用户名: 密码: 验证码:
基坑开挖对坑底已建隧道影响的数值与离心试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地下空间的大规模开发,不可避免地要在地铁隧道附近进行施工活动,这其中就包括在已建隧道的上方进行基坑开挖。目前国内外已有不少相关工程实例的报道,这些报道表明,基坑开挖会使坑底隧道产生上抬位移与不可忽视的自身变形,影响隧道的安全运行;在软土地区,基坑开挖对坑底已建隧道的影响更需重点关注。保护已建隧道在基坑开挖过程的安全运行,已经成为岩土领域的一个热点工程问题。本论文借助有限元方法与离心试验方法,对基坑开挖对坑底已建隧道影响的作用机理进行了深入研究,同时对各种影响因素进行了参数分析。研究的成果有助于深刻认识这一工程问题,同时为隧道的保护措施提供理论依据。
     本文的主要内容与结论包括以下几个方面:
     1.软土地区基坑开挖对坑底隧道影响的二维数值分析表明:(1)基坑开挖引起坑底隧道的位移与基坑开挖引起的周边土体位移场相一致。(2)基坑开挖引起坑底隧道的横截面变形主要取决于其周边土体的总应力变化。(3)基坑开挖过程处于基坑中心的隧道其最大自身变形并不一定发生在距坑底面竖向距离最近的隧道中;对于开挖宽度较小的基坑( 2 B e /he?10/3),相同埋深下处于基坑中心的隧道与靠近地连墙的隧道其基坑开挖过程最大的变形量比较接近;对于开挖宽度较大的基坑( ),相同埋深下靠近地连墙的隧道其相对变形比处于基坑中心的隧道大,工程中需重点关注。(4)基坑开挖过程隧道横截面产生的附加弯矩与其自身变形相一致,且成线性比例关系。(5)基坑的固结效应对坑底隧道的竖向位移影响明显,而对隧道在基坑开挖过程的自身变形影响很小。(6)加大隧道结构的刚度,可以减小坑底隧道在基坑开挖过程的相对变形,同时增加隧道截面的附加弯矩;在隧道的结构刚度达到一定值时,再增加隧道刚度,坑底隧道在基坑开挖过程的相对变形减小很少。
     2 Be /he?16/3
     2.软土地区基坑开挖对坑底隧道影响的三维数值分析表明,靠近基坑开挖中心面( =0)的隧道,开挖引起的隧道各截面的位移与自身变形接近二维分析的结果,且在18m范围内隧道各横截面的位移与自身变形变化很小;从h_(ty)18m开始,隧道的位移与变形开始减小,超过h_(ty) 54m(地连墙所在位置),隧道截面位移与变形迅速减小,hty=81m(距地连墙的水平距离为3倍的开挖深度)时隧道横截面基本不受基坑开挖的影响。
     3.砂土离心试验反映了不同位置坑底隧道各横截面在基坑开挖过程的弯矩变化及竖向直径改变。对离心试验进行数值模拟,并对隧道相对位置、土的弹性模量进行参数影响分析,得出:(1)数值分析的结果较好地吻合了离心试验中隧道横截面弯矩的变化趋势;(2)在开挖宽度为300mm(原型为24m)、开挖深度为150mm(原型为12m)的砂土基坑中,在开挖宽度为300mm(原型为24m)、开挖深度为150mm(原型为12m)的砂土基坑中,若隧道埋深大于地连墙墙底,基坑开挖引起坑底隧道横截面的相对变形将随着隧道埋深的增加而减小。相同埋深隧道在基坑开挖过程的自身变形的数值接近,靠近地连墙的隧道其相对变形有向基坑中心旋转的趋势;(3)增大土体的弹性模量,可以有效减小基坑开挖引起的坑底隧道横截面的自身变形,同时降低隧道横截面的附加弯矩。
Rapid urban development in cities often requires basement excavation close to or directly above existing tunnels. Some reports of correlative projects have indicated that an excavation may induce upward displacement and deflection on tunnel lining and affect the serviceability and safety of the tunnel. In soft soil, more attention should be paid on this complex interaction between a basement excavation and an existing tunnel. The research in this theis aims to study the mechanism of this complex interaction and investigate the influence factors by means of the finite element and centrifuge model tests. The research can futher the understanding of this complex interaction and provide reasonable advice to protect the tunnel lining.
     Based on the research, following conclusions have been obtained:
     1.A series of two-dimensional finite element analyses were performed to study the influence of basement excavation on underlying tunnel in soft soil. The following conclusions are drawn: (1) Excavation-induced displacements of tunnels are consistent with the soil movement around excavation; (2) Excavation-induced tunnel distortions lie on the soil stress changes around tunnel lining during excavation; (3) For the tunnels located in the centerline of excavation, maximum diameter change does not necessarily occur in the tunnel with smallest vertical distance to the formation level of excavation. For the excavation with smaller excavation width(2B_e/h_e≤10/3),the magnitude of relative deformation of the tunnel located in the centerline of excavation is approximate to that located close to the diaphragm wall with the same tunnel cover depth. For the excavation with larger excavation width(2B_e/h_e≤16/3),the relative deformation of the tunnel close to diaphragm wall is larger than that located in the centerline of the excavation with the same tunnel cover depth; (4)The bending moment changes of the cross sections of the tunnels are consistent with the tunnel relative deformation, and the mangnitude of the bending moment changes are linearly proportional to the relative deformation.(5)The consolidation effect of excavation on the vertical displacement of underlying tunnel is significant due to the dissipation of excess negative pore water pressure aroud tunnel lining. The influence of consolidation effect of excavation on tunnel distortions is trivial. (6)Excavation-induced tunnel distortion will decrease as the increase of the elastic modulus of the tunnel lining. After certain magnitude of the elastic modulus of the tunnel lining ia achieved, the tunnel distortion during excavation will decrease insignificantly as the increase of the elastic modulus of the tunnel lining.
     2. A series of three-dimesional finite element analyses were carried out to study the tunnel responses during excavation in soft soil. Based on the research, it can be obtained that excavation-induced displacement and distortion of the cross section of the tunnel close to the center face of the excavation( hty=0) is approximate to the result of two-dimensional analysis. The excavation-induced displacement and distortion of the cross section of the tunnel change slightly when 18m and decrease with the increase ofhty when hty≤18m. When exceeds 54m (the location of diaphragm wall), the excavation-induced displacement and distortion of the cross section of the tunnel will decrease significantly with the increase ofhty . The tunnel cross section located outside the excavation with hty≥81m is insignficantly influenced by basement excavation.
     3.The result of the two centrifuge tests in sand depicts that the bending moment and vertical diameter changes of underlying tunnels with diffirent tunnel location. The numerical simulation of the centrifuge tests were also performed and the following conclusions are obtained: (1)The result of numerical simulation is consistent with the variation tendency of the bending moment of the tunnel cross section in centrifuge tests(;2)For an basement excavation in sand with excavation width of 300mm(24m in prototype) and excavation depth of 150mm(12m in prototype), excavation-induced distortion of the tunnel cross section will decrease as the increase of the tunnel cover depth when the tunnel cover depth is larger than the depth of the bottom of the diaphragm wall. (3) Excavation-induced distortion of the tunnel cross section will decrease remarkly with the increase of the soil elastic modulus around tunnel.
