用户名: 密码: 验证码:
离心风机叶轮内两相流数值模拟与粘灰机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于排放含尘气体的离心通风机,尤其是用于排放烟气含湿量较大、粉尘颗粒较小且粘性较大的风机,使用时间不长,就会出现机体剧烈振动,甚至损坏机件,使风机无法工作。解剖检查发现,其主要原因是在叶片非工作面上粘附着许多粉尘细末,当粉尘细末粘附到一定厚度后,造成不均匀脱落,导致叶轮平衡破坏,因而出现了上述现象。
     本文基于计算流体力学N-S方程和标准k-e双方程紊流模型,采用有限元离散法,首次利用商用CFD软件对某炼钢厂一次烟气离心风机叶轮内三维两相流进行数值模拟,得到了在典型工况条件下,叶轮内的速度、压力和浓度分布。通过与该型叶轮内流场的PIV实验结果比较,验证了采用CFD进行数值模拟的正确性和可行性。
     本文结合数值模拟结果和叶轮实际运行情况,分析了离心风机叶轮的粉尘粘附机理,认为:
     1、湿度是粘附的重要前提条件。
     2、压强是粘结成块的主要因素。
     此外,还对流速、安装角、接触面积、粉尘特性等影响粉尘粘附因素进行了定量分析,这将为净化设备提供设计和理论分析提供参考依据。
Centrifugal ventilator used for exhausting gas contained of all kinds of dust, particularly used for the exhausting smoke contained of high degree of humidity, and the powder grain is small and high viscidity, will appear the violent vibration in a short time, shorten the service life of the centrifugal ventilators and affect the reliability of equipments. The spot investigation discovers that the attachment and accumulation of small powder grain mainly takes place on the blade suction surface, especially on the forepart and back-end district of the not-working surface of blade. The shed off of powder grain will break the equilibrium because of the accumulation, and break the equilibrium, result in the above phenomenon.
    In this paper, based on the Navier-Stokes equations and standard k-e turbulent model, the numerical simulation of the 3D turbulent flow in centrifugal impeller has been analyzed firstly with CFD software and FEM. The distribution of velocity, pressure and concentration in the blade to blade passage are presented at the representative operating conditions. Contrast to the PIV results, the numerical simulation is accurate and feasible.
    Joining together the simulation results with the actual operating circumstance, the dust conglutination mechanism has been analyzed primary. This study can be very helpful to improve and optimize the decontamination system design.
    The conclusion as follows:
    1) The degree of humidity is primary influence factor of conglutination.
    2) Pressure is the important factor of accumulation.
引文
[1] 陈景仁著.流体力学及传热学.国防工业出版,1984
    [2] Chuen-ren.Chow著.计算流体力学导论.上海交通大学出版社,1987
    [3] 吴子牛著.计算流体力学基本原理.科学出版社,2001
    [4] 李文绚等.气体动力学计算方法.机械工业出版社,1990
    [5] G.E.Forsyhe.M.A.Malcolm著.计算机数值计算方法.清华大学出版社,1987
    [6] C.A. J. Fletcher. ed. Computational Techniques for Fluid Dynamics Springer Verlay C1988
    [7] W. Tabakoff., Turbomachinery Perform Deterioration Exposed to Particulates Environment. ASME, J. Fluids Eng., Vol. 106.1984
    [8] 沈天耀著.离心叶轮的内流理论基础.浙江大学出版社,1985年
    [9] 洪若瑜.内循环和外循环硫化床中超细粉流态化的研究博士论文.中科院化工冶金研究所,1996
    [10] 戴江等.离心泵叶轮中固液两相流计算.工程热物理学报,1996,(2)
    [11] 章本照著.流体力学中的有限元法.机械工业出版社,1986年10月
    [12] 顾尔祚编.流体力学中的有限差分法基础.上海交通大学出版社,1988年6月
    [13] 刘希云等著.流体力学中的有限元与边界元法.上海交通大学出版社,1993,(2)
    [14] 刘超群编著.多重网格法及其在计算流体力学中的应用.清华大学出版社,1995年12月
    [15] Wake, B.E. and Sankar, L.N. Solution of Navier-Stokes Equations for the Flow Over a Rotor Blade, Journal of the American Helicopter Society, April 1989
    [16] Spalart, P.R. and Allmaras, S. R., A One-Equation Turbulence Model for Aerodynamic Flows, AIAA Paper 92-0439, 1992
    [17] 费祥麟主编.高等流体力学.西安交通大学出版社,1989年9月
    [18] 王献孚等编著.高等流体力学.华中科技大学出版社,2003年1月
    [19] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics, the Finite Volume Method. Energy and Building 28 (1998)
    [20] Alex Stein & Saeid Niazi Development and Application of a CFD Solver to the Simulation of Centrifugal Compressors. ASME Journal of Turbomachinery, Vol114, 1993
