用户名: 密码: 验证码:
饱和黄土动力本构模型及其在桩—土—结构体系地震动力相互作用中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础作为一种历史悠久且在当今仍被广泛使用的基础形式,在抗震方面具有良好的性能。但在近几次的大地震中,均发现桩基础出现不同程度、不同形式的破坏现象。地震作用下,桩-土-结构体系动力相互作用是当前岩土工程领域的一个研究热点与难点。本文考虑到我国广大黄土地区当前的实际情况,针对该课题研究中常常忽视土体的真实动力力学特性的现象,结合所构建的结构性饱和黄土动力本构模型针对饱和黄土场地以及桩-饱和黄土-结构体系进行了一系列有限元-无限元耦合地震反应分析。论文的主要内容以及取得的主要成果如下:
     1.基于饱和黄土的不排水三轴剪切试验,定义了两类超固结状态,分析总结了围压、超固结比、偏压固结比对饱和黄土不排水变形模量和不排水强度的影响规律;引入应力分担率来考察饱和黄土的结构性,结合试验研究了各种因素对其形态的影响;
     2.基于室内动三轴试验,研究了五种因素,即围压、超固结比、偏压固结比、动剪应力比、加载频率,对饱和黄土动力特性,包括变形模量以及不排水强度退化规律、超孔隙水压力发展规律的影响,详细分析了各种现象规律产生的原因;
     3.建立了饱和黄土的基本应力应变关系式;导出了K_0正常固结饱和黄土不排水强度的理论表达式,并对其进行了考虑土颗粒之间粘结强度的修正;给出了超固结状态与正常固结状态之间不排水强度的变化关系式;考虑拉压不同性质以及中主应力影响对其进行了修正;引入似超固结的概念,建立了变形模量、不排水强度随似超固结比的变化规律;结合试验数据,探讨了结构变化对变形模量以及不排水强度的影响,给出了相应的拟合公式;基于对孔压增长模型的总结以及实验结果,提出了适合于本次研究所用饱和黄土在不排水动力加载下超孔隙水压力的增长模型;
     4.给出了饱和黄土动力本构模型建立的步骤,并结合试验数据对其参数的确定进行了研究;引入结构性发挥系数,提出了相应的计算模式;建立了考虑结构性的饱和黄土动荷载作用下不排水变形模量、强度的退化规律关系式,最终构建了考虑饱和黄土结构性的动力本构模型;基于ABAQUS二次开发平台对其实现了程序开发,并进行了相应的验证;
     5.基于所建立的结构性饱和黄土的动力本构模型进行了场地、端承桩-土-结构体系、摩擦桩-土-结构体系的地震反应有限元分析,建立了相应的有限元-无限元相耦合的模型;研究了土层厚度变化、超孔隙水压力、土体结构性、地下水位变化,表面硬土层厚度、桩长细比、桩土界面力学行为、地震输入方式等因素对场地、桩-土-结构体系地震反应特性的影响,总结了相应的规律,给工程实践提出了有意义的指导与建议。
The pile foundation has a long history and still be widely used nowadays, it exhibits good seismic performance. But in the large earthquakes lately, the destroies of pile foundations were found to be commonly in different degrees and styles. The dynamic interaction of pile-soil-structure system under earthquake is a popular study in Geotechnical Engineering currently, and it's also a very difficult job. In this paper, the author pay attention to the loess area of our country, and then, on the basis of the established structral dynamic model of saturated loess, the earthquake responses of saturated loess field and pile-saturated loess-structure system are analyzed by finite-infinite element coupling method. The main research and results are as follows.
     1. Two different kinds of over-consolidated ratio are defined. Under un-drained tri-axial shearing tests of saturated loess, the effects of some factors, such as consolidated pressure, over-consolidated ratio and anisotropic consolidated ratio, on the un-drained deformation modulus and un-drained strength of saturated loess are analyzed. The stress share ratio is introduced to study the structure of saturated loess, it's variational regulations are studied combine with experiments.
     2. Under un-drained dynamic tri-axial shearing tests of saturated loess, the effects of five factors, which includes consolidated pressure, over-consolidated ratio, anisotropic consolidated ratio, dynamic shearing stress ration and loading frequency, on the degradation of un-drained deformation modulus and un-drained strength of saturated loess are studied, the regulation of super-pore pressure's development are also analyzed.
     3. The basic stress-stain relations is established to saturated loess. The un-drainied strength of K_0 normal consolidated saturated loess is deduced, and some modified is did to it considering the bond stress of soil grains. The variation relationship is put forward which between the un-drained strength of over-consolidated state to the ones of normal consolidated state, and some modified is did to consider the effects of intermediate principal stress, the different between tension and compression. The quasi-over-consolidated ratio is introduced to consider the effect of super pore pressure, and the formulation is applied to consider the influence of shearing strain. The degenerated formulation of saturated loess' deformation modulus and un-drained strength are deduced at last. The models and the tests results of the super-pore pressure development are summarized, and then the super-pore pressure development model is gave which was fit for the loess used in this tests.
     4. The established steps of saturated loess' dynamic model are gave, and some parameters included are studied combine with tests datum. The structure exertion coefficient is introduced and a calculated model is gave. The degradation formulations of saturated loess' un-drained deformation modulus and un-drained strength are deduced which consider the soil's structure. The structural dynamic model of saturated soil is build up and implimented using Fortran language, relevant validation is did through ABAQUS finite element program at last.