引文
[1]盛树馨,窦宜,正常固结粘土应力应变关系测定中的几个主要影响因素,软土地基学术讨论会论文选集,北京:水利出版社,1980
    [2] Z. Moroz, V. A. Norris.,Ealstoplastic and viscoplastic constitutive models for soils with application to cyclic loading,Soil Mechanic-Transient and Cyclic Loads,edited by G N Paned and O C Zienkiewicz,Wiley,New York,1982,173-217
    [3]曾国熙,潘秋元,胡一峰,软黏土地基基坑开挖性状的研究,岩土工程学报,1988,10(3):13-22
    [4]陈永福,曹明葆,上海地区软土的卸荷-再加荷变形特性,岩土工程学报,Vol.12,No.2, 1990
    [5]刘国彬,软土卸荷变形特性的试验研究:博士学位论文,同济大学,1993
    [6]何世秀,韩高升,庄心善,基坑开挖卸荷土体变形的试验研究,岩土力学,2003,24 (1):17-20
    [7]潘林有,程玉梅,胡中雄,卸荷状态下粘性土强度特性试验研究,岩土力学,2001,22(4):490-493
    [8]潘林有,胡中雄,深基坑卸荷回弹问题研究,岩土工程学报,2002,24(1):101-104
    [9]李守德,张士乔,王保田,陆志发,天然地基土在基坑开挖侧向卸荷过程中的模量计算,土木工程学报,2003,35 (5):70-74
    [10]何世秀,韩高升,庄心善,基坑开挖卸荷土体变形的试验研究,岩土力学,2003,24 (1):17-20
    [11]张文慧,王保田,张福海,应力路径对基坑工程变形的影响,岩土力学,2004,25 (6):964-966
    [12]师旭超,汪稔,韩阳,卸荷作用下淤泥变形规律的试验研究,岩土力学,2004,25 (8):97-100
    [13]刘熙媛,阎澍旺,窦远明,顾杰,模拟基坑开挖过程的试验研究,岩土力学,2005,26 (1):97-100
    [14]颜志雄,郑刚,雷华,王沛,天津市区第一海相层粉质黏土卸荷变形特性的试验研究,岩土力学,2008,29(5):1237-1242
    [15] Terzaghi K.,Peck R. B.,Soil Mechanics in Engineering Practice,1967
    [16]Bjerrum M.D.,Eide O.,Stability of strutted excavation in clay,Geotechnique,1956,200:p.1-16
    [17]Duncun J.M.,Chang C.Y,Nonlinear analysis of stress and strain in soils,J. Soil Mechanics of Foundation,1970,637-659,ASCE
    [18]刘国彬,侯学渊.软土基坑隆起变形的残余应力分析法[J].地下工程与隧道,1996, Vol.2:2-7
    [19]刘国彬,黄院雄,侯学渊.基坑回弹的是用计算方法[J].土木工程学报,2000, Vol.33(4):61-67
    [20] Duncun J.M.,Chang C.Y.,Nonlinear analysis of stress and strain in soils,J. Soil Mechanics of Foundation,1970,637-659,ASCE
    [21] Finno R. J.,Harahap I. S.,Finite element analysis of HDR-4excavation,Journal of Geotechnical Engineering,1991,1590-1609
    [22] Chiou D. C.,Ou C. Y.,Three-dimensional finite element analysis of deep excavations,Journal of Geotechnical Engineering,1996,337-345
    [23]S. K. Bose,N. N. Som.,Parameter study of a braced cut by finite element method,Computer and Geotechnics,1998,Vol.22,No.2,91-107
    [24]俞建霖,基坑性状的三维数值分析研究,建筑结构学报,2002,23(4) :65-70
    [25]陆培毅,余建星,肖健,深基坑回弹的空间性状研究,天津大学学报学报,2006,39(3):301-305
    [26] Peck R. B.,Deep excavations and tunneling in soft ground,Proc 7th International conference on soil Mechanics and foundation engineering,Mexico City,,State of the Art Volume,1969, 266-290
    [27] Ward W. H.,Pender M. J.,Tunnelling in soft ground-General Report,Proc 10th International conference on soil Mechanics and foundation engineering,Stockholm,,1981,Vol.4,261-275
    [28] Broms B. B.,Bemmermark H.,Stability of clay at vertical openings,ASCE,Journal of Soil Mechanics and Foundation Engineering Division SM1,1967,Vol.93,pp.71-94
    [29]Aktinson J. H.,Mair, R. J.,Soil Mechanics aspects of soft ground tunnelling[J]. Ground Engineering, 1981, Vol.14, No.5, pp.20-28.
    [30]Taylor R. N.,Buried structures and underground excavations,Geotechnical Centrifuge technology,Blackie Academic and Professional,1995,93-117
    [31]Mair R. J. , Settlement effects of bored tunnels , Proc International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground,London,1996,43-53
    [32]尹旅超,朱振宏等译,日本隧道盾构新技术,华中理工大学出版社,1997,68-69
    [33]侯学渊,日本隧道盾构新技术,华中理工大学出版社,1997:68-69.
    [34]刘建航,侯学渊.盾构法隧道[D].中国铁道出版社,1991.
