表运动(加速度和位移)频域响应的理论解答,通过参数分析讨论土体弱化对地表运动响应的影响因素及规律,指出土体弱化过程和液化后地表响应特征。
     4.采用土体弱化地面运动变化过程的简化计算模型,利用Fourier正(逆)变换方法给出动荷载作用下地表运动过程描述的时域解析解答.通过数值计算,分析土体弱化对地表运动时程的影响规律和特征.并结合大型振动台试验结果验证时域解答的合理性。
     5.通过简化模型解析解分析提取出土体弱化特征量以及土体弱化引起地震波谱变化的特征量,提出土体弱化对地震动影响的参数指标,建立土体弱化过程与地震波特征的关联性及相互作用规律,得到土体弱化过程与地震波特征的关联性和相互作用规律定性方面的初步认识。
Macro earthquake-investigation experiences demonstrate that the effects of soft sites, subsoil nonlinearity and liquefiable layers on the damage to superstructures, foundations and underground structures are tremendous. The effects of seismic loading on engineering structures mainly take the forms of inertia forces and soil deformation. To superstructures, the influence of inertia forces is predominant. The design response spectra have incorporated subsoil nonlinearity and are controlled by ground acceleration response spectra. To foundations and underground structures, however, subsoil-deformation act which is controlled by ground displacement response surpasses inertia forces.
     Subsoil degradation principally represents in three aspects, i.e., (1) natural soft sites; (2) soil nonlinearity induced by subsoil degradation under strong earthquakes; (3) subsoil degradation caused by liquefaction. The three aspects specially influence acceleration response spectra and soil deformation. Actually, seismic waves result in subsoil degradation; meanwhile, subsoil degradation conversely alters seismic waves. It is a typical seismic waves-subsoil degradation interaction problem. The crucial point for the interaction is to comprehend the correlation and interaction rules of seismic waves and subsoil degradation. Nevertheless, currently the mechanism and interaction rules have hardly been wholly acquainted. A quantitative relationship between soil degradation and ground motions has not yet been manifested and theoretical explanations are quite limited.
     In the thesis, subsoil degradation including liquefaction and ground motions are simultaneously considered. Taking correlation theories and interaction rules as a theme, simplified theoretical models and relevant solutions both in frequency domain and in time domain are proposed employing wave propagation theories and dynamic principles. The influencing parameters are analyzed individually. Preliminary quantitative correlations and interaction rules of subsoil degradation and ground motions are illustrated. The main salient points and achievements obtained can be outlined:
     1. By means of large shaking table tests, the influence of soil liquefaction on ground motions has been investigated along with ground motions characteristics with increasing excess pore-water pressure. Ground motions and deformation progress resulted from subsoil degradation and deterioration under dynamic loadings are described and characteristics of ground motions are presented.
     2. Analyzing the existing pore-water pressure buildup models, a modified pore-water pressure incremental model for horizontal strata and the relevant procedure to calculate pore-water pressure process are proposed. Using the Cycle-by-Cycle method, pore-water pressure buildup process under irregular seismic loadings can be calculated. Eventually, the modified model is testified by the large shaking table testing results.
     3. Simplified models, which consider subsoil degradation, are established for simulating horizontal engineering sites. By steady-state wave solutions in frequency domain the theoretical solutions for ground motions, i.e., displacement and acceleration, under harmonic waves are deduced. Through parameter analysis, the influencing factors and the influencing rules of subsoil degradation on ground motion response are discussed. The progress of subsoil degradation and postliquefaction characteristics have been elucidated.
     4. Exploring the proposed simplified models and Fourier and Reverse Fourier Transform methods, a theoretical solution in time domain for ground motions under dynamic loadings is presented. By numerical calculation, the characteristics and influencing rules of subsoil degradation on ground motions are analyzed. The reasonability and reliability of the solution are verified by large shaking table testing results.
     5. Analyzing the theoretical solutions in time domain and in frequency domain of the proposed simplified models, quantitative characteristics of subsoil degradation and seismic wave spectra are extracted. Quantitative influencing indices are defined and proposed. The correlation and interaction rules of subsoil degradation progress and seismic wave characteristics are established. Preliminary acquaintance of the correlation and interaction rules are obtained.
