用户名: 密码: 验证码:
掺铁TiO_2薄膜光催化降解室内苯污染的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们在对室内进行装饰装修过程中所使用的材料大都含有甲醛、可挥发性有机物等对人体有害的物质,这些物质在室内持续散发,导致室内空气质量(IAQ)严重下降;另外,随着空调系统应用的普及,人们一方面提高建筑物的气密性和热绝缘性,同时降低室内最小新风量标准,就导致了室内有害污染物由于得不到新风稀释而使浓度增大,严重恶化了室内空气品质。如何改善室内空气品质,给人们的生活提供一个健康的室内环境,已经成为人们日益关注的焦点。
     室内空气污染中人们所关心的焦点当属室内有机污染,主要包括甲醛、苯及其同系物等。目前室内空气有机污染治理的主要有生物方法、物理方法、以及化学方法。光催化技术,是近年来兴起的一种治理室内空气污染的新技术,属于化学方法的一种,它主要是在光催化剂(二氧化钛等)的作用下,使污染物质分解为CO2和H2O等无害物质。该技术反应条件温和、二次污染小、运行成本低,并且可望利用太阳光作为光源,是目前最具发展前景的室内空气净化技术。
     然而,利用二氧化钛(TiO_2)光催化技术净化室内空气仍处于起步阶段,还有待进一步完善。例如,如何提高TiO_2的量子产率,如何提高其对可见光的利用率,如何改进催化剂的固定技术,以及如何处理中间产物等问题。
     本文采用改进的Sol-Gel法制备掺铁TiO_2光催化薄膜,通过一组正交试验设计确定了最佳制备工艺参数,然后根据最佳制备工艺参数制备得到了釉面瓷砖和活性炭纤维(ACF)负载的掺铁TiO_2薄膜,并使用X射线衍射(XRD)和扫描电子显微镜(SEM)等技术对薄膜样品的表面形态和晶型等进行了表征分析。本文还通过实验考察了掺铁TiO_2薄膜的光催化活性,讨论了光源、苯初始浓度以及气流组织等因素对光催化活性的影响。最后,本文对TiO_2光催化薄膜的耐用性能进行了研究,包括重复使用性和负载牢固性等。
     研究结果表明:
     采用改进的Sol-Gel法制备掺铁TiO_2光催化薄膜时,各工艺参数均对最终的薄膜光催化活性有一定影响,本文通过正交试验确定各工艺参数的最佳取值分别为:PEG掺杂量1.2wt%,Fe~(3+)掺杂量0.05wt%,焙烧时间2.0h,焙烧温度500℃。
     通过XRD和SEM等手段进行表征分析发现,实验制备的TiO_2以锐钛矿和金红石结构为主,粒径分布均匀,平均粒径较小,约为28.5nm。
     使用掺铁TiO_2薄膜催化降解苯污染物时表现出了良好的光催化活性,若采用产生O3的光源,将有利于增大薄膜光催化效率;光源波长越短,光催化性能越好;光催化活性随光照强度增大呈非线性增加;在一定浓度范围内(浓度较低),光催化降效率随有机污染物浓度的增加而增大;气流组织对光催化效率也有一定影响,当气流正对光催化薄膜时,有机污染物降解率最高,气流方向与光催化薄膜表面平行时,有机物降解率最低;Fe~(3+)的掺杂改性增强了TiO_2对可见光的相应,即使在白炽灯照射下,这种掺铁的TiO_2薄膜仍可表现出一定的光催化活性。
     ACF担载TiO_2不会对其吸附活性位造成较大影响,相反两者特点相互补充可以提高有机污染物的降解效率,并可避免二次污染。
     釉面瓷砖和ACF担载TiO_2薄膜具有良好的重复使用性和负载牢固性,耐用性能较好。最后,本文基于ACF/TiO_2材料设计了一种室内空气净化器,认为装修完成初期采用ACF/TiO_2空气净化器进行治理可以取得良好效果,装修完成一段时间后则单靠光催化釉面瓷砖亦可保持室内空气清洁。
Most of the materials used in decorating contain formaldehyde, volatile organic compounds and some other things which are bad to people’s health. Those compounds emit continually, and cause the indoor air quality (IAQ) decline heavily; Along with the popularization of air-condition system, on the one hand people enhance the airproof and the heat insulation of buildings, on the other hand they decrease the standard of least fresh air. The consistency of indoor pollutant grows for not been diluted by the fresh air, and make the IAQ deteriorate badly. How to improve the IAQ, and supply a healthy indoor environment, it has become a focus that people pay more and more attentions to.