    [35]Attewell P. B.,Woodman J. P.,Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil,Ground Engineering,1982,5(8),pp.13-22
    [36]Attewell P. B.,Selby A. R.,Tunnelling in compressible soils: large ground movements and structural implications,Tunneling and Underground Technology,1989,4(4):481-487
    [37]Mair R. J.,Taylor R. N.,Theme lecture: bored tunnels in the urban environment,Proc 14th International Conference on Soil Mechanics and Foundation Engineering,Hamburg,1997,pp.13-22
    [38]Sagaseta C.,Analysis of undrained soil deformation due to ground loss,Geotechnique,1987,37(3):301-320
    [39]Sagaseta C.,Author’s reply to Schmit,Geotechnique,1988,38(4):647-649
    [40]Verruijt A.,Booker J. R.,Surface settlement due to deformation of a tunnel in an elastic halfplane,Geotechnique,1996,46(4):753-756
    [41]Logananthan N.,Poulos H. G.,Analytical prediction for tunneling-induced ground movement in clays,Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):846-856
    [42]Bobet A.,Analytical solution for shallow tunnels in saturated ground,Journal of Engineering Mechanica, 2001, 127(12):1258-1266
    [43]Bickel J. O.,Kuesel T. R.,Tunnel Engineering Handbook,Krieger Publishing Company,Malabar,Florida,1996
    [44]O’Rourke T. D.,Guidelines for Tunnel Lining Design,American Society of Civil Engineers, New York,New York 10017-2398,1984
    [45]Peck R. B.,Hendron A. J.,Mohraz B.,State of the art of soft-ground tunnelling,Proc 1st Rapid Excavation and Tunnelling Conf. AIME 1,1972,259-286
    [46]Duddeck H.,Erdmann J.,Structural design models for tunnels. Tunnelling’82(edited by Micheal J. Jones),The Institution of Mining and Metallurgy,1982,pp. 83-91
    [47]Schroeder F. C.,Potts D. M.,Addenbrooke T. I.,The influence of pile group loading on existing tunnel,Geotechnique,2004,54(6):351-362
    [48] Hu Z. F.,Yue Z. Q.,Zhou J.,Tham L. G.,Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels,Canadian Geotechnical Journal,2003,40 (5):933-948
    [49] Burford D.,Heave of tunnels beneath the Shell Centre, London, 1956-1986,Geotechnique,1986,38(1),155-157
    [50] Lo K. Y.,Ramsay J. A.,The effect of construction on existing subway tunnels-a case study from Toronto,Tunnels and Deep Space,1991,6(3),287-297
    [51] Marta D.,Tunnel complex unloaded by a deep excavation,Computers and Geotechnics,2001,28,469-493
    [52] Sharma J. S.,Hefny A. M.,Zhao J.,Chan C. W.,Effect of large excavation on deformation of adjacent MRT tunnels,Tunnelling and Underground Space Technology,2001,16,93-98
    [53]况龙川,李志敏,殷宗泽,地下施工影响地铁隧道的实测分析,清华大学学报(自然科学版,2000,40(s1):79-82
    [54]陈郁,基坑开挖引起下卧隧道隆起的研究分析,同济大学,硕士学位论文,2005
    [55]刘浩,地下建构筑物上方卸荷的影响研究,同济大学,硕士学位论文,2005
    [56]王卫东,吴江斌,翁其平,基坑开挖卸荷对地铁区间隧道影响的数值分析,岩土力学. 2004,25(S2),251-255
    [57]吉茂杰.地铁隧道上方基坑施工影响研究,硕士学位论文,同济大学,2000
    [58]青二春.地铁隧道上方大面积卸载下的变形及控制模式研究,硕士学位论文,同济大学,2007
    [59]杨挺,王心联,许琼鹤,王义,箱形隧道基坑下已建地铁盾构隧道隆起位移的控制分析与设计,岩土力学,2005,26(S),187-192
    [60]况龙川.深基坑施工对地铁隧道的影响.岩土工程学报,2000,22(3), 284-287.
