用户名: 密码: 验证码:
正极材料LiFePO_4的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1997年Padhi等首次报道具有橄榄石型结构的LiFePO4能作为锂离子电池正极材料以来,许多科研小组对其做了深入研究,认为LiFePO4原材料丰富、对环境友好、安全稳定,可作为锂离子电池理想的正极材料。LiFePO4的主要问题是电子导电率低和离子扩散性能差,目前主要采用三种方法改进其导电性能,(1)采用“软化学”合成方法和手段来控制产物颗粒的大小和形貌;(2)在颗粒表面包覆导电物质提高复合材料的导电能力;(3)离子掺杂以改善LiFePO4的电子电导率。因此在本论文中我们采用sol-gel法合成LiFePO4来控制产物粒径和形貌,采用原位聚合的方法在LiFePO4粒子表面包覆导电聚合物聚苯胺来改进LiFePO4的电化学性能。
     首先我们对锂离子电池正极材料的研究历史和发展过程进行了回顾,重点讨论了LiFePO4的合成方法和改性手段,分析了LiFePO4走向实际应用面临的问题和未来的研究方向。在第三章中我们采用高温固相法和sol-gel法合成了LiFePO4,对sol-gel法合成LiFePO4的条件进行了优化,并对在此优化条件下合成的LiFePO4样品利用X射线衍射(XRD)、扫描电镜(SEM)等方法对所得样品的晶体结构、表观形貌、粒径大小等进行了分析研究,并组装成模拟电池进行电池性能测试。充放电实验结果表明工艺优化样品的首次放电容量为131.3 mAh/g,充放电效率为91.5%,10次循环后容量保持率为95.5%。
     在第四章中我们采用化学氧化聚合的方法合成了导电聚合物聚苯胺,研究了氧化剂浓度,反应温度,反应时间,酸浓度对聚苯胺电导率,聚合产率的影响。得到优化的合成参数为过硫酸铵与苯胺单体的摩尔比为1:1,反应温度为5℃,反应时间为6 h,酸浓度为1 mol/L。在第五章中我们采用原位聚合的方法合成了不同聚苯胺含量的聚苯胺包覆的LiFePO4复合正极材料。研究结果表明,在LiFePO4粒子表面包覆导电聚合物聚苯胺可以提高其放电容量,改善其大电流放电时的循环性能。其中原位包覆25%聚苯胺的PAn-LiFePO4复合正极材料性能最好,以0.1 C进行充放电时,首次放电容量为140.3 mAh/g,以1 C进行充放电时,放电容量为116.5 mAh/g,循环50次后容量为118.7 mAh/g。
Since Padhi et al found lithium iron phosphate (LiFePO4) could be used as cathode material for the lithium ion batteries, many research groups have been devoted to study the performance of this material. They think that LiFePO4 is one of the most promising cathode materials for the lithium ion batteries because it is abundant, environmentally benign, stable and safe. The disadvantage of LiFePO4 is the low electrical conductivity and Li-ion diