用户名: 密码: 验证码:
自动滚筒闸门水力学特性的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方是水资源严重短缺的地区,但对于现有的水资源,有些却不能得到合理利用,如洪水资源中的多泥沙和高含沙洪水在利用过程中存在着一系列难题。对闸前有泥沙淤积时能自动启闭的新型水力自动滚筒闸门的研究,使得利用这部分洪水资源成为可能。通过水工模型试验,证明新型水力自动滚筒闸门的设想是可行的,可以保证在闸前有泥沙淤积时,闸门在水压力作用下开启自如。为了正确进行闸门设计,必须对作用在闸门体上的水压力进行准确地计算。闸门开启前闸体上的静水压力计算,毋庸置言容易解决。但闸门开启后作用在闸体上的动水压力的计算,目前尚无现成公式可利用。本文采用模型试验、数值模拟与理论分析相结合的方法,对水流中横置圆筒闸体上的动水压力分布规律进行研究。主要研究内容如下:
     (1)通过水工模型试验,研究了在上游水位变化和不同筒下开度工况下,圆筒表面动水压力时均值、脉动值的变化规律。
     (2)以物理模型为依据进行数学建模,采用数值模拟方法对水流中横置圆筒的水力学特性进行了深入研究。通过各模型的对比分析,本文最终采用RNG k-ε湍流模型和水气两相流VOF模型,对横置圆筒绕流流场进行了数值模拟。
     (3)采用数值模拟对现有条件物理模型无法完成的工况进行数值模拟,研究了筒下开度(h)、筒顶水深(h1)、上游水深(H)、筒径(R)对绕流流场速度、流线、压力变化及其圆筒表面速度和动水压力变化的影响。
     物理模型试验所得主要结论:
     (1)沿迎水面从圆筒顶部至底部动水压力呈先增大后减小趋势,筒上、下均过水时,在圆筒中心线以下,即φ=135°附近水压力值达到最大,圆筒顶部(φ=0°)及底部(φ=180°)动水压力值较小,且底部动水压力值略小于顶部值。
     (2)筒下开度h一定,圆筒迎水面动水压力随闸上游水深H的升高而增大。当闸上游水深H一定,筒下开度h变化时,圆筒迎水面动水压力在圆筒顶部至中心线范围内(0<φ<90°)没有明显的变化,而在圆筒中心线以下(90°<φ<180°)动水压力沿圆筒表面自上而下随h的增加而减小,该变化趋势在φ=135°附近表现较明显。
     (3)迎水面各点压力脉动主频为f=50Hz左右,圆筒顶部(φ=0°)的脉动幅值最大, (φ=45°)处脉动幅值最小,在90°<φ<180°范围内,沿圆筒表面向下主频幅值逐渐增大。
     数值模拟所得主要结论:
     (1)圆筒迎水面中心线(φ=90°)附近,流速较小,圆筒上、下方流速较大,中心线以上各点流速随着筒顶水深(h1)的增加而增大,中心线以下各点流速变化较小。圆筒背水面中心线以上各点流速随着h1的增加逐渐增大,而中心线以下区域流速变化梯度较大,并且速度变化较复杂;圆筒背水面流速大于迎水面流速。
     (2)圆筒迎水面动水压力随上游水深H的升高由筒顶向下逐渐增大,φ=135°附近达到最大,继而迅速减小,在圆筒底部降到最小,并形成负压区。圆筒背水面,中心线偏上部分压力值较小,沿圆筒壁面向筒底方向呈先增大后减小趋势,且变化梯度由小到大。
     (3)筒下开度h、筒顶水深h1一定,迎水面各点压力与R成正比,在圆筒背水面220°<φ<260°区域,圆筒表面动水压力与筒径R成反比。
     (4)通过对水工模型试验和数值模拟结果的分析,建立了水流中横置圆筒表面动水压力的计算公式,并利用该公式进行了验证性计算,通过回归模型的计算值和模拟值的相关分析,表明该计算模型计算结果较为准确。
Water resources are serious shortage in the northern area of China, but it can’t be utilized reasonable for existing water resources, such as the utilizing of multi-slit and flood. Since this it is possible to utilize flood to research the new hydro-automatic roller gate which works automatically with the balance of driving moment engendered by water pressure, and returning moment engendered of self-weight and matched weight. And it has been proved feasibly by hydraulic-model experiment. It can be ensured opening and closing automatically while silting in front of gate. So it is important to calculate the force which acting on gate for designing gate exactly. The force can be calculated before gate opening. However, the hydraulic pressure can’t be calculated after opening, and the formula hasn’t been found. So the hydraulic characteristics of roller are studied by experimental, numerical simulation and theoretical methods in this paper. The main contents are as follows.
     (1) By the hydraulic model experiment, the change rule of roller surface’s time-averaged pressure and hydraulic pressure are analyzed in different jaw opening and upper level conditions.
     (2) To establish mathematical model according to physical model, hydraulic characteristic of transverse roller surface are studied through numerical simulation. Ultimately, The RNG k ?εturbulence model and volume of fluid method (VOF) are applied to simulate the flow around transverse roller in this paper.
     (3) Numerical simulation is applied to simulate the conditions that physical model experiment can’t carried out. the influence of jaw opening(h), roller top water depth(h1), upstream water depth (H)and roller radius(R)to around flow and hydraulic pressure of roller surface is analyzed.
     The main results of physical model experiment:
     (1) The hydraulic pressure presents the trend that increasing in the beginning and reducing afterward along the roller surface. When upper level is above the top, hydraulic pressure reaches maximum atφ=135°, hydraulic pressure is less atφ=0°andφ=180°, the bottom’s hydraulic pressure is less than the top’s.
     (2) When h is definite, roller surface’s hydraulic pressure increases gradually with upper level H increasing. H is definite, the hydraulic pressure in 0<φ<90°isn’t obvious change. While the hydraulic pressure in 90°<φ<180°reduces along the roller surface adown with h increasing. And the trend is obvious atφ=135°. The basic frequency of pulsation pressure is about f=50Hz. The Pulsation amplitude is maximal atφ=0°and atφ=45°pulsation amplitude is minimal. and in 90°<φ<180°extent, the pulsation amplitude of basic frequency increasing along the roller surface adown.
     The main results of numerical simulation:
     (1) The velocity reduces minimum at center line of roller, roller top and bottom’s velocity is relative great. The velocity of above center line increases with h1 increasing. At back surface, the velocity of above center line increases with h1 increasing, and its change is complicated.And the velocity of back side is greater than water wind.
     (2) With H rising, The hydraulic pressure of water wind increases and reach maximal atφ=135°, then rapidly decreased. At roller bottom, the hydraulic pressure reaches minimal and appears negative pressure zone. At back surface, the pressure is relative small; the hydraulic pressure presents the trend that increases in the beginning and reduce afterward along the roller surface adown, and the change gradient enlarge gradually.
     (3) The pressure and R is in direct proportion at water wind when h and h1 are definite. At back side, the pressure and R is in inverse proportion in 220°<φ<260°domain.
     (4) The formula of transverse roller surface’s hydraulic pressure is established through the result of physical model experiment and numerical simulation. And the results of calculational model are verified, it is comparatively exact.
引文
1何龙,何勇.微灌工程技术与装备[M].北京:中国农业科学技术出版社, 2006
    2蔺秋生.泥沙灾害浅析[J].水利电力科技,2008(1):23-27
    3景可,李凤新.泥沙灾害类型及成因机制分析[J].泥沙研究,2002(5):12-17