     5. On the basis of the established saturated loess' structral dynamic model, the earthquake responses of the loess field, end bearing pile-loess-structure and friction pile-loess-structure systems are analyzed by finite-infinite element coupling method. The effects of some factors, which include the change of soil' thickness, super-pore pressure, soil' structure, the change of groundwater level, the thickness of hard soil on the surface, the slenderness ration of pile, the mechanical characteristic of interface between pile and soil, the import mode of earthquake, on the earthquake responses of the loess field, pile-loess-structure systems, and some useful suggestions are gave to engineering practice.
引文
[1]贺斌.地震作用下海洋环境码头桩-土-动力相互作用分析.武汉大学博士论文,2004.05.
    [2]韦晓.桩-土-桥梁结构相互作用振动台试验与理论研究.同济大学博士论文,1999.10.
    [3]Tara Crystal Hutchinson.Characterization and evaluation of the seismic performance of pile-supported bridge structures.Ph.D.The University of California,2001.
    [4]伍小平.砂土-桩-结构相互作用振动台试验研究.同济大学博士论文,.2002.09.
    [5]肖晓春.地震作用下士-桩-结构动力相互作用的数值模拟.大连理工大学博士学位论文,2003.05.
    [6]胡聿贤.地展工程学.北京:地震出版社.1988.
    [7]李小军等.不同类别场地地震动参数的计算分析.地震工程与工程振动,2001,Vol.21,No.1:29-36.
    [8]高峰等.场地地震反应分析.岩石力学与工程学报,2003,Vol.22,suppl.2:2789-2793.
    [9]李刚等.SH波激励下上覆粘弹性场地土的振动分析.中南公路工程,2007,Vol.32,No.2:91-94.
    [10]尤红兵等.含饱和土的层状场地的动力响应.岩土力学,2008,Vol.29,No.3:679-684.
    [11]齐文浩,薄景山.土层地震反应等效线性化方法综述.世界地震工程,2007,Vol.23,No.4:221-226.
    [12][12]陈正汉,李刚,王权民,史宏彦,廖河山,关自强.厦门典型地基土的地震反应分析与评价.岩石力学与工程学报,2005,Vol.24,No.21:3864-3875.
    [13]景立平,卓旭炀,王祥建.复杂介质对地震波传播的影响.岩土工程学报,2005,Vol.27,No.4:393-397.
    [14]沈建奇,金先龙,陈向东,沈建文.岛型工程场地在地震波荷载下的动力响应分析.系统仿真学报,2008,Vol.20,No.1:173-177.
    [15]王刚,张建民.边界面模型在MARC中的开发实现与应用.岩土力学,2006,Vol.27,No.9:1535-1540.
    [16]庄海洋,陈国兴,梁艳仙,徐明.土体动非线性黏弹性模型及其ABAQUS软件的实现.岩土力学,2007,Vol.28,No.3:436-442.
    [17]李山有,马强,武东坡,杨柏坡.断层场地地震反应特征研究地震工程与工程振动,2003,Vol.23,No.5:32-37.
    [18]金星,孔戈,丁海平.水平成层场地地震反应非线性分析.地震工程与工程振动,2004,Vol.24,No.3:38-43.
    [19]冯启民,邵广彪.小坡度海底土层地震液化诱发滑移分析方法.岩土力学,2005,Vol.26,S upp.:141-145.
    [20]John ECassidy,Garry C.Rogers.Seismic site response in the greater Vancouver,British Columbia,area:spectral ratios from moderate earthquakes.Canada Geotechnique,1999,Vol.36,No.2:195-209.
    [21]石玉成等.黄土场地覆盖层厚度和地形条件对地震动放大效应的影响.西北地震学报,1999,.June,Vol.21,No.2:203-208.
    [22]Fenton G A,Vanmarcke E H.Spatial variation in liquefaction risk assessment.In Proceedings of the Geotachnical Engineering Congress.Boulder,Colo.,Geotechnical Special Publications,1991,Vol.1,No.27:594-607.
    [23]李杰,廖松涛.考虑岩土介质随机特性的工程场地地震动随机场分析.岩土工程学报,2002,Vol.24,No.6: 685-689.
    [24]Tamer Eikateb,Rick Chalaturnyk,and Peter K.Robertson.Simplified geostatistical analysis of earthquake induced ground response at the Wildlife Site California,U.S.A.Canada Geotechnique,2002,Vol.40,No.1:16-34.
    [25]黄玉龙,郭讯,袁一凡,周锦添.软泥夹层对香港软土场地地震反应的影响.自然灾害学报,2000,Vol.9,No.1:109-1 16.
    [26]薄景山等.土层结构对地表加速度峰值的影响.地震工程与工程振动,2003,Jun.,Vol.23,No.3:35-40.
    [27]薄景山等.场地条件对地震动影响研究的若干进展.世界地震工程,2003,Jun.,Vol.19,No.2:11-15.
    [28]袁丽侠.场地土对地震波的放大效应.世界地震工程,2003,Mar.,Vol.19,No.1:113-1 20.
    [29]陈继华,陈国兴,史国龙.深厚软弱场地地震反应特性研究.防灾减灾工程学报,2004,Vol.24,No.2:131-138.