     People should be most care about the organic pollution of indoor air, which mainly contains the formaldehyde, benzene and its’homologs. At present, the main ways to treat with the organic pollution of indoor air include biological techniques, physical techniques, and chemical techniques. Photocatalysis is a new chemical technique which comes up these years. Under the effect of photocatalyst (titanium dioxide), pollutants were decompounded into some harmless substance, like CO2 and H2O. This technique is an indoor air purifying mean which have the best develop future, for its’gentle react condition, little secondary pollution and less cost for run, especially for it is possible to use daylight as the light source.
     However, using TiO_2-photocatalytic technique to purify indoor air is still beginning. It needs to be improved in some aspects, including how to increase the electron production of TiO_2, how to enhance the efficiency of visible light use,how to improve the method to load catalyst, and how to treat with the mid-productions.
     The iron-doped TiO_2-photocatalytic film was prepared by the improved Sol-Gel method, and the optimum parameters were confirmed through a group of orthogonal test. The iron-doped TiO_2 film prepared with the optimum parameters was loaded on the faces of enamel tiles and active carbon fiber (ACF),the surface morphologies and crystalline properties were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM). The photocatalytic activity of the iron-doped TiO_2 film was studied through experiments, and the factors such as light source, initial concentration of benzene, and airflow were discussed. At last, the serviceable abilities of TiO_2-photocatalytic films were investigated, including the renewable ability and the load-fastness.
     The results indicated that:
     Each parameter has some influence to the thin film’s phocatalytic activity while the improved Sol-Gel method was adopted to prepare the iron-doped TiO_2 thin film. Through a group of orthogonal test, the optimum parameters are as follows: PEG 1.2 wt%, Fe~(3+) 0.05wt%, calcine time 2.0 hrs, and calcine temperature 500℃.
     The XRD and SEM tests showed that the prepared TiO_2 was mostly presented to be anatase and rutile. The particle size is about 28.5nm, and distributing equably. The iron-doped TiO_2 thin film displayed well photocatalytic activity when used to deal with the benzene pollutant. Light sources which have the potential to produce O3 conduce to better activity; Shorter wavelength conduces to better photocatalytic activity; The photocatalytic activity shows a non-linear growth trend as the increase of the illumination intensity; in a range of benzene’s low-concentration, The degradation efficiency increases as the initial-concentration grows; And the airflow has some influence to the degradation efficiency-highest when airflow comes face to the thin film, and lowest when airflow comes from back of thin film; Further more, the doped of Fe~(3+) increased the response of TiO_2 to visible-light. Even under the irradiation of incandescence-light, the iron-doped TiO_2 thin film can displays some kind of photocatalytic activity.
     Loading TiO_2 to the surface of ACF has little affect to the ACF’s absorption active-sites, on the contrary, the traits of ACF and TiO_2 can make up the short of each other and lead to a better degradation efficiency of benzene pollutant, and the secondary pollution can be avoided.
     Both enamel tiles and ACF loaded TiO_2 thin films have good renewable ability and load-fastness, the serviceable abilities are favorable. At the end of this thesis, an indoor air purify instrument based on the ACF/TiO_2 was designed. It is considered to be feasible that at the beginning after ornamenting, using ACF/TiO_2 air purify instrument have a great effect on dealing with the indoor air pollution, after a period of time, just only the enamel tiles can keep the indoor air cleaning.
引文
[1]冯小卫,王子东,陈朝东等.室内污染监测与控制技术问答[M].北京:化学工业出版社, 2006.
    [2] K. Engvall, C. Norrby and D. Norback. Sick building syndrome in relation to building dampness in multifamily residential buildings in Stockholm[J]. Int. Arch. Occup. Environ. Health, 2001, 74 (4): 270–278.
    [3]刘晓红,李伟华.不良建筑物综合征的预防与控制[J].环境与健康杂志,2005, 22(4):312-314.
    [4]王元元,张立志.室内空气净化技术的研究与进展[J].暖通空调,2006,36(12): 24-27.
    [5] C. Karunakaran, R. Dhanalakshmi. Photocatalytic performance of particulate semiconduct- ors under natural sunshine-oxidation of carboxylic acids[J]. Solar Energy Materials and Solar Cells, 2008, 92 (5): 588-593.
    [6]王贺权,巴德纯,沈辉等.纳米TiO2薄膜的应用机理研究[J].真空, 2004, 41 (5): 7-10.
    [7]张万忠,乔学亮,邱小林等.纳米二氧化钛的光催化机理及其在有机废水处理中的应用[J].人工晶体学报, 2006, 35 (5): 1026-1030.
    [8] A. Fujishima, K. Honda. Electrochemical potolysis of water at a semiconductor electrode [J]. Nature, 1972, 23 (8): 35-37.
    [9] SN Frank, AJ Bard, J. Am. Chem. Soc. 1977 (99): 1484-1488.
    [10] R. W. Matthew. Photo-oxidation of organic impurities in water using thin films of titanium dioxide [J]. Phys. Chem, 1987, 91 (12): 3328-3333.
    [11] Goswami DY. A review of engineering developments of aqueous phase solar photocataltic detoxification and disinfection processes [J]. Journal of Solar Energy Engineering, 1997, 119 (3): 101-107.
    [12]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社, 2004.
    [13] Lei Zhao, Mandi Han, Jianshe Lian. Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition[J]. Thin Solid Films, 2008, 516 (10): 3394-3398.
    [14] Snejana Bakardjieva, Jan Subrt, Vaclav Stengl, et al. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase [J]. Appl Catal B: Environmental, 2005, 58: 193–202.
    [15]周武艺,曹庆云,唐绍裘.提高纳米二氧化钛可见光光催化活性研究的进展[J].硅酸盐学报, 2006, (07): 861-867.
    [16] W. Choi, A.Termin, MR. Hoffmann. The role of metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics [J]. Phys Chem, 1994, 98 (51): 13669-13679.
    [17]饶兴堂,任富建.光催化二氧化钛薄膜的制备工艺研究进展[J].稀有金属快报, 2006, 25 (10): 6-11.
    [18]胡林华,戴松元,王孔嘉.溶胶-凝胶法制备的纳米TiO2结构相变及晶体生长动力学[J].物理学报, 2003, 52 (9): 2135-2139.
    [19]廖东亮,肖新颜,张会平等.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程, 2003, 23 (4): 191-194.
    [20]董素芳,赵素梅.溶胶-凝胶法制备二氧化钛凝胶的影响因素分析[J].现代技术陶瓷,2005, (3): 10-12.
    [21]陈建军,陈晓春,李庆余等. Sol-Gel法制备纳米二氧化钛凝胶的工艺优化[J].中国有色金属学报, 2000, (S1): 84-87.
    [22]王瑞斌,戴松元,王孔嘉. Sol-Gel法制备纳米TiO2过程中水解pH值的影响及其性能表征[J].功能材料, 2002, 33 (3): 296-297.
    [23]任民,张玉军,刘素文等.稀土离子(La3+、Y3+)掺杂对纳米TiO2光催化剂性能影响分析.陶瓷, 2006 (07): 26-28.
    [24]孙丽萍,高山,赵辉等.纳米二氧化钛的晶型转变及光催化性能研究[J ].功能材料, 2004, 35 (05): 632-634.
    [25]黄冬根,廖世军,党志.氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能[J].化学学报, 2006, 64 (17): 1805-1811.
    [26]孙猛,田中敏,李新建.旋涂法制备二氧化钛纳米薄膜的光催化性能研究[J].科学技术与工程, 2005, 5 (14): 931-934.
    [27]余家国,赵修建.热处理工艺对TiO2纳米薄膜光催化性能的影响[J].硅酸盐学报, 1999, 27 (06): 769-774.
    [28]符崖,黄岳山,范杰等.表面活性剂对溶胶凝胶法制备TiO2纳米晶的影响[J].医疗卫生装备, 2005, 26 (08): 25-28.
    [29]黄岳山,范杰,岑人经等.溶胶凝胶法制备纳米二氧化钛[J].生物医学工程研究, 2005, 24 (04): 255-257.
    [30] Sonawane R S. Kate B B. Dongare M K. Preparation and photo-catalytic activity of Fe-TiO2 thin film prepared by sol-gel dip-coating [J]. Materials Chemistry and Physics, 2005, 85: 52-57.