    4赵文林,张红武,潘贤娣.黄河泥沙[M].郑州:黄河水利出版社,1998
    5文恒,牟献友,赵宇明.多泥沙和高含沙洪水资源的利用[C].第六届全国泥沙基本理论研究学术会议论文集,郑州:黄河水利出版社,2005(11):1155-1162
    6王嗣飞.我国北方中小型水库泥沙淤积治理问题探讨[J].2008(15):23-25
    7刘艳林.新型水力自控闸门动水压力的研究[D].呼和浩特:内蒙古农业大学硕士学位论文,2008
    8聂源宏,马振海.四零四厂取水枢纽引水防沙试验研究[J] .西北水资源与水工程.2002,13(3):32-35
    9刘旭东,李贵启.我国低水头引水枢纽引水防沙问题的实践及其试验研究[J].泥沙研究,1983(2):45-49
    10 Litrico X; Belaud G; Baume J.P, et al. Hydraulic modeling of an automatic upstream water-level control gate, Journal of Irrigation and Drainage Engineering, v 131, n 2, March/April, 2005, p176-189
    11赵宇明.高含沙洪水资源中的自控闸门的研究[D].呼和浩特:内蒙古农业大学硕士学位论文.2005
    12蔡云林.弧形闸门动水压力计算公式的化简及探讨[J].华东水电技术,1989(2):31-35
    13徐洲元.水工弧形闸门的结构布置及三维有限元分析[D].西安:西安理工大学.2006
    14罗银淼,朱位秋.大型翻板闸门流体激振的双模型试验研究[J].浙江大学学报,2006,40(8):1401-1403
    15周经渊.水力自动翻板闸门的研究应用[J].水力发电学报,2007,26(6):73-76
    16任广云,王明安,时伯华,等.渐开式翻板门的几个设计问题[J].水利水电科技进展,1999,19(5):49-50
    17侯石华,沈长松,孙学智.水力自动翻板闸门门型发展概述[J].水利水电科技进展,2003(23):5-7
    18张有明.低水头弧形闸门振动问题研究[J].中国水利,2005(5):42-58
    19李旭东,彭晓平.拓扑优化理论在二维深孔弧形闸门设计中的应用研究[J].西北水电,2008(3):54-56
    20王好强.平面刚闸门静动力分析与优化设计[D].南京:河海大学硕士学位论文,2006
    21朱召泉,卓家寿,陶桂兰.弧形钢闸门的动力稳定性研究进展[J].水利水电科技进展,1999.19(5):27-37
    22贺日平,颜兴亮.上开式扇形闸门箕斗进入卸载曲轨时动态受力分析[J].煤矿机电,2004(2):15-18
    23 P.Townshend.新型全自动溢洪道闸门[J].水利水电快报,2001,22(18):16-19
    24肖坚.一体化闸门技术的应用前景[J]中国水利,2003(9):43-44
    25李宗健,江仪贞,王长德.水力自动闸门[M].水利电力出版社,1987(1):1-15
    26李利荣,文恒,王福军,等.水力自动滚筒闸门动水压力分模型试验[J].水利水电科技进展,2009,29(1):26-30
    27邱德修.弧形钢闸门的动力特性及动力稳定性分析[D].南京:河海大学,2006
    28钱声源.偏心铰弧形闸门静动力分析与结果优化研究[D].南京:河海大学,2006.
    29李火坤,练继建,杨敏.新政航电泄洪弧形闸门水动力特性模型试验研究[J].中国农村水利水电,2006(10):61-65.
    30曲锋.水力自动翻板闸门的理论分析与试验研究[D].南京:河海大学,2005.
    31孙东坡,杨慧丽,张小松,等.桥墩冲刷的三维流场测量与数值模拟[J].水科学进展,2007,18(5):712-716
    32孙德军,胡国辉,尹协远,等.圆柱绕流低维Galerkin方法的推广[J].中国科学技术大学学报,1997,27(3):266-272
    33 Graw C M., Bell J H, Khall G, et al. Dynamic surface pressure measurements on a square cylinder with pressure sensitive paint.Experiments in Fluids,(2006)40:203-211
    34 Durao D F, Plesniak M W, Braun J C. The effects of turbulence and periodic flows around a square cross section cylinder.Exp.Fluids,1988,6:298-304
    35王远成,吴文权.方柱绕流流场的RNG方法模拟研究.水动力学研究与进展,2004(12):917-920
    36庞永杰,贺敬席,戴捷,等.水下运动物体在相互接近过程中的水动力计算.船舶工程,1997(5):8-10
    37程丽,罗庆杰,张亮,等.三维钝体的近壁面受力[J].水动力学研究与进展.2008.23(2):150-157
    38罗庆杰.物体近壁运动水动力干扰数值模拟[D].哈尔滨:哈尔滨工程大学硕士学位论文.2005
    39 GAO Q X. Numerical simulation of free surface flow around ship hull. Journal of Ship Mechanics,2002,6(3): 1-13
    40曾一非,朱继懋.水下运动物体间相互作用力的计算探讨[J].海洋工程,1994.12(2):40-48
    41刘儒勋,舒其望.计算流体动力学的若干新方法[M].北京:科学出版社,2003,108-305
    42 John D A, J R.. Computational Fluid Dynamics The Basic with Applications[M].清华大学出版社,2006
    43吴持恭.明渠水气二相流[M].成都科技大学出版社,1989
    44 Hur D S, Miutani N, Kim D S. Direct 3-D numerical simulation of wave forces on asymmetric structures [J]. Coastal Engineerin, 2004,51:407-420
    45于芬芬.摇臂式喷头外部流动数值模拟与试验研究[D].北京:中国农业大学硕士学位论文,2008
    46 Wallis G B, Hill M G. One dimensional two-phase flow [M].E Ehodes and D S Scott PlenumPress.1969
    47 Ardrom K H. One-dimensional two-fluid equations for horizontal stratified two-phase flow[J].International journal of Multiphase flow.1983,511-530