引文
[1]白冰.强夯荷载作用下饱和土层孔隙水压力简化计算方法[J].岩石力学与工程学报,2003,22(9):1469-1473.
    [2]蔡晓光.液化土层两种机制下侧向大变形分析[D].哈尔滨:中国地震局工程力学研究所,2003.
    [3]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [4]陈龙伟,袁晓铭.求解液化土表位移两种简化理论模型的比较研究[J].地震工程与工程振动,2010,30(6):141-147.
    [5]陈龙伟,袁晓铭,孙锐.适于水平场地孔压发展的增量计算模型[J].应用基础与工程科学学报,2010,18(增):189-199.
    [6]陈龙伟,袁晓铭,孙锐.水平液化场地土表位移简化理论解答[J].岩土力学,2010,31(12):3823-3828.
    [7]陈文化,崔杰,门福录.等.建筑物非均质地基的地震液化有效应力判别法[J].水力学报,2000,(10):33-42.
    [8]陈文化,门福录.动力作用下砂土的残余体变及其时域连续模型[J].岩土力学,2003,24(6):947-951.
    [9]陈正发,于玉贞.土工动力离心模型试验研究进展[J].岩石力学与工程学报,2006,25(增2):4026-4033.
    [10]大崎顺彦(吕敏申,谢礼立,译).地震动的谱分析入门[M].北京:地震出版社,1980.
    [11]丁海平,罗光财.地震动有限元模拟方法的精度验证[J].地震工程与工程振动,2010,30(6):38-42.
    [12]范留明,张镭于.成层土场地地震效应的时程算法研究[J].岩土力学,2009,30(9):2564-2568.
    [13]丰万玲,石兆吉.判别水平土层液化势的空隙水压力分析方法[J].工程抗震,1988.4:30-33.
    [14]丰万玲,石兆吉.判别水平土层液化势的孔隙水压力分析方法[R].国家地震局工程力学研究所研究报告,1987.
    [15]符圣聪,江静贝.两个典型场地的液化和动力反应分析[J].岩土工程学报,1995.7(4):45-53.
    [16]郭莹,刘艳华,栾茂田,等.复杂应力条件下饱和松砂振动孔隙水压力增长的能量模式[J].岩土工程学报,2005,27(12):1380-1385.
    [17]何钟怡,廖振鹏,王小华.关于复阻尼的几点注记[J].地震工程与工程振动,2002,22(1):1-6.
    [18]何钟怡.复本构理论中的对偶原则[J].固体力学学报,1994,15(2):177-180.
    [19]胡聿贤.地震工程学[M].北京:地震出版社,2006
    [20]胡聿贤,张郁山,梁建文.基于HHT方法的场地液化的识别[J].土木工程学报,2006.39(2):66-77.
    [21]景立平.卓旭炀,王祥建.复杂介质对地震波传播的影响[J].岩土工程学报,2005,27(4):393-397
    [22]何广讷.砂土振动孔隙水压力的研究报告[R].大连理工大学报告.大连,1983.
    [23]李大为.基于有效应力原理的-维土层非线性地震反应分析[D].哈尔滨:中国 地震局工程力学研究所,2008.
    [24]李立云,崔杰,景立平,等.饱和粉土振动液化分析[J].岩土力学,2005,26(10):1663-1666
    [25]李荣建,于玉贞,吕禾.饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究[J].岩土力学,2009,30(4):897-902
    [26]李学宁,刘惠珊,周根寿.液化层减震机理研究[J].地震工程与工程振动,1992,12(2):84-91
    [27]李媛媛,徐扬,李冬梅.不同类别场地地震震动反应分析[J].山西地震,2005,4:27-33
    [28]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社.2002
    [29]刘汉龙.地震液化区分布范围对地面大位移的影响[J].河海大学学报,2001.29(5):1-6
    [30]刘国庆,向晓松,王安竖,等.面波法与折射波法在研究基岩弹性力学性质的应用[J].地质与勘察,2008,44(1):109-112
    [31]刘惠珊.1995年阪神大地震的液化特点[J].工程抗震,2001,(3):22-26
    [32]刘惠珊,徐凤萍,李鹏程.液化引起的地面大位移对工程的影响及其研究现状[J].工程抗震,1997,2:21-26
    [33]刘惠珊,张在明.地震区的场地与地基基础[M].北京:中国建筑共出版社,1994.
    [34]刘恢先(主编).唐山地震震害[M].北京:地震出版社,1989
    [35]鲁晓兵,谈庆明,王淑云,等.饱和砂土液化研究新进展[J].力学进展,2004,34(1):87-96
    [36]孟凡超.土体永久变形与地震荷载特征关系研究[D].哈尔滨:中国地震局工程力学研究所,2009
    [37]孟上九.不规则动荷载下土的残余变形及建筑物不均匀震陷研究[D].哈尔滨:中国地震局工程力学研究所,2002
    [38]孟上九,曹文海,袁晓铭.地震荷载下土体残余应变及孔压研究综述[J].世界地震工程,2001,(3):49-53
    [39]孟上九,袁晓铭.建筑物不均匀震陷简化分析方法[J].地震工程与工程振动.2003,23(2):102:107
    [40]孟上九,刘汉龙,袁晓铭,等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,24(11):1978-1985
    [41]余跃心,刘汉龙,高玉峰.饱和黄土孔压增长模式与液化机理试验研究[J].岩土力学,2002,23(4):395-399
    [42]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水电出版社,2002
    [43]邵龙潭,洪帅,郑卫锋.循环孔隙水压力作用下饱和砂土变形的试验研究[J]岩土工程学报,2006,28(4):428-431
    [44]沈建文,刘铮,石树中.用震级和距离参数修正土层反应的等效线性化方法[J].地震学报,2010,32(4):466-475.
    [45]沈珠江.关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):110-111
    [46]石兆吉,丰万玲,郁寿松.饱和砂土振后再固结体应变的变化规律[J].岩土工程学报,1989,11(1):55-61
    [47]石兆吉,王兰民.土壤动力特性,液化势及危害性评价[M].北京:地震出版社,1999
    [48]石兆吉,张廷军,郁寿松,等.土层液化对地面运动特征的影响[J].地震工程与工程振动,1994,14(4):15-23
    [49]苏栋,李相崧.砂土自由场地地震响应的离心机试验研究[J].地震工程与工程振动,2006,26(2):166-170
    [50]孙静.岩土动剪切模量阻尼试验及应用研究[D].哈尔滨:中国地震局工程力学研究所,2004
    [51]孙锐.液化土层地震动和场地液化识别方法研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [52]孙锐,唐福辉,陈龙伟,等.现有液化识别方法对比分析[J].岩土力学,2011,增刊.(接受待刊)
    [53]孙锐,袁晓铭.场地液化对反应谱的影响评价[J].应用基础与工程科学学报,2010,18(增):173-180
    [54]孙锐,袁晓铭.非均等固结下饱和砂土孔压增量简化计算公式[J].岩土工程学报,2005,27(9):1021-1025
    [55]孙锐,袁晓铭.地震荷载下饱和砂土孔压增长时程计算方法[J].地震工程与工程振动,2006,26(3):261-263
    [56]孙锐,袁晓铭,李雨润,等.循环荷载下液化退土层往返变形的影响[J].西北地震学报,2009,31(1):8-14
    [57]唐亮.液化场地桩-土动力相互作用p-y曲线模型研究[D].哈尔滨:哈尔滨工业大学,2010
    [58]王刚.砂土液化后大变形的物理机制和本构模型研究[D].北京:清华大学,2005
    [59]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962,(2):37-49.
    [60]王刚.砂土液化后大变形的物理机制与本构模型研究[D].北京:清华大学,2005
    [61]王刚,张建民.地震液化问题研究进展[J].力学进展,2007,37(4):575-589.
    [62]王国新,徐令宇.自由场地液化振动台实验结果分析与数值模拟[J].防灾减灾工程学报,2010,30(增):45-49.
    [63]王天颂,刘颖.饱和砂层抗震稳定分析的孔隙水压力方法[J].地震工程与工程振动,1987,7(3):73-83.