    [31]赵德明,史惠祥.复合纳米TiO2光催化氧化苯酚的动力学[J].中国给水排水, 2004, 20 (1): 48-49.
    [32] Baifu Xin, Zhiyu Ren, Peng Wang, et al. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts [J]. Applied Surface Science, 2007, 253 (9): 4390-4395.
    [33] M. Uzunova, M. Kostadinov, J. Georgieva, et al. Photoelectrochemical characterisation and photocatalytic activity of composite La2O3-TiO2 coatings on stainless steel [J]. Applied Catalysis B: Environmental, 2007, 73 (1-2): 23-33.
    [34] Hyeok Choi, Elias Stathatos, Dionysios D. Dionysiou. Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications[J]. Applied Catalysis B: Environmental, 2006, 63 (1-2): 60-67.
    [35] Bickley R I, Gonzalez-Carreno T, Gonzalez-Elipe A R, et al. Characterisation of iron/ titanium oxide photocatalysts [J]. Chem Soc Faraday Trans, 1994, 90 (15): 2257-2264.
    [36]吴俊华,宋瑞金. TiO2光催化氧化降解气体污染物影响因素的探讨[J].卫生研究, 2007, 36 (2): 249-251.
    [37]黎娜,徐自力,于连香等.纳米TiO2/SiO2对甲苯-SO2体系气相光催化作用的影响因素[J].吉林大学学报(地球科学版), 2007, 37 (1): 153-157.
    [38]俞欣,梅凯,徐荣等.光催化处理二甲苯废气的影响因素研究[J].环境工程学报, 2007, 1 (5): 84-87.
    [39] S. Devahasdin, C. Fan.TiO2 photocatalytic oxidation of nitric oxide:transient behavior and reaction kinetics [J]. Photochem Photobiol A: Chemistry, 2003, 156:161-170.
    [40]任成军,钟本和,刘恒等.以工业偏钛酸为原料制备光催化性纳米TiO2薄膜[J].化工进展, 2003, 22 (10): 1089-1092.
    [41] Zhongqing Liu, Yanping Zhou, Zhenhua Li. et al. Preparation and characterization of (metal, nitrogen)-codoped TiO2 by TiCl4 sol-gel auto-igniting synthesis[J]. Rare Metals, 2007, 26 (3): 263-270.
    [42]尹保忠.二氧化钛光催化剂的制备和改性研究[D].华东师范大学, 2004.
    [43]任成军,钟本和,刘恒等.纳米二氧化钛薄膜光催化剂的合成特性[J].高校化学工程学报, 2004, 18 (01): 57-61.
    [44]胡晓力,陈东丹,胡晓洪等.表面活性剂对TiO2粉体粒度和形貌的影响[J].中国陶瓷工业, 2003, 10 (04): 25-28.
    [45]单凤君,高杰.溶胶-凝胶法制备纳米TiO2粉体分散性的研究[J].化学与生物工程, 2004, (04): 25-26.
    [46] N. Wetchakun, S. Phanichphant. Effect of temperature on the degree of anatase–rutile trans- formation in titanium dioxide nanoparticles synthesized by the modified sol-gel method[J]. Current Applied Physics, 2008, 8 (3-4): 343-346.
    [47]鞠剑峰,李澄俊,徐铭等.多孔纳米Fe3+/TiO2的制备及其光催化性能[J].精细化工, 2006, 23 (05): 417-434.
    [48]王卫伟,张志焜.铁离子对二氧化钛晶型转变的影响[J].功能材料, 2003, 34(4): 429-430.
    [49]杨华明,史蓉蓉,张科等.纳米二氧化钛光催化剂改性研究进展[J].化工新型材料, 2005, 33 (06): 57-59.
    [50] Chung-Chieh Chang, Jing-Yi Chen, Tzu-Ling Hsu, et al. Photocatalytic properties of porous TiO2/Ag thin films[J]. Thin Solid Films, 2008, 516 (8): 1743-1747.
    [51] Chun Hu, Yuchao Tang, Zheng Jiang, et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2 [J]. Applied Catalysis A: General, 2003, 253 (2): 389-396.
    [52] LászlóK?r?si, Szilvia Papp, Judit Ménesi, et al. Photocatalytic activity of silver-modified titanium dioxide at solid-liquid and solid-gas interfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007.