    [30]许建聪等.深厚软土地层地震破坏的作用机理研究.岩石力学与工程学报,2005,Jan.,Vol.24,No.2:313-320.
    [31]庄海洋,刘学珠,陈国兴.互层土的动参数试验研究及其地震反应分析.岩土力学,2005,Vol.26,No.9:1495-1498.
    [32]尚守平等.剪切模量沿深度按指数规律增大的场地士的地震放大效应。工程力学,2005,Oct.,Vol.22,No.5:153-157.
    [33]董娣等.集集地震中场地条件对地震动特性的影响.地震地质,2006,Mar.,Vol.28,No.1:22-36.
    [34]楼梦麟等.深覆盖土层地震反应分析中的若干问题.同济大学学报(自然科学版),2006,Ape,Vol.34,No.4:427-432.
    [35]赵艳等.场地条件对地震动持时的影响.震灾防御技术,2007,Dec.,Vol.2,No.4:417-424.
    [36]刘月红,刘涛,宋金龙.土层性质对入射平面P波场地放大效应的影响.山东建筑大学学报,2007,Vol.22,No.3:198-202.
    [37]李培振.结构-地基动力相互作用体系的振动台试验及计算模拟分析.同济大学博士学位论文,2002.09.
    [38]肖晓春,林皋,迟世春.桩-土-结构动力相互作用的分析模型与方法.世界地震工程,2002,Vol.18,No.4:123-130.
    [39]孔德森,栾茂田,杨庆.桩土相互作用分析中的动力Wmkler模型研究评述.世界地震工程,2005,Vol.21,No.1:12-17.
    [40]尚守平,卢华喜,王海东,余俊,刘方成.大比例模型结构-桩-土动力相互作用试验研究与理论分析.工程力学,2006,Vol.23Supp.2:155-166.
    [41]T.Iiyas,C.F.Leung,Y.K.Chow,S.S.Budi.Centrifuge model study of laterally loaded pile groups in clay.Journal of Geotechnical and Geoenvironmental Engineering,2004,Vol.130,No.3:274-283.
    [42]Su Song.Centrifuge investigation on responses of sand deposit and sand-pile system under multi-directional earthquake loading.Ph.D.The Hong Kong University of Science and Technology,January 2005.
    [43]Dongdong Chang,Ross W.Boulanger,Bruce L.Kutter,Scott J.Brandenberg.Experimental observations of inertial and lateral spreading loads on pile groups during earthquakes.Earthquake Engineering and Soil Dynamics,2005,GSP 133:1-15.
    [44]Scott J.Brandenberg,Ross W.Boulanger,Bruce L.Kutter,Dongdong Chang.Obervations and analysis of pile groups in liquefied and laterally spreading ground in centrifuge tests.Seismic Performances and Simulation of Pile Foundations,ASCE 2006,March,161-172.
    [45]苏栋,李湘崧.可液化土中单桩地震响应的离心机试验研究.岩土工程学报,2006,Vol.28,No.4:423-427.
    [46]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验.岩士工程学报,2007,Vol.29,No.9:1320-1323.
    [47]楼梦麟,王文剑,马恒春,朱彤.土-桩-结构相互作用体系的振动台模型试验.同济大学学报,2001,Vol.29,No.7:763-768.
    [48]楼梦麟,宗刚,牛伟星,陈根达.土-桩-钢结构相互作用体系的振动台试验研究.地震工程与工程振动,2006,Vol.26,No.5:226-230.
    [49]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展.地震工程与工程振动,2002,Vol.22,No.4:53-59.
    [50]凌贤长,王东升,王志强,王成,王臣.液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究.士术工程学报,2004,Vol.37,No.11:67-72.
    [51]凌贤长,郭明珠,王东升,王臣,王丽霞,王志强.液化场地桩基桥梁震害响应大型振动台模拟试验研究.岩土力等,2006,Vol.27,No.1:7-10.
    [52]凌贤长,唐亮,于恩庆.可液化场地地震振动孔隙水压力增长研究的大型振动台试验研究及其数值模拟.岩石力学与工程学报,2006,Vol.25,Supp.2:3998-4003.
    [53]王建华,冯士伦.液化土层中桩基水平承载特性分析.岩土力学,2005,Vol.26,No.10:1597-1601.
    [54]冯士伦,王建华,郭金童.液化土层中桩基抗震性能研究.岩石力学与工程学报,2005,Vol.24,No.8:1402-1406.
    [55]冯士伦,王建华.海洋平台桩基的振动台模型试验研究.岩石力学与工[程学报,2006,Vol.25,Supp.1:3229-3234.
    [56]武思宇,宋二祥,刘华北,邵晓晖.刚性桩复合地基的振动台试验研究.岩土工程学报,2005,Vol.27,No.11:1332-1337.
    [57]武思宇,宋二祥,刘华北,王宗纲.刚性桩复合地基抗震性能的振动台试验研究.岩土力学,2007,Vol.28,No.1:77-82.
    [58]钱德玲,赵元一,王东坡.桩-土-结构体系动力相互作用的试验研究.上海交通大学学报,2005,Vol.39,No.11:1856-1861.
    [59]黄春霞,张鸿儒,隋志龙,靳建军.饱和砂土地基液化特性振动台试验研究.岩土工程学报,2006,Vol.28,No.12:2098-2103.