    [64]王天颂,刘颖.水平场地的抗震稳定分析[R].国家地震局工程力学研究所研究报告,1985
    [65]王维铭.汶川地震液化宏观现象及场地特征对比分析[D].哈尔滨:中国地震局工程力学研究所,2010
    [66]徐学燕,徐春华,李小稚.冻土场地地震加速度反应谱研究[J].岩土工程学报,2003,25(6):680-683
    [67]魏汝龙.往返荷载下饱和砂土的抗液化强度和孔隙水压力[R].南京水利科学研究所报告.南京,1987
    [68]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1987,3:1-13
    [69]郁寿松,石兆吉.土壤震陷试验研究[J].岩土工程学报,1989,11(4):35-44
    [70]郁寿松,石兆吉.水平土层液化势的判别分析[J].地震工程与工程振动,1980,试刊(1):121-136
    [71]袁晓铭,曹振中,孙锐,等.汶川8.0级地震液化特征初步研究[J].岩石力学与 工程学报,2009,28(6):1288-1296
    [72]袁晓铭,孟上九,孙锐.随机地震荷载下粘性土残余应变的半经验计算公式[J].水力学报,2004,(11):59-65.
    [73]袁晓铭,孙锐,孟上九.土体地震大变形分析中Seed有效循环次数方法的局限性[J].岩土工程学报,2004,26(2):207-211.
    [74]张敏政.水平饱和砂层地震反应的有效应力分析[D].哈尔滨:中国科学院工程力学研究所,1981
    [75]张建民.地震液化后地基侧向变形对桩基础的影响[C].第八届全国土力学及岩土工程学术会议论文集.北京:万国学术出版社,1999
    [76]张建民,时松孝次,田屋裕司.饱和砂土液化后的剪切吸水效应[J].岩土工程学报,1999,21(4):398-402.
    [77]张建民,王刚.考虑地基液化后大变形的桩-土动力相互作用分析[J].清华大学学报(自然科学版),2004,44(3):429-432.
    [78]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报,2006,28(7):835-840.
    [79]张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型[J].岩土工程学报,2004,26(4):546-552.
    [80]张建民,谢定义,刘家沛.饱和砂层震动孔隙水压力张消的解析算法[J].水力学报,1992,(12):70-80.
    [81]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
    [82]张克绪.土坝的等价地震系数和地震水平剪应力最大幅值的简化计算[R].国家地震局工程力学研究所研究报告,1984.
    [83]张志红,赵成刚,邓敏.非饱和土固结理论新进展[J].岩土力学,2005,26(4):667-672.
    [84]赵成刚,尤昌龙.饱和砂土液化与稳态强度[J].土木工程学报,2001,34(3):90-96.
    [85]郑颖人,孔亮.岩土塑性力学[M].北京:中国建筑共出版社,2010.
    [86]中华人民共和国国家标准.建筑抗震设计规范GB 50011-2001[S].北京:中国建筑工业出版社,2008.
    [87]中国地震局工程力学研究所.海城地震震害[M].北京:地震出版社,1989.
    [88]周云东,刘汉龙,高玉峰,等.地震液化后大位移室内试验研究探讨[J].地震工程与工程振动,2002,22(1):152-157.
    [89]庄迎春,谢康和,朱益军,等.地层组合对砂土液化的影响分析[J].岩土力学,2003,24(6):991-996.
    [90]Aguirre J., Irikura K. Nonlinearity, liquefaction and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogo-ken-Nanbu earthquake [J]. Bulletin of the Seismological Society of America,1997,87(5):1244-1258.
    [91]Ambraseys N. N., Menu J. M. Earthquake induced ground displacements [J]. Eart-hquake Engineering and Structural Dynamics,1988,16:985-1006.
    [92]Atkinson J. H. Non-linear soil stiffness in routine design [J]. Geotechnique,2000, 50:487-508.
    [93]Bardet J. P. A viscoelastic model for the dynamic behavior of saturated poroelastic soils [J]. Transactions of the ASME,1992,59:128-135.
    [94]Bardet J. P., Hu J., Mace N., et al. Database of case histories on liquefaction-indu-ced ground deformation [R]. A Report to PEER/PG&E, Univers- ity of Southern California,1999.
    [95]Bardet J., P., Mace N., Tobita T. Liquefaction-induced ground deformation and failure [R]. A Report to PEER/PG&E, University of Southern California,1999.
    [96]Barrlett S. F., Youd T. L. Empirical prediction of lateral spread displacement [J]. Journal of Geotechnical Engineering Division, ASCE,1995,121(4):316-329.
    [97]Berrill J. B., Davis R. O. Energy dissipation and seismic liquefaction of sands:re-vised model [J]. Soils and Foundations,1985,25(2):106-118.