    [53]刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报, 2001, 22 (2): 215-218.
    [54]蔡邦宏.铁掺杂对二氧化钛结构和光催化性能的影响[J].云南大学学报(自然科学版), 2005, 27 (3A): 274-280.
    [55] Tianzhong Tong, Jinlong Zhang, Baozhu Tian, et al. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation[J]. Journal of Hazardous Materials, 2007.
    [56] Rominder P S, J unbiao L, John C C, et al. Air & Waste Manag Asso, 1999, 49 (5).1246 -1248.
    [57] A. Abdel Aal, M.A. Barakat, R.M. Mohamed. Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol[J]. Applied Surface Science, 2008.
    [58]郭洪蕾,顾德恩,杨邦朝.光催化活性TiO2薄膜的研究进展[J].电子元件与材料, 2006, 25 (3): 1-4.
    [59]周秀文,朱祖良,赵君科等. TiO2/CdS复合半导体光催化剂降解甲基橙的实验研究[J].环境污染治理技术与设备, 2006, 7 (1): 106-109.
    [60]谷学谦,董秀芹,张敏华等.固定化光催化氧化技术研究进展[J].化学反应工程与工艺,展, 2003, 22 (10): 1089-1092.
    [41] Zhongqing Liu, Yanping Zhou, Zhenhua Li. et al. Preparation and characterization of (metal, nitrogen)-codoped TiO2 by TiCl4 sol-gel auto-igniting synthesis[J]. Rare Metals, 2007, 26 (3): 263-270.
    [42]尹保忠.二氧化钛光催化剂的制备和改性研究[D].华东师范大学, 2004.
    [43]任成军,钟本和,刘恒等.纳米二氧化钛薄膜光催化剂的合成特性[J].高校化学工程学报, 2004, 18 (01): 57-61.
    [44]胡晓力,陈东丹,胡晓洪等.表面活性剂对TiO2粉体粒度和形貌的影响[J].中国陶瓷工业, 2003, 10 (04): 25-28.
    [45]单凤君,高杰.溶胶-凝胶法制备纳米TiO2粉体分散性的研究[J].化学与生物工程, 2004, (04): 25-26.
    [46] N. Wetchakun, S. Phanichphant. Effect of temperature on the degree of anatase–rutile trans- formation in titanium dioxide nanoparticles synthesized by the modified sol-gel method[J]. Current Applied Physics, 2008, 8 (3-4): 343-346.
    [47]鞠剑峰,李澄俊,徐铭等.多孔纳米Fe3+/TiO2的制备及其光催化性能[J].精细化工, 2006, 23 (05): 417-434.
    [48]王卫伟,张志焜.铁离子对二氧化钛晶型转变的影响[J].功能材料, 2003, 34(4): 429-430.
    [49]杨华明,史蓉蓉,张科等.纳米二氧化钛光催化剂改性研究进展[J].化工新型材料, 2005, 33 (06): 57-59.
    [50] Chung-Chieh Chang, Jing-Yi Chen, Tzu-Ling Hsu, et al. Photocatalytic properties of porous TiO2/Ag thin films[J]. Thin Solid Films, 2008, 516 (8): 1743-1747.
    [51] Chun Hu, Yuchao Tang, Zheng Jiang, et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2 [J]. Applied Catalysis A: General, 2003, 253 (2): 389-396.
    [52] LászlóK?r?si, Szilvia Papp, Judit Ménesi, et al. Photocatalytic activity of silver-modified titanium dioxide at solid-liquid and solid-gas interfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007.
    [53]刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报, 2001, 22 (2): 215-218.
    [54]蔡邦宏.铁掺杂对二氧化钛结构和光催化性能的影响[J].云南大学学报(自然科学版), 2005, 27 (3A): 274-280.
    [55] Tianzhong Tong, Jinlong Zhang, Baozhu Tian, et al. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation[J]. Journal of Hazardous Materials, 2007.
    [56] Rominder P S, J unbiao L, John C C, et al. Air & Waste Manag Asso, 1999, 49 (5).1246 -1248.
    [57] A. Abdel Aal, M.A. Barakat, R.M. Mohamed. Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol[J]. Applied Surface Science, 2008.
    [58]郭洪蕾,顾德恩,杨邦朝.光催化活性TiO2薄膜的研究进展[J].电子元件与材料, 2006, 25 (3): 1-4.