    [60]尚守平,姚菲,刘可.软土-铰接桩体系隔震性能的振动台试验研究.铁道科学与工程学报,2006,Vol.3,No.6:1 9-24.
    [61]李雨润,袁晓铭,曹振中.液化土中桩基础动力反应试验研究.地震工程与工程振动,2006,Vol.26,No.3:257-260.
    [62]Reissner E..Stationare axialsymmetrische dutch eine schuttelnde massee rregte schwingungen eines homogenen elstischen halbraumes,Ingenieur-Arch in,7(6),1936,381-396.
    [63]Seed H.B.,et al..Soil-structure interaction analysis for seismic response,ASCE,101 (5),1975,439-457.
    [64]Fzrzad Abedzadeh,Ronald Y.S.Pak.Contimuum Mechanics of lateral soil-pile interaction.Journal of Engineering Mechanics,Vol.130,No.11:1309-1318.
    [65]Novak M.Dynamic stiffness and damping of pile.Canadian Geotechnical Jounal,1974,11(4):574-598.
    [66]Novak M.Resistance of soil to a horizontally vibrating pile.Earthquake Engineering and Structure Dynamics,1977,5(2):249 -261.
    [67]Novak M.Soil-pile interaction in horizontal vibration.Earthquake Engineering and Structure Dynamics,1977,5 (2):263-281.
    [68]Novak M,Han Y C.Impedances of soil layer with boundary zone.Journal of Geotechnical Engineering,1990,116(6):1008-1015.
    [69]王海东,尚守平.瑞利波作用下考虑桩土相互作用的单桩竖向动力响应计算分析.工程力学,2006,Vol.23,No.8:74-78.
    [70]王海东,费模杰,尚守平,卢华喜.考虑径向非均质的层状地基中摩擦桩动力阻抗研究.湖南大学学报(自然科学版),2006,Vol.33,No.4:6-1 1.
    [71]胡昌斌,黄晓明.成层粘弹性土中桩土耦合纵向振动时域响应研究.地震工程与工程振动,2006,Vol.26,No.4:205-211.
    [72]胡昌斌,张涛.桩与滞回阻尼土相互作用时桩基扭转振动时域响应分析.岩石力学与工程学报,2006,Vol.25,Supp.1:3190-3197.
    [73]尚守平,余俊,王海东,任慧.饱和土中桩水平振动分析.岩土工程学报,2007,Vol.29,No.11:1696-1702.
    [74]陆建飞.频域内半空间饱和土中水平受荷桩的动力分析.岩石力学与工程学报,2002,Vol.21,No.4:577-581.
    [75]周香莲,周光明,王建华.水平简谐荷载作用下饱和土中群桩的动力反应.岩石力学与工程学报,2005,Vol.24,No.8:1433-1438.
    [76]Nogami T,Konagai K and Otani J.Nonlinear time domain numerical model for pile group under transient dynamic forces.Proceeding of 2~(nd) International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.St Louis,1991,3:881-888.
    [77]Mc Clelland B,Focht J A,Jr.Soil modulus for laterally loaded piles.Transactions,ASCE,1958,123(2954):1049-1086.
    [78]孔德森,栾茂田,杨庆.桩土相互作用分析中的动力Winkler模型研究评述.世界地震工程,2005, Vol.21,No.1:12-17.
    [79]刘忠,沈蒲生,陈铖.单桩横向非线性动力响应的简化分析模型.工程力学,2004,Vol.21,No.5:46-51.
    [80]刘忠,沈蒲生,陈铖,李亚丹.单桩横向非线性运动地震响应简化分析.应用力学学报,2006,Vol.23, No.4:673-677.
    [81]栾茂田,孔德森,杨庆,韩丽娟.层状土中单桩竖向简谐动力响应的简化分析万法.岩土力学,2005,Vol.26,No.3:375-380.
    [82]孔德森,栾茂田,凌贤长,杜政.单桩水平动力阻抗计算模型研究.哈尔滨工业大学学报,2007,Vol.39,No.8:1220-1224.
    [83]熊辉,邹银生.层状土中考虑频域内轴向力分担的群桩水平动力阻抗.计算力学学报,2004,Vol.21.No.6:757-763.
    [84]熊辉,尚守平.轴、横向力作用下土-群桩动力效应简化分析.岩土力学,2006,Vol.27,No.12:2163-2168.
    [85]吴志明,黄茂松.层状地基中群桩水平振动.岩土力学,2004,Vol.25,Supp.2:418-422.
    [86]黄茂松,吴志明,任青.层状地基中群桩的水平振动特性.岩土工程学报,2007,Vol.29,No.1:32-38.
    [87]吴志明,黄茂松,任青.层状地基中群桩竖向振动及动内力.同济大学学报(自然科学版),2007,Vol.35,No.1:21-26.
    [88]梁青槐.土-结构动力相互作用数值分析方法的评述.北方交通大学学报,l 997,Vol.21,No.6:690-694.
    [89]陈波.土-桩基-结构动力相互作用体系的模拟及分析.同济大学博士论文,2002.07.
    [90]王满生.考虑土-结构相互作用体系的参数识别和地震反应分析.中国地震局地球物理研究所,2005.05.
    [91]卢华喜,梁平英,尚守平.成层地基-桩基-结构动力相互作用体系的计算分析.岩土工程学报,2007,Vol.29,No.5:705-711.