    [98]Bouckovalas G., Stamatopoulos C. A., Whitman R. V. Analysis of seismic settle-ments and pore pressure in centrifuge tests [J]. Journal of Geotechnical Engineering, ASCE,1991,117(10):1492-1508.
    [99]Boulanger R. W., Idriss I. M. Evaluation of cyclic softening in silts and clays [J]. Journal Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(6): 641-652.
    [100]Building Seismic Safety Council. NEHRP Recommended Seismic Provisions for new buildings and other structures FEMA P-750 [S]. Washington D.C.:FEMA P-750,2009
    [101]Cetin K. O., Youd T. L., Seed R. B., et al. Liquefactin-induced lateral spreading at Izmit Bay during the Kocaeli (lzmit)-Turkey earthquake [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004, 130(12):1300-1313.
    [102]Chan S. Y., Hsu C. W., Chen T. W. Comparison of capability of time integration methods in capturing dynamic loading [J]. Earthquake Engineering and Engineering Vibration,2010,9(3):409-423.
    [103]Chen L. W., Yuan X. M, Cao Z. Z., et al. Liquefaction macrophenomena in the great Wenchuan earthquake [J]. Earthquake Engineering and Engineering Vibration,2009,8(2):219-229.
    [104]Chopra A. K. Dynamics of Structurs [M]. New Jersey:Prentice Hall,2009.
    [105]Chopra A. K. Elastic response spectrum:a historical note [J]. Earthquake Engineering and Structural Dynamics,2007,36:3-12.
    [106]Clough R. W., Chopra A. K. Earthquake stress analysis in earth dam [J]. Journal of the Engineering Mechanics Division, ASCE,1973,93(EM2):47-94.
    [107]De Alba. P., Seed H. B., Chan C. K. Sand liquefaction in large-scale simple shear tests [J]. Journal of the Geotechnial Engineering Division,1976, 102(GT9):909-927.
    [108]Di Y., Sato T. A practicl numerical method for large strain liquefaction analysis of saturated soils [J]. Soil Dynamics and Earthquake Engineering,2004,24:251-260.
    [109]Elgamal A., Yang Z., Parra E. Computational modeling of cyclic mobility and post-liquefaction site response [J]. Soil Dynamics and Earthquake Engineering, 2002,22:259-271.
    [110]Elgamal A., Yang Z., Parra E., et al. Modeling of cyclic mobility in saturated cohesionless soils [J]. International Journal of Plasticity,2003,19:883-905.
    [111]Finn W. D. L. State-of-the-art of geotechnical earthquake engineering practice [J]. Soil Dynamics and Earthquake Enginneering,2000,20:1-15.
    [112]Finn W. D. L., Lee K. W., Martin G. R. An effective stress model for liquefaction [J]. Journal of Geotechnical Engineering Division,1977,103(GT6):517-533.
    [113]Finn W. D. L., Ventura C. G., Wu G. Analysis of ground motions at Treasure Island site during the 1989 Loma Prieta earthquake [J]. Soil Dynamics and Earthquake Engineering,1993,12(7):383-390.
    [114]Hamada, M., Towhata, I., Yasuda, S., Isoyama, R. Study on permanent ground displacement induced by seismic liquefaction [J]. Computers and Geotechnics, 1987,4:197-220.
    [115]Holzer T. L., Youd T. L., Hanks T. C. Dynamics of liquefaction during the Supersitition Hills earthquake (M=6.5) of November 24,1987 [J]. Science,1989, 244:56-59.
    [116]Idriss I. M., Seed H. B. Seismic response of horizontal soil layers [J]. Soil Mechnics and Foundations Division, ASCE,1968,94(SM4):1003-1031.
    [117]Ishihara, K. Soil Behaviour in Earthquake Geotechincs [M]. Oxford:Oxford University Press,1996.
    [118]Ishihara K., Koga Y. Case studies of liquefaction in the 1964 Niigata earthquake [J]. Soils and Foundations,1981,21(3):35-52.
    [119]Ishihara K., Muroi T., Towhata I. In-situ pore water pressures and gournd motions during the 1987 Chiba-Toho-Oki earthquake [J]. Soils and Foundatins,1989, 29(4):75-90.
    [120]Ishihara K., Shimizu K., Yamada Y. Pore water pressures measured in sand deposit during earthquake [J]. Soils and Foundations,1981,20(4):85-100.