    48范正翘,陈越南.两相流基本方程[J].应用数学和力学,1986,477-485
    49郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002
    50刘全,水鸿寿,等.数值模拟界面流方法进展[J].力学进展,2002(2):259-274
    51 Lline A, Lopez D. Two-fluid model wavy separated two-phase flow[J].International Journal of Multiphase Flow, 1997(123):363-368
    52 Tiselj I, Petelin S. First and second-order[J]. Fluid Engineering, 1998(120):363-368
    53 Maronnier V, Picasso M, Rappaz J. Numerical simulation of free surface [J]. Journal of Computational Physics,1999,155(2):439-455
    54刘大有.二相流体动力学[M].北京:高等教育出版社,1993,444~721
    55陈群.阶梯溢流坝紊流数值模拟及试验研究[D].成都:四川大学博士学位论文.2001
    56 Parsons I D, Coutinho A G A. Finite element multigrid method for two phase immiscible flow in hetero geneous media [J]. Communications in Numerical Method in Engineering,1999,15(1):1-7
    57张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):67-70
    58符传君,练继建.溃坝水流在复杂河道中传播的三维数值模拟[J].水利学报, 2007,30(10):1151-1157
    59戴会超,王玲玲.淹没水跃的数值模拟[J].水科学进展,2004,15(2):184-188
    60陈永明.带复杂自由表面的泄水建筑物紊流场的数值模拟[D].扬州大学硕士学位论文,2006
    61陈为博,杨敏.用VOF方法数值模拟溢流堰流场[J].水利水运工程学报,2004(4)
    62王洪庆.泄洪洞的紊流数值模拟及试验研究[D].西北农林科技大学硕士学位论文,2006
    63 Inigo J L, Javier L L. Raul G. Numerical analysis of wave overtopping of rubble mound breakwaters[J].Coastal Engineering,2007:47~62
    64李志勤,李洪,李嘉,等.溢流丁坝附近自由水面的试验研究与数值模拟[J].水利学报,2003(8):53-57
    65李福田,刘沛清,马宝峰.高拱坝宽尾墩三维流场数值模拟[J].水科学进展,2005,16(2):185-188
    66 Christakis N, Allsop N W H, Cooper A J, et al. A volume of fluid numerical model for wave impacts at coastal structures [J].Proceedings of the Institution of Civil Engineers:Water and Maritime Engineering.2002,154 (3):159-168
    67洪方文.自由面附近运动物体流场的数值与试验研究[D].中国船舶科学研究中心博士学位论文,2001
    68廖翠林.大型混流式水轮机水力稳定性研究[D].北京:中国农业大学博士学位论文,2008
    69傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993
    70苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    71 John D A, JR. Computational Fluid Dynamics The Basic with Applications[M].清华大学出版社,2006,75-77
    72李福田,倪浩情.工程湍流模式的研究开发及其应用[J].水利学报,2005(5):23-31
    73王文娥.迷宫滴头内部流动的动力学特性研究[D].北京:中国农业大学博士学位论文,2007
    74 Versteeg H K, Malalasekera W. An Introduction to computational fluid dynamics: the finite volume method[M]. Wiley, New York,1995
    75 Trias F X,Soria M,Pérez-Segarra C D.DNS of 3D turbulent natural convection flows using low cost parallel computers.AIAA Paper,42nd AIAA Aerospace Sciences Meeting and Exhibit,2004,5823~5833
    76黎耀军.水翼动力学特性与轴流泵水力性能优化研究[D].北京:中国农业大学博士学位论文,2006
    77王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:116-126
    78张勇,钟诚文.基于Lattice Boltzmann方法的翼型绕流数值模拟[J].航空计算技术,2006,36(3):111-114
    79 Smagorinsky J. General circulation experiments with the primitive equations-I-The basic experiment[J].Monthly Weather Review,1963,91(3):99-164
    80 Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of fluid Mechanics,1970(41):453-480
    81 Abbott M B, Basco D R. Computational Fluid Dynamics-An Introduction for Engineers[M]. England: Harlow, 1989
    82 Liu X B,Zeng Y Z. Numerical prediction of vortex flow in hydraulic turbine draft tube for LES [J]. Journal of Hydrodynamics,2005,17(4):448-454