    [92]B.K.Maheshwari,K.Z.Truman,P.L.Gould,M.H.E1 Naggar.Three-dimensional nonlinear seismic analysis of single piles using finite element model:effects of plasticity of soil.International Journal of Geomechanics,2005,Vol.5,No.1:35-44.
    [93]刘立平,李英民,韩军.桩-土-结构相互作用弹塑性地震反应分析.世界地震工程,2004,Vol.20,No.3:160-165.
    [94]Gogot Setyo Budi.Behavior of single piles embedded in elasto-plastic soil under static and dynamic lateral loading.Ph.D.Illinois Institute of Technology.July 2000.
    [95]袁凡凡,栾茂田,闫澍旺.筏板-桩-土相互作用的三维弹塑性有限元分析.岩石力学与工程学报,2005,Vol.24,No.18:3332-3336.
    [96]李亚丹,刘忠,邓凤桥,陶静.水平地震作用下单桩横向非线性动力响应的三维有限元数值模拟.公路工程,2007,Vol.32,No.4:33-36.
    [97]黄雨,八嶋厚,张锋.液化场地桩-土-结构动力相互作用的有限元分析.岩土工程学报,2005,Vol.27,No.6:646-651.
    [98]党进谦,李靖.非饱和黄土的强度特征.岩土工程学报,1997,Vol.19,No.2:56-61.
    [99]陈正汗.重塑非饱和黄土的变形、强度、屈服和水量变化特性.岩土工程学报,1999,Vol.21,No.1:82-90.
    [100]胡再强,沈珠江,谢定义.非饱和黄土的结构性研究.岩石力学与工程学报,2000,Vol.19,No.6:775-779.
    [101]沈珠江,胡再强.黄土的二元介质模型.水利学报,2003,No.7:1-6.
    [102]骆亚生.非饱和黄土在动、静复杂应力条件下的结构变化特性及其结构性本构关系研究.西安理工大学博士学位论文,2003.
    [103]邢义川,谢定义,汪小刚,李振.非饱和黄土的三维有效应力.岩土工程学报,2003,Vol.25,No.3:288-293.
    [104]邢义川,谢定义,李振.非饱和黄土的破坏条件.工程力学,2004,Vol.21,No.2:167-172.
    [105]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究.岩土工程学报,2004,Vol.26,No.4:531-536.
    [106]陈存礼,高鹏,何军芳.考虑结构性影响的原状黄土等效线性模型.岩土工程学报,2007,Vol.29,No.9:1330-1336.
    [107]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究.岩土力学,2006,Vol.27,No.11:1891-1896.
    [108]陈存礼,高鹏,唐杰.三轴应力状态下不同湿度原状黄土的结构性定量化参数.岩石力学与工程学报,2006,Vol.25,No.11:2313-2319.
    [109]张茂花,谢永利,刘保健.增湿时黄土的抗剪强度特性分析.岩土力学,2006,Vol.27,No.7:1195-1200.
    [110]陈素维,王发荣,单景雷.关中地区饱和黄土工程地质特性.西安工程学院学报,2000,Vol.22,No.4:51-53.
    [111]王兰民,刘红玫,李兰,孙崇绍.饱和黄土液化机理与特性的试验研究.岩土工程学报,2000,Vol.22,No.1:89-94.
    [112]何开明,王兰民,曾国熙.饱和黄土地基的液化数值分析.工业建筑,2001,Vol.31,No.7:29.-32.
    [113]刘红玫,王兰民.饱和黄土液化的孔隙微结构特征.西北地震学报,2002,Vol.24,No.2:135-139.
    [114]佘跃心,刘汉龙,高玉峰.饱和黄土孔压增长模式与液化机理试验研究.岩土力学,2002,Vol.23,No.4:395-399.
    [115]杨振茂,赵成刚,王兰民等.饱和黄土液化及其理论研究现状.土木工程学报,2003,Vol.36,No.11:38-43.
    [116]杨振茂,赵成刚,王兰民等.饱和黄土的液化特性与稳态强度.岩石力学与工程学报,2004,Vol.23,No.22:3853-3860.
    [117]杨振茂,赵成刚,王兰民.饱和黄土的液化的试验研究.岩石力学与工程学报,2005,Vol.24,No.5:864-871.
    [118]吴燕开,陈红伟,张志征.饱和黄土的性质与非饱和黄土的流变模型.岩土力学,2004,Vol.25,No.7:1143-1146.
    [119]周健,白冰,徐建平.土动力学理论与计算.北京:中国建筑工业出版社,2001.
    [120]Seed H B,Idriss I M.Soil moduli and damping factors for dynamic response analyses.Report No.EERC70-10,Earthquake Engineering Research Center,University of California,Berkeley,1970.
    [121]Hardin B O,Dmevich V P.Shear modulus and damping in soil measurement and parameter effects.Joumal of the Soil Mechanics and Foundation Engineering Division,ASCE,1972,98(6):603-624.
    [122]Martin G R,Finn W D L and Seed H B.Fundamentals of liquefaction under cyclic loading.JGED,ASCE,1975,101(GT5).
    [123]沈珠江.一个计算砂土液化变形的等价粘弹性模型.第四届全国土力学及基础工程学术会议论文集.北京:建筑工业出版社,1986.
    [124]Pyke R M.Nonlinear soil models for irregular cyclic loading.Jr.ASCE,1979,105(GT6).