    [121]Ishihara K., Troncoso J., Kawase Y., Takahashi Y. Cyclic strength characteristics of tailings material [J]. Soils and Foundations,1980,20(4):127-142.
    [122]Ishibashi I., Sherif M. A., Tsuchiya C. Pore pressure rise mechanism and soil liquefaction [J]. Soils and Foundations,1977,17(2):17-24.
    [123]Iwasaki Y., Tai M. Strong motion records at Kobe Port Island [J]. Special issues on geotechnical aspects of the January 17,1995 Hyogoken-Nambu earthquake, Soils and Foundations,1996,29-40.
    [124]Joyner W. B., Chen A. T. F. Calculation of non-linear ground response in earthquakes [J]. Bulletin of the Seismological Society of America,1975, 65(5):1315-1336.
    [125]Kagawa T., Kraft Jr L. M.Modeling the liquefaction process [J]. Geotechnical Engineering Division, ASCE,1980,107(GT12):1593-1607.
    [126]Kagawa T., Sato M., Minowa C., et al. Centrifuge simulations of large-scale shaking table tests:case studies [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(7):663-685.
    [127]Kausel E. Early history of Soil-structure interaction [J]. Soil Dynamic and Earthquake Engineeing,2010,30:822-832.
    [128]Kayen R. E., Mitchell J. K. Assessment of liquefaction potential during earthquakes by arias intensity [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(12):1162-1174.
    [129]Kostadinov M. V., Yamazaki F. Detection of soil liquefaction from strong motion records [J]. Earthquake Engineering and Structrual Dynamics,2001,30:173-193.
    [130]Kostadinov M. V., Towhata I. Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of liquefaction [J]. Soil Dynamics and Earthquake Engineering,2002,22:309-322.
    [131]Kramer S. L. Geotechnical Earthquake Engineering [M]. New Jersey:Prentice Hall,1996.
    [132]Lee K. L., Albaisa A. Earthquake-induced settlement in saturated sands [J]. Journal of Geotechnical Engineering Division,1974,100(GT4):387-406.
    [133]Liyanathirana D. S., Poulos H. G. Numerical simulation of soil liquefaction due to earthquake loading [J]. Soil Dynamics and Earthquake Engineering,2002, 22:511-523.
    [134]Lyanapathirana D. S., Poulos H. G. A numerical model for dynamic soil liquefaction analysis [J]. Soil Dynamics and Earthquake Engineerin,2002, 22:1007-1015.
    [135]Marr Jr. W. A., Christian J. T. Permanent displacements due to cyclic wave loading [J]. Journal of Geotechnical Engineering, ASCE,1981,107(8):1129-1149.
    [136]Meek J. W., Wolf J. P. Cone models for homogeneous soil Ⅰ(Ⅱ) [J]. Journal of Geotech Engineering, ASCE 1992,118:667-703.
    [137]Midorikawa S., Wakamatsu K. Intensity of earthquake ground motion at liquefied sites [J]. Soils and Foundations,1988,28(2):73-84.
    [138]Miyajima, M., Kitaura M., et al. Detective method of liquefaction using strong ground motion records [C]. Proceedings of 3th China-Japan-USA Trilateral Symposium on Lifeline Earthquake Engineering, China,1998,1:133-140.
    [139]Nagase H., Ishihara K. Effects of load irregularity on the cyclic behavior of sand [J]. Soil Dynamics and Earthquake Engineering,1987,6:239-249.
    [140]Newmark N. M. Effect of earthquakes on dams and embankment [J]. Geotechnique,1965,5(2):35-50.
    [141]Ni S. D., Siddharthan R. V., Anderson J. G. Characteristics of nonlinear response of deep saturated soil deposits [J]. Bulletin of the Seismological Society of America,1997,87(2):342-355.
    [142]Nova R., Montrasio L. Settlements of shallow foundations on sand [J]. Geotechnique,1991,41(2):243-256.
    [143]Oka F., Sugito M., Yashima A., et al. Analysis of strong motion records from the south Hyogo earthquake of January 17,1995 [J]. Engineering Geology,1996, 43:85-106.
    [144]Okamura M., Matsuo O. A displacement prediction meothod for retaining walls under seismic loading [J]. Soils and Foundations,2002,42(1):131-138.