    83 Qian Z D,Yang J D.Comparison of numerical simulation of pressure pulsation in Francis hydraulic turbine by different turbulence models [J].Shuili Fadian Xuebao/Journal of Hydroelectric Engineering,2007,26(6):111-115
    84 Wang W Q, Zhang L X, Yan Y, et al. Large-eddy simulation of turbulent flow considering inflow wakes in a Francis turbine blade passage [J].Journal of Hydrodynamics,2007,19(2):201-209
    85吴长鹏.导流罩对轻型厢式货车启动特性的影响[D].吉林:吉林大学硕士学位论文,2005
    86魏英杰,何钟怡.槽道中方形障碍物绕流的大涡模拟[J].水动力学研究与进展,2003.A.18(4):433~438
    87周宜林,道上正规,桧谷治.非淹没丁坝附近三维水流流动特性的研究[J].水利学报,2004(8):46-53
    88 Li X Z,Ya K G,Wen Q. Large eddy simulation of turbulent flow in a true 3D Francis hydroturbine passage with dynamical fluid–structure interaction [J].Internationa Journal for Numerical Methodsin Fluids,2006.
    89付娜.既有涵洞下游修建水库对涵洞的影响[D].成都:西南交通大学硕士学位论文,2008
    90周正富.无锡市九里河水利枢纽泵站近处水流道优化研究[D].扬州:扬州大学硕士学位论文,2006
    91 Versteeg H K,Malalasekera W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method [M].Wiley,New York,1995
    92王海松.轴流泵CAD-CFD综合特性研究[D].北京:中国农业大学博士学位论文,2005
    93 Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M].Wiley,New York,1995
    94 Carajilescov P,Todreas N E. Experimental and analytical study of axial turbulent flows in an interior subchannel of a bare rod bundle.ASME Journal of Heat Transfer,1976,(98):262~268
    95 Chou P Y. On the velocity correlations and the equations of turbulent vorticity fluctuation [J].Quarterly of Applied Mathematics,1945(1):33~54
    96陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001
    97黄志新.卧螺离心机螺旋输送器结构/强度及其转鼓内的流场研究[D].北京:北京化工大学博士学位论文,2007
    98白桦.塔桅结构风荷载的数值模拟研究[D].西安:长安大学硕士学位论文,2006
    99 Farouk B, Guceri S I. Laminar and turbulent natural convection in the annulus between horizontal concentric cylinders.ASME Journal of Heat Transfer,1982(104):631~636
    100阮涛.三次风中超细煤粉浓缩方法研究[D].杭州:浙江大学硕士学位论文,2006
    101 Yakhot V, Orszag S A. Renormalization group analysis of turbulence: basic theory [J].Journal of Scientific Computing,1986,1(1):1~11
    102 Yakhot V, Orszag S A, Thangam S, et al. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A.1992,4(7): 1510-1520
    103李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟顿体绕流的湍流流动[J].水科学进展,2005,11(4):357-361
    104李福田,刘沛清,马宝峰.高拱坝宽尾墩三维流场数值模拟[J].水科学进展,2005,16(2):185-188
    105侯树强.离心式通风机内部流场的数值模拟[D].杭州:浙江大学硕士学位论文,2006
    106 Fluent Inc.FLUENT User’s Guide.Fluent Inc,2003
    107黄剑锋.混流式水轮机全流道内部三维流场数值模拟[D].昆明:昆明理工大学硕士学位论文,2007
    108章欣雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998
    109陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    110于勇.FLUENT入门与进阶教程[M].北京理工大学出版社,2008
    111王勖成.有限单元法[M].北京:清华大学出版社,2003
    112王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].清华大学出版社,2007
    113兰波.垫升平台水动力性能的CFD计算[D].哈尔滨:哈尔滨工程大学硕士学位论文,2006
    114叶楠.室内三种通风方式气流组织和空气品质研究[D].合肥:安徽理工大学硕士学位论文,2006
    115 Peyret R, Taylor T D. Computational Methods for Fluid Flow [J]. Springer Series in Computational Physics.Springer-Verlag,1983
    116 Hirsch C. Numerical Computation of Internal and External Flows [J].John Wiley & Sons,1989