    [125]王志良,王余庆,韩靖宇.不规则循环荷载作用下的粘弹塑性模型.岩土工程学报,1980,2(3).
    [126]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型.岩土工程学报,1983,5(1).
    [127]李小军.土应力应变关系的粘弹性模型.地震工程与工程振动,1989,Vol.9,No.3.
    [128]李小军.非线性场地地震反应分析方法研究.哈尔滨:国家地震局工程力学研究所博士学位论文,1993.
    [129]栾茂田.土动力非线性分析中的变参数Ramberg-Osgood本构模型.地震工程与工程振动,1992,Vol.12, No.2.
    [130]Bardet J P.Scaled memory model for cyclic behavior of soils.Journal of Geotechnical Engineering,1995,Vol.121 ,No.11:766-775.
    [131]张克绪,李明宰,王治琨.基于非曼辛准则的土动弹塑性模型.地震工程与工程振动,1997,Vol.17,No.2:74-81.
    [132]Puzrin A M,Shiran A.Effects of the constitutive relationship on seismic response of soils.Part 1:Constitutive modeling of cyclic behavior of soils.Soil Dynamics and Earthquake Engineering,2000,19(5):305-318.
    [133]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展.河海大学学报,1999,Vol.27,No.1:6-15.
    [134]李亮,赵成刚.饱和土体动力本构模型研究进展.世界地震工程,2004,Vol.20,No.1:138-148.
    [135]陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构模型及其参数研究.岩土工程学报,2005,Vol.27,No.8:860-864.
    [1 36]尚守平,刘方成,王海东.基于阻尼的地震循环荷载作用下黏土非线性模型.土木工程学报,2007,40(3):74-82.
    [137]迟世春,郭晓霞,杨峻,林皋.土的动力Hardin-Drnevich模型小应变特性及其阀值应变研究.岩土工程学报,2008,Vol.30,No.2:243-249.
    [138]Desai C D,Gallagher R H.Mechanics of Engineering.London,John Willey and Son,1984.
    [139]Wathugala G W,Desai C S.Constitutive model for cyclic behavior of clays Ⅰ:Theory.Journal of Geotechnical Engineering,1993,119(4):714-729.
    [140]熊玉春,房营光,徐国辉.软黏土的动力损伤模型及其应用.岩石力学与工程学报,2006,Vol.25,Supp.1:3152-3156.
    [141]Prevost J H.Mathematical modeling of monotonic and cyclic undrained clay behavior.International Numerial Geomechanics,1977,1 (2):195-216.
    [142]Mroz Z.On the description of anisotropic work hardening.Journal of the Mechanics and Physics of Solids,1967,15(3):163-175.
    [143]周建.循环荷载作用下饱和软粘土特性研究.浙江大学博士学位论文,1998.
    [144]周建.饱和软粘土循环变形的弹塑性研究.岩土工程学报,2000,Vol.22,No.4:499-502.
    [145]刘汉龙,丰土根,高玉峰,费康.砂土多机构边界面塑性模型及其试验验证.岩土力学,2003,Vol.24,No.5:696-700.
    [146]李涛,H.Meissner.循环荷载作用下饱和黏性土的弹塑性双面模型.土木工程学报,2006,39(1):92-97.
    [147]杨超,杨林德,季倩倩.软黏土在循环荷载作用下动力本构模型的研究.岩土力学,2006,Vol.27,No.4:609-614.
    [148]庄海洋,陈国兴,朱定华.土体动力粘塑性记忆型嵌套面本构模型及其验证.岩土工程学报,2006,Vol.28,No.10:1267-1272.
    [149]王兰民等.黄土动力学.地震出版社,2003.
    [150]柴友华,崔玉军,卢应发.循环荷载下黄土特性模拟.岩石力学与工程学报,2005,Vol.24,No.23:4272-4281.
    [151]胡再强,沈珠江,谢定义.结构生黄土的变形特性.岩石力学与工程学报,2004,Vol.23,No.24:4142-4146.
    [152]胡再强,沈珠江,谢定义.结构生黄土的本构模型.岩石力学与工程学报,2005,Vol.24,No.3:565-569.
    [153]刘公社,巫志辉.动荷载下饱和黄土的孔压演化规律及其在地基动力分析中的应用.工业建筑,1 994(3):40-44.
    [154]谢定义,齐吉琳,朱元林.土的结构性参数及其变形一强度的关系.水利学报,1999,No.10:1-6.
    [155]骆亚生,谢定义.复杂应力条件下土的结构性本构关系.四川大学学报(工程科学版),2005,Vol.37,No.5:14-18.
    [156]刘恩龙,沈珠江.结构性土强度准则探讨.工程力学,2007,Vol.24,No.2:50-55.
    [157]刘恩龙,沈珠江.结构性土强度准则探讨.工程力学,2007,Vol.24,No.2:50-55.
    [158]胡再强,谢定义,沈珠江.黄土稳定孔隙比原理的试验研究.水利学报,2002,No.2:97-100.
    [159]李广信.高等土力学.北京:清华大学出版社,2004.
    [160]Ohta H,Nishihara A.Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions.Soils and Foundations, 1985,25(2):78-86.
    [161]姜洪伟,赵锡宏.K0固结各向异性不排水剪强度研究.岩土力学,1997,18(2):1-7.