    [59]周秀文,朱祖良,赵君科等. TiO2/CdS复合半导体光催化剂降解甲基橙的实验研究[J].环境污染治理技术与设备, 2006, 7 (1): 106-109.
    [60]谷学谦,董秀芹,张敏华等.固定化光催化氧化技术研究进展[J].化学反应工程与工艺,toluene [J]. Catalysis Today, 1998, 40 (4): 353-365.
    [82]韩德强,李勇.薄膜制备技术中溶胶-凝胶工艺研究[J].四川化工, 2005, 8 (5): 45-47.
    [83]银董红,邓吨英,陈恩伟等.溶胶-凝胶法制备二氧化钛薄膜的研究进展[J].工业催化, 2004, 12 (1): 1-6.
    [84]毛立群,杨建军,李庆霖等.多孔纳晶TiO2薄膜光催化剂的研制及其催化性能[J].催化学报, 2003, 24 (7): 553-557.
    [85]杨海明.沸石负载二氧化钛光催化脱氮研究[D],大连理工大学, 2006.
    [86]李娜,王超,朱苏敏.聚乙二醇作造孔剂制备大孔溶胶凝胶生物活性玻璃[J].无机化学学报, 2005, 21 (1): 95-100.
    [87]曾翎,尹春玲.纳米TiO2玻璃膜的制备与表征[J].平顶山师专学报, 2004, 19 (5): 22-25.
    [88]孙如宝,袭著革,晁福寰等.活性碳纤维负载二氧化钛净化室内甲苯[J].中国卫生工程学, 2005 (6): 332-334.
    [89]亓新华,王红娟.二氧化钛光催化剂负载工艺研究进展[J].电镀与精饰, 2006, 28 (1): 25-29.
    [90]罗洁,陈建山,周刚. TiO2光催化剂的改性和固定化研究进展[J].化工科技市场, 2005, (9): 19-24.
    [91]张彭义,余刚,蒋展鹏.固定化二氧化钛膜的制备及其光催化性能[J].中国环境科学, 2000, 20 (5): 236-240.
    [92]杨克莲,叶征琦,杜宗杰.热处理对纳米晶粒TiO2微粒晶型和晶粒大小的影响[J].城市环境与城市生态, 2003, 16 (2): 1-3.
    [93]袁俊秀,李杰,王玉萍.焙烧温度对纳米Mo-TiO2可见光催化活性的影响[J].金属热处理, 2007, 32 (1): 73-75.
    [94]刘守新,孙承林.热处理对纳米TiO2光催化活性的影响[J].化学工业与工程, 2004, 21 (3): 161-164.
    [95]吴忠标,赵伟荣.室内空气污染及净化技术[M].化学工业出版社, 2005.
    [96]张胜军,姚晓青,蒋欣.室内装修后苯、甲苯、二甲苯和甲醛污染调查[J].中国环境监测, 2004, 20 (4): 23-24.
    [97]姜秋实,钱立新,李淑芬.室内空气中苯含量的监测报告[J].职业与健康, 2004, 20 (8): 78.
    [98]王桂华,周中平,傅立新.室内空气中苯和甲苯浓度分布特征调查[J].上海环境科学, 2003, 22 (12): 977-978.
    [99]中国室内环境信息网,室内空气净化产品的功能测试规范(试行版)[EB/OL]. http://www.instrument.com.cn/bbs/images/upfile/2006218233927.doc, 2005-3-14.
    [100]刘肸.光催化-吸附联用技术降解室内空气中甲醛气体的实验研究[D].重庆大学, 2007.
    [101]常净宜.纳米TiO2催化剂协同非平衡等离子体降解室内空气中苯的实验研究[D].重庆大学, 2007.
    [102]潘国璋,紫外杀菌灯用石英玻璃的生产与质量[EB/OL]. http://www.glass.org.cn /calling Content.aspx?id=1904, 2003-11-3.
    [103]张亚宁,谢洪勇,徐巧莲.掺碳纳米TiO2光催化降解空气中苯的实验研究[J].中国粉体技术, 2007, (6): 18-22.
    [104]曹雅秀,刘振宇,郑经堂.活性炭纤维及其吸附特性[J].炭素, 1999, (2): 20-23.
    [105]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700