    [21] L.M. Larosiliere and G.J. Skoch. Aerodynamics Synthesis of Centrifugal Impeller Using CFD and Measurements. 33rd Jiont propulsion Conference and exhibit cosponsored by AIAA, ASME, SAE, and ASEE Seattle, Washington,
    
    July6-9,1997
    [22] 何有世等.CFD进展及其在离心泵叶轮内流计算中的应用.水泵技术,2002,(3)
    [23] 蔡兆麟等.离心风机数值试验平台.通用机械,2003,(1)
    [24] 陈池等.离心泵叶轮内流计算方法综述.流体机械,1999(2)
    [25] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.科学出版社,1994
    [26] 周力行.湍流两相流动与燃烧的数值模拟.清华大学出版社,1991
    [27] 周力行.多相湍流反应流体力学.国防工业出版社,2002
    [28] 许晋源等.气固两相流场的湍流颗粒浓度理论模型.应用力学学报,1994,(12)
    [29] 袁竹林.稠密气固两厢流的直接数值模拟.热能动力工程,1999,(11)
    [30] 姚军等.气固两相流中颗粒-颗粒随机碰撞新模型.工程热物理学报,2001,(9)
    [31] 徐进等.气固两相流动的数值计算.工程热物理学报,1998,(3)
    [32] 林建忠等.气固两相混合层流场双向耦合的数值研究.工程热物理学报,2001,(7)
    [33] Choi. Y. D, Chung M.K Analysis of Turbulent Gas-Solid Suspension Flow in a Pipe. J. Fluids Eng.,1983,105
    [34] Tsuji Y, et al, LDV Measurements of an Air-solid Two-Phase Flow in a vertical Pipe, j. Fluid Mech.,1984,139
    [35] 周力行等.颗粒湍动能输送方程的两相湍流模型和平面闭式两相射流的数值模拟.中国科学(A辑),1988年12月
    [36] 王运良等.气固两相流k—ε—k_p—ε_p双流体模型及应用.航空动力学报,1994,(7)
    [37] 吴玉林等.离心叶轮内稀释固液两相流动的数值模拟.航空学,1995,(11)
    [38] 席光.离心泵叶轮内气液两相三维流动数值研究.工程热物理学,2003,(3)
    [39] 魏进家等.离心泵叶轮内密相液固两相湍流的数值模拟.应用力学学报,2000,(3)
    [40] Reese. J, Chen R.C, Fan L-S. Three-dimensional particle image velocimetry for use in three phase fluidization systems. Exp. Fluid, 19 (1995):367
    [41] Gabriel Dan Ciocan. Optical Measurement Techniques for Experimental Analysis of Hydraulic Turbines Roto-Stator Interaction. FEDSM2000-11056
    [42] Krain H. Swirling Impeller Flow, ASME. Journal of Turbomachinery, 1988,110(1): 122-128
    [43] Krain H, Hoffmann W, Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations, ASME, Paper, 89-GT-159,1989
    [44] 席光.关于Krain实验叶轮几何型线及其流道二次流旋涡结构的讨论.工程热物理学报,2000,(7)
    [45] 陈康民.旋转叶轮流道内气固两相流动实验系统.工程热物理学报1999,(7)
    [46] 杨华等.采用PIV研究离心泵转轮内部瞬态流场.水动力学研究与进展,2002,(10)
    [47] 宋更生等.离心风机旋转叶片表面压力分布实验研究与三元数值分析.华东工业大
    
    学学报,1995,(1)
    [48] 刘文华等.离心风机叶轮出口流场的PIV实验测量与分析.流体机械,2002,(11)
    [49] 张新华等.离心式水泵旋转叶栅流动显示试验.北方交通大学学报,1997,(2)
    [50] 蔡毅等.模糊逻辑方法用于气固两相流动PTV测量中的颗粒识别过程.流体力学实验与测量,2002,(6)
    [51] 李玲等.气固两相流动的LDV测试技术研究与实施.化工机械,1998,(6)
    [52] 刘正先等.离心叶轮内三维湍流流场的实验研究.工程热物理学报,1999,(9)
    [53] 王希麟等.两相流场粒子成像测速技术(PTV-PIV)初探.力学学报,1998,(1)
    [54] Eck B., ventilatoren. Springer Verlag 1962
    [55] Eck B., Dieneure Entwicklung der Radial Ventilatoren., rechnische Rundschau No. 20 Bern 1962
    [56] U. S. Patent 2,936,948, granted to Eck B.
    [57] Eck B.著,罗松保译.高效率的含尘气体离心通风机.Air Conditioning,1972年7月
    [58] 马正先等.离心式通风机沉积物的形成和清理.风机技术,1996,(1)
    [59] Les Gutzwiller, H. Daniel Banyay, and Sidney M. Cohen, Cement Plant Prehea ter Fan Build-Up Control., IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL 27, NO. 3 MAY/JUNE 1991
    [60] 刘红等.离心通风机粘灰机理的探讨.风机技术,2000,(4)
    [61] 周建华.离心通风机叶片上粉尘的脱离.风机技术,2001,(3)
    [62] 孙建军等.锅炉烟气飞灰对离心式引风机叶轮的影响及处理.冶金动力,2001,(6)
    [63] 吕太等.离心风机负荷变化对叶片积灰的影响研究.流体机械,2003,(4)
    [64] 许云龙.粘性粉尘排送风机.风机技术,1996,(2)
    [65] 扬子军.引风机叶片积灰状况及分析.发电设备,1997,(5)
    [66] 吴清等.煤气加压鼓风机叶轮减少粘灰设计方法的探讨.风机技,2001,(5)
    [67] 黄坤平等.清除一次烟气风机叶轮积灰的方法.风机技术,2002,(1)
    [68] The Technology & Innovation Centre, Larsen & Toubro Limited, Baroda, India., CFD Used to Troubleshoot Centrifugal Fan Coal Dust Accumulation., Monday January 27, 2003
    [69] 幸福堂等.炼钢厂引风机叶轮粘灰控制.建筑热能通风,2002,(6)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700