    [162]王立忠,叶盛华,沈恺伦,胡亚元.K0固结软土不排水抗剪强度.岩土工程学报,2006,28(8):970-977.
    [163]Hvorslev M J.Physical components of the shear strength of saturated clays,Research Conference on Shear Strength of Cohesive Soils.ASCE,GT11,1980.
    [164]魏汝龙.正常压密粘性土在开挖卸荷后的不排水抗剪强度.水利水运科学研究,1984,No.4:39-43.
    [165]Paul W.Mayne.Cam-clay predictions of undrained strength.Journal of the Geotechnical Engineering Division,ASCE,1980,GT1 1:1219-1442.
    [166]Yasuhara K.,Yamanouchi T.,Aoto H.,and Hirao K.Approximate prediction of soil deformation under repeated loading.Soils and Foundation,1983,23(2):13-25.
    [167]Yasuhara K.and Andersen K.H.effect of cyclic loading-drainage on recompression of oversonsolidated clay.Proceeding 11~(th) ICSMFE,Vol.1,Paris,France,1989:485-488.
    [168]Yasuhara K and Ochiai H.Interrelationship of undrained strength between direct shear and triaxial tests.Proceeding Symp.Triaxial Testing Methods,JSSMFE,Tokyo,Japan,1990:223-230.
    [169]方开泽.土的破坏准则.华东水利学院学报,1986,14(2):70-81.
    [170]殷宗泽,赵航.中主应力对土体本构关系的影响.河海大学学报,1990,18(5):54-61.
    [171]Tamotsu Matsui,Hideo Ohara,Tomio Ito.Cyclic stress-strain history and shear characteristics of clay.Journal of Geotechnical Engineering,1980,106(GT10):1101-1120.
    [172]Kazuya Yasuhara.Postcyclic undrained strength for cohesive soils.Journal of Geotechnical Engineering,1994,120(11):1961-1979.
    [173]高广运,顾中华,杨宏明.循环荷载下饱和粘土不排水强度计算方法.岩土力学,2004,25(Supp.2):379-382.
    [174]胡昌斌,王奎华,谢康和.考虑桩土相互作用效应的桩顶纵向振动时域响向应分析[J].计算力学学报,2004,21(4):392-399.
    [175]Meheshwari B K,Truman K Z,Gould P L,EI Naggar M H.Three-dimensional nonlinear seismic analysis of single piles using finite element model:effects of plasticity of soil[J].International Journal of Geomechanics,2005,5(1):35-44.
    [176]黄雨,叶为民,唐益群,陈竹昌.桩基震陷的有效应力动力计算方法.工程力学,2001,18(4):123-129.
    [177]肖晓春,迟世春,林皋等.地震荷载下桩土相互作用简化计算方法及参数分析.大连理工大学学报,2002,42(6):7 1 9-723.
    [178]Yasuhara K et al.Undrained shear behaviour of quasi-overconsolidated clay induced by cyclic loading[C].Proc.IUTAM Cymp.“SEABED MECHANICS”,1983,17-24.
    [179]Kazuya Yasuhara,Kazutoshi Hirao,Adrian FL Hyde.Effects of cyclic loading on undrained strength and compressibility of clay.Soils and foundations,1992,32(1):111-116.
    [180]Kazuya Yasuhara,Adrian F L Hyde.Method for estimating postcyclic undrained secant modulus of clays.Journal of Geotechnical Engineering,1997,123(3):204-211.
    [181]Brewer J H.The response of cyclic stress in a normally consolidated saturated clay.Thesis Presented to the Civil Engineering Dept.,North Carolina State Univ.,at Raleigh,North Carolina,In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,1972.
    [182]Matsui T,et al.Cyclic stress-strain history and shear characteristics of clay.Journal of Geotechnical Engineering,1980,106(10):499-529.
    [183]许才军,杜坚,周红波.饱和软粘土在不排水循环荷载作用下孔隙水压力模型的建立.上海地质,1997, No.63:16-21.
    [184]Brown S F,et al.Repeated load triaxial testing of a silty clay.Geotechnique,1975,25(1):95-114.
    [185]Yasuhara K,et al.Cyclic strength and deformation of normally consolidated clay.Soils and Foundations,1982,22(3):77-91.
    [186]周建.循环荷载作用下饱和软粘土的孔压模型.工业勘查,2000,No.4:7-10.
    [187]陈存礼.饱和砂土体有效应力物态地震反应分析方法的研究.西安理工大学博士学位论文,2005.
    [188]Wang Lanmin,Zhang Zhengzhong,Li Lan,et al.Laboratory study on loess liquefaction.Eleventh World Conference on Earthquake Engineering Mexico,1996.
    [189]石兆吉,王兰民.土壤动力特性.液化势及危害性评价.北京:地震出版社,1999.
    [190]中国建筑科学研究院地基基础研究所,固原黄士动力特性试验报告,1983.
    [191]王志刚.碎石桩-黄土复合地基的抗液化性状数值分析.高原地震,2001,13(2):58-61.
    [192]刘汉龙,佘跃心,王兰民.强夯黄土地基液化试验研究.土动力学与岩土地震工程.北京:中国建筑工业出版社,2002,218-223.
    [193]Martin G R.Effects of system compliance on liquefaction.Journal of the Soil Engineering Division,1978, 104(4):463-480.