    [61]Zheng Gang,Wei Shao-wei,Numerical analyses of influence of overlying pit excavation on existing tunnels,Journal of Central South University of Technology,2008,15(s2):069-075
    [62]刘国彬,黄院雄,侯学渊,基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践,岩石力学与工程学报,2001,20(2):202-207
    [63]吉茂杰,刘国彬,开挖卸荷引起地铁隧道位移预测方法,同济大学学报,2001,29(5):531-535
    [64]David M. W.,Soil behaviour and Critical State Soil Mechanics,British:Cambridge University Press,1990
    [65]Hibbit,Karlsson,Sorensen Inc. ABAQUS User’s Manual,version 6.5,2004
    [66]Li X. S.,Theoretical soil mechanics,Lecture notes,1997
    [67]Whittle A. J.,Evaluation of a constitutive model or overconsolidated clays,Geotechnique,1997,43(2):289-313
    [68]Kaliakin V. N.,Dafalias Y. F.,Theoretical aspects of the elastoplastic-visco-plastic bounding surface model for cohesive soils,Soils and Foundations,1990,30(3):11-24
    [69]Clough G. W.,Mana A. I.,Lessons learned in finite element analysis of temporary excavation in soft clay,Numerical method in geomechanics,edited by C. S. Desai,Blacksburg,1976,p496-510
    [70]Gordon T. C. K., Ou C. Y., Juang C. H., Modelling of small-strain behavior of Taipei clays for finite element analysis of braced excavation,J. Computers and Geotechnics,2009,Vol.36,Issues 1-2,p.304-319
    [71]Wroth C. P.,In situ measurement of initial stresses and deformation characteristics,Proc., Specialty Conf. on In Situ Measurement of Soil Properties,Vol. 2,Raleigh, N.C.,ASCE,Reston, Va.,1975,p181-230
    [72] Youssef M. A. H.,Analysis of deep excavations in clay,PhD. Thesis,Department of Civil Engineering,Massachusetts Institute of Technology,USA,1992
    [73]Hansmire W. H.,Example analysis of circular tunnel lining,Tunnelling in Soil and Rock,Proceedings of teo sessions at Geotech’84 (edited by K. Y. Lo),Atlanta,Georgia,1984,p30-45
    [74]Clough G. W.,Reed M. W.,Measured behavior of braced wall in very soft clay,J. Geotech. Eng. Div. ASCE,1984,110(1):1-19
    [75]Finno R. J.,Atmatzidis D. K.,Perkins S. B.,Observed performance of a deep excavation in clay,J. Geotech. Eng. Div. ASCE,1989,115,1045-1064
    [76]Ou C. Y.,Chiou D. C.,Wu T. S.,Three-dimensional finite element analysis of deep excavation,Journal of geotechnical engineering,ASCE,1996,122(5):337-345
    [77]Schofield A. N.,Cambridge geotechnical centrifuge operations,Geotechnique,1989,30(3):227-268
    [78]Fuglsang L. D.,Oveson N. K.,The Application of the theory of modelling to Centrifuge Studies,Centrifuge in Soil Mechanics,1988
    [79]Ng C.W.W.,Van Laak P.,Tang W.H.,Li, X.S, Zhang,L.M,The Hong Kong Geotechnical Centrifuge,Proc. 3rd Int. Conf. Soft Soil Engineering,Dec.,HongKong,2001,225-230
    [80]Tatsuoka F.,Goto S.,Sakamoto M.,Effect of some factors and strength and deformation characteristics of sand at low pressure,Soils and Foundations,1986,26(1),105-114
    [81]Tatsuoka F.,Shibuya S.,Deformation properties of soils and rocks from field and laboratory test,Keynote Lecture Proc. IX ARCSMFE,Bangkok,1991
    [82]Ovesen N. K.,Discussion on the use of physical models in design,Proc. 7th European Conference on Soil Mechanics and Foundation Engineering,Brighton,1991,Vol.4,319-323
    [83]Bolton M. D.,Gui M. W.,Philips, R.,Review of miniature soil probes for model tests,Proc. 11th Southeast Asian Geotechnical Conference,Singapore,1993,85-90
    [84]徐光明,章为民,蔡正银,离心模拟关键技术试验研究,南京水利科学研究院,1995
    [85]Taylor R. N.,Buried structures and underground excavations,Geotechnical Centrifuge technology,edited Taylor R. N.,Blackie Academic and Professional,1995, pp.93-117
    [86] Weiler W. A.,Kulhawy F. H.,Factors affecting stress cell measurement in soil, Journal of Geotechnical Engineering Division,ASCE,1982,Vol.108,GT.12,pp.1529-1548
    [87] Ng C. W. W.,Springman S. M.,Norrish A. R. M,Centrifuge modelling of spread-base integral bridge abutments,Journal of Geotechnical and Geoenvironmental Engineering,1998,Vol. 124,No.5,pp. 376-388
    [88] Jacobsz S. W.,The effects of tunnelling on piled foundations,PhD dissertation, The University of Cambridge,2002
    [89] Bolton M. D.,The strength and dilatancy of sands,Geotechnique,1986,36(1):65-78
    [90] Jaky J.,The coeffient of earth pressure at rest,Journal of the Union of Hungarian Engineers and Architects,1944,p. 335-338 (in Hungarian)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700