    [145]Ozaki R. Study on real-time earthquake mitigation-liquefaction monitoring and earthquake countermeters. Kobe University,1999.
    [146]Paulucci R. Simple evaluation of earthquake-induced permanent displacements of shallow foundations [J]. Journal of Earthquake Engineering,1997,1(3):563-579.
    [147]Paulucci R., Shirato M., Yizmaz M. T. Seismic behavior of shallow foundations: shaking table experiments vs numerical modeling [J]. Earthquake Engineering and Structural Dynamics,2008,37:577-595.
    [148]Pease J. W., O'Rourke T. D. Seismic response of liquefaction sites [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(1):37-45.
    [149]Popescu R., Prevost J. H. Centrifuge validation of a numerical model for dynamic soil liquefaction [J]. Soil Dynamics and Earthquake Engineering,1993,12:73-90.
    [150]Prakash S. Soil Dynamics [M]. US:McGraw-Hill Book Company,1981.
    [151]Sasaki Y., Towhata I., Tokida K., et al. Mechanism of permanent displacement of ground caused by seismic liquefaction [J]. Soils and Foundations,1992, 32(3):79-96.
    [152]Seed H. B. Pore water pressure changes during soil liquefaction [J]. Journal of Geotechnical Eangineering Division, ASCE,1976,102(5):323-345.
    [153]Seed H. B. Design problems in soil liquefaction [J]. Journal of Geotechnical Engineering, ASCE,1987,113(8):827-845.
    [154]Seed H. B., Idriss I. M. Simplified procedure for evaluating soil liquefaction potential [J]. Journal of the Soil Mechnics and Foundations Division, ASCE, 1971,97(SM9):1249-1273.
    [155]Seed H. B., Lee K. L., Makdisi F. I. the slides in the San Fernando dams during the earthquake of February 9,1971 [J]. Journal of Geotechnical Engineering, ASCE,1975,101(7):651-688.
    [156]Seed H. B., Martin P. P., Lysmer J. Pore-water pressure changes during soil liquefaction [J]. Journal of the Geotechnical Engineering Division, ASCE,1976, 102(GT4):323-346.
    [157]Shamoto Y., Zhang J. M., Tokimatsu K. New charts for predicting large residual post-earthquake ground deformation [J]. Soil Dynamics and Earthquake Engineering,1998,17:427-438.
    [158]Sherif M. A., Ishibashi I., Tsuchiya C. Pore-pressure prediction during earthquake loadings [J]. Soils and Foundations,1978,18(4):19-30.
    [159]Shirato M., Kouno T., Asai R., et al. Large-scale experiments on nonlinear behavior of shallow foundations subjected to strong earthqueks [J]. Soils and Foundations,2008,48(5):673-692.
    [160]Stamatopoulos C. A., Bouchovalas G., Whitman R. V. Analytical prediction of earthquake-induced permanent deformations [J]. Journal of Geotechnical Engineering, ASCE,1991,117(10):1471-1491.
    [161]Stewart J. P., Bray J. D., Seed R. B., Sitar N., et al. Preliminary report on the principal geotechnical aspects of the January 17,1994 Northridge earthquake [R]. Report to EERC, No. UCB/EERC-94/08, University of California at Berkeley, 1994.
    [162]Sun R., Chen L. W., Yuan X. M., et al. Liquefaction-induced increments of surface acceleration response spectrum [J]. Journal of Harbin Institute of Technology,2009,16(1):229-232.
    [163]Suzuki T., Nakayama, W., Shimizu, Y. A new method of liquefaction using strong ground motin [C]. Proceedings of 53th annual conference of Japanese Society of Civil Engineering,1998,1(B):862-863.
    [164]Tamari Y., Towhata I. Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction [J]. Soils and Foundations,2003,43(2):69-87.
    [165]Tamate S., Towhata I. Numerical simulation of ground flow caused by seismic liquefaction [J]. Soil Dynamics and Earthquake Engineering,1999,18:473-485.
    [166]Takada S., Tanabe K. Estimation of earthquake settlement for lifeline engineering [C]. Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo, 1988.
    [167]Towhata 1. Geotechnical Earthquake Engineering [M]. Berlin:Springer,2008.