    [194]Valanis K C,Read H E.A new endochronic plasticity model for soil,1982.
    [195]沈珠江,邓刚.超固结粘土的二元介质模型.岩土力学,2003,Vol.24,No.4:495-499.
    [196]沈珠江,胡再强.黄土的二元介质模型.水利学报,2003,No.7:1-6.
    [197]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系岩土工程学报,2005,Vol.27,No.5:489-494.
    [198]刘恩龙,沈珠江.结构性土的二元介质模型水利学报,2005,Vol.36,No.4:391-395.
    [199]Martin G R.Effects of system compliance on liquefaction.Journal of the Soil Engineering Division,1978,104(4):463-480.
    [200]Hibbitt,Karlsson,Sorensen.Inc.ABAQUS/Standard User's Manual;ABAQUS/CAE User's Manual;ABAQUS Keywords Manual;ABAQUS QUS Theory Manual.American:HKS Company,2002.
    [201]庄茁.ABAQUS有限元软件6.4版入门指南.北京:清华大学出版社,2004.
    [202]庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    [203]王金昌,陈页开.ABAQUS在土木工程中的应用.浙江:浙江大学出版社,2006.
    [204]朱向荣,王金昌.ABAQUS软件中部分土模型简介及其应用.岩土力学,2004,Vol.25,Supp.2:144-148.
    [205]徐远杰,潘家军,王观琪.利用ABAQUS分析混凝土面板堆石坝非线性应力与应变.武汉大学学报(工学版),2005,Vol.38,No.5:70-75.
    [206]徐远杰,王观琪,李健,唐碧华.在ABAQUS中开发实现Duncan-Chang模型.岩土力学,2004,Vol.25,No.7:1032-1036.
    [207]庄海洋,陈国兴,梁艳仙,徐明.土体动非线性黏弹性模型及其ABAQUS软件的实现.岩土力学,2007,Vol.28,No.3:436-442.
    [208]朱东生等.地震动强度对场地地震反应的影响.世界地震工程,2005,Jun.,Vol.21,No.2:115-119.
    [209]卢华喜.不同频谱特性地震动输入下的场地地震反应.华东交通大学学报,2007,Vol.24,No.1:21-26.
    [210]刘立平.水平地震作用下桩-土-上部结构弹塑性动力相互作用分析.重庆大学博士论文,2004.
    [211]刘峥等.不同输入界面土层地震反应的探讨.贵州工业大学学报(自然科学版),2007,Vol.36,No.5:68-71.
    [212]陈国兴,陈继华.地震动输入界面的选取对深软场地地震效应的影响.世界地震工程,2005,Vol.21,No.2:36-43.
    [213]窦立军等.根据场地条件确定地震动时程的方法.世界地震工程,2001,Jun.,Vol.17,No.2:46-52.
    [214]B.K.Maheshwari.Three-dimensional nonlinear seismic analysis of single piles using finite element model:effects of plasticity of soil[J].Intemational Journal of Geomechanics,2005,Vol.5,No.1:35-44.
    [215]Sanchez-Sesma F J.Diffraction of elastic SH-waves by wedges[J].Bull Seis Soc Am,1985,Vol.75,No.5:1435-1446.
    [216]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题.同济大学学报,2003,Vol.31,No.6:63l-636.
    [217]N.Allotey.Response of single pile in sand to seismic excitation suding a coupled p-y and t-z approach[J]. Advances in deep foundations,ASCE,2005,
    [218]门玉明等.场地土的随机地震反应分析.工程地质学报,200l,09(01):68-73.
    [219]尚守平等.场地土随机地震反应分析及动力可靠度计算.工程抗震与加固改造,2007,Vol.29,No.1:26-32.
    [220]刘汉龙等.边界条件对土层粘弹性地震反应的影响.岩土力学,2001,Vol.22,No.4:408-412.
    [221]楼梦麟,潘旦光,范立础.土层地震反应分析中侧向人工边界的影响.同济大学学报,2003;Vol.31,No.7:757-761.
    [222]谢康和,周健.岩土工程有限元分析理论与应用.北京科学出版社,2002.
    [223]Liao Z Pet al.A transmitting boundary for transient wave analysis.Scientia Sinica.,1984,XXVII(10):1065-1076.
    [224]廖振鹏.透射边界与无穷远辐射条件.中国科学(E辑),2001,Vol.31,No.3:254-262.
    [225]李录贤,国松直,王爱琴.无限元方法及其应用.力学进展,2007,Vol.37,No.2:161-174.
    [226]蔡宏英周健,李湘崧.深厚覆盖软土地层多向地震动力反应分析.同济大学学报,2000,Vol.28,No.2:177-182.
    [227]孙剑平,朱晞.考虑土非线性层状场地地震反应计算方法.岩石力学与工程学报.2001,Vol.20,No.2:220-224.
    [228]陈国兴,刘雪珠,王炳辉.土动力参数变异性对深软场地地表地震动参数的影响.防灾减灾学报,2007,Vol.27, No.1:1-10.
    [229]Liu K X,Lee F H,Yong K Y.A new finite element model for pile-soil interaction.Geotechnical Engineering for Transportation Projects,2004,Vol.154,No.29:441-451.
    [230]陈清军,姜文辉,李哲明.桩土接触效应及对桥梁结构地震反应的影响.力学季刊,2005,Vo1.26,No.4:609-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700