    117 Gunzburger M D, Nicolades R A.Incompressible Computational Fluid Dynamics Trends and Advances [M]. Cambridge University Press,1993
    118 Fletcher C A J.Computational technology for fluid dynamics:Specific techniques for different flow categories.Springer-Verlag,1988(2):1~20
    119 Robin R, Bernard P, Frank T. An application of the vorticity-vector potential menthod to laminar cube flow [J]. International Journal for Numerical Methods in Fluids,1990,10(8):875-888
    120 Chorin A J. Numerical solution of the N-S equations [J]. Mathematics of Computation.1968,22(4):745-762
    121绍磊.同流环境中多孔热水紊动射流特性数值模拟研究[D].西安理工大学硕士学位论文,2008
    122 Patankar S V,Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows [J].Internal Journal of Heat Mass Transfer,1972,15:1787~1806
    123 Patankar S V. Numerical Heat Transfer and Fluid Flow [M]. Hemishpere,Washington,DC,1980
    124 Doormaal J P, Raithby G D. Enhancement of the SIMPLE method for predicting incompressible fluid flows [J].Numerical Heat Transfer,1984 7(2):147~163
    125 Issa R I. Solution of implicitly discretized fluid flow equations by operator splitting [J].Journal of Computational Physics,1986(62):40~65
    126 Vinay R. Gopala, Berend G.M. van Wachem. Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 2008(141):204-221
    127李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应用[J].水力发电学报,2007,26(2):83-87
    128杜鹃.利用三维VOF模型模拟消能池的淹没水跃[J].中国科技信息,2008(2):270-271
    129李谊乐,刘应中,缪国平.二阶精度的VOF自由面追踪方法及其应用[J].船舶力学,1999,3(1):44-52
    130刁明军.高坝大流量泄洪消能数值模拟及实验研究[D].成都:四川大学博士学位论文,2004
    131 Youngs D L. Time-dependent multi-material flow with large fluid distortion [M]. In K. W.Morton and M J Baines,editors,Numerical Methods for Fluid Dynamics. AcademicPress, 1982
    132刘长宝.水力自动翻板闸门脉动压力对闸门结构及泄流量的影响分析研究[D].南京:河海大学硕士学位论文,2007
    133 Krot A M, Minervina E B. Fast Fourier Transform algorithms for real and hermitian-symmetrical sequences [J]. Soviet Journal of Communications Technology & Electronics(English translation of Radiotekhnika I Elektronika),1989,34(12):122
    134焦修明.弧形闸门动力特性及流激振动[D].武汉:武汉大学硕士学位论文,2006
    135 Shen Y M, Ng C O, Zheng Y H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-epsilon turbulence modeling[J].Ocean Engineering,2004,31(1):87~95
    136王宏伟.机翼非定常特性与直叶水轮机水动力性能分析[D].哈尔滨:哈尔滨工程大学硕士学位论文,2006
    137李福田,倪浩清.工程湍流模式的研究开发及其应用[J].水利学报,2001,(5):22~30
    138 Vinay R G, Berend G.M.van Wachem. Volume of fluid methods for immiscible-fluid and free-surface flows [J]. Chemical Engineering Journal,2008(141):204-221
    139修荣荣,叙明海,黄善波,等.网格单元形状对数值计算的影响[J].工程热物理学报,2004,25(2):317-319
    140陈群,戴光清,刘浩吾.带有曲线自由水面的阶梯溢流坝面流场的数值模拟[J].水利学报,2002,20(9)
    141贾文洁,胡春光,郭良平,等.近壁面网格尺寸对湍流计算的影响[J].北京理工大学学报,2006,26(5):388-392
    142王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].清华大学出版社,2007
    143袁志发,周静芋.多元统计分析[M].科学出版社,2002
    144龚纯,王正林.MATLAB语言常用算法程序集[M].电子工业出版社,2008
    145任若恩,王惠文.多元统计数据分析?理论、方法、实例[M].北京:国防工业出版社,1990
    146邓燕萍,周波,刘玉君,等.试验数据数学建模方法研究[J].造船技术,2006(3):19-22
    147李寿声,张展羽.农田水利规划BASIC程序集[M].河海大学出版社,1991
    148吴持恭.水力学[M].高等教育出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700