    [168]Towhata 1. Seismic wave propagation in elastic soil with continuous variation of shear modulus in the vertical direction [J]. Soils and Foundations,1996, 36(1):61-72.
    [169]Towhata I., Park, J. P., Orense R. P. Use of spectrum intensity for immediate detection of subsoil liquefaction [J]. Soils and Foundations,1996,36(2):29-44.
    [170]Towhata I., Orense R. P., Toyota H. Mathematical principles in prediction of lateral ground displacement induced by seismic liquefaction [J]. Soils and Foundations,1999,39(2):1-19.
    [171]Towhata I., Sasaki Y., Tokida K., et al. Prediction of permanent displacement of liquefied ground by means of minimum energy principles [J]. Soils and Foundations,1992,32(3):97-116.
    [172]Trifunac M. D. Empirical criteria for liquefaction in sand via standard penetration tests and seismic wave energy [J]. Soil Dynamic and Earthquake Engineering, 1995,14:419-426.
    [173]Vaid Y. P., Thomas J. Liquefaction and postliquefaction behavior of sand [J]. Journal of Geotechnical Engineering, ASCE,1995,121(2):163-173.
    [174]Wang C. Y., Wong A., Dreger D. S., et al. Liquefaction limit during earthquakes and underground explosions:implications on ground motion attenuation [J]. Bulletin of the Seismological Society of America,2006,96(1):355-363.
    [175]Wen G. L. Non-linear soil response in ground motions [J]. Earthquake Engineering and Structural Dynamics,1994,23:599-608.
    [176]Wen G. L. Non-linear soil response in ground motions [J]. Earthquake Engineering and Structral Dynamics,1994,23:599-608.
    [177]Wolf J. P. Foundation Vibration Analysis Using Simple Physical Model [M]. NJ: Prentice-hall Englewood Cliffs,1992.
    [178]Yasuda S. Damage to lifeline and houses caused by the 2007 Niigataken-chuetsu-oki earthquake in Japan [C]. In Proceedings:3rd International Geotechnical Symposium on Geotechnical Engineering for Disaster Prevention and Reduction, Harbin,2009.
    [179]Yasuda S., Nagase H., Kiku H., et al. The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction [J]. soils and Foundations,1992,32(1):97-116.
    [180]Yoshimi Y., Tokimatsu K. Settlement of buildings on saturated sand during earthquakes [J]. Soils and Foundations,1977,17(1):23-38.
    [181]Yoshimi Y., Tokimatsu K. Settlement of buildings in saturated sand during earthquake [J]. Soils and Foundations,1977,17(1):23-38.
    [182]Youd T. L., Idriss I. M., Andrus R. D., et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(10):817-833.
    [183]Youd T. L., Holzer T. L. Piezometer performance at Wildlife liquefaction site, California [J]. Journal of Geotechnical Engineering, ASCE,1994, 120(6):975-995.
    [184]Youd T. L., Carter B. L. Influence of soil softening and liquefaction on spectral acceleration [J]. Journal of Geotechnical and Geoenviomental Engineering,2005, 131(7):811-825.
    [185]Youd T. L., Perkins D. M. Mapping of liquefaction severity index [J]. Journal of Geotechnical Engineering Division, ASCE,1987,11:1374-1392.
    [186]Yuan X. M., Sun R., Meng S. J. Effect of asymmetry and irregularity of seismic waves on earthquake-induced differential settlement of buildings on natural subsoil [J]. Soil Dynamics and Earthquake Engineering,2003.23:107-144.
    [187]Yuan X. M., Sun R., Chen L. W. A method for detecting site liquefaction by seismic records [J]. Soil Dynamics and Earthquake Engineering,2010, 30:270-279.
    [188]Zeghal M., Elgamal A. Analysis of site liquefaction using earthquake records [J]. Journal of Geotechnical Engineering, ASCE,1994,120(DT6):996-1017.
    [189]Zeng X., Steedman P. S. Bearing capacity failure of shallow foundations in earthquakes [J]. Geotechnique,1998,48:235-256.
    [190]Zhang G., Robertson P. K., Brachman R. W. I. Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004, 130(8):861-871.
    [191]Zorapapel G.T. The effect of pore pressure increase in a sand liquefiable deposit on the spectral content of strong motion[C]. Proceedings of the fourth US National Conference on Earthquake Engineering, Palm Springs, May,1990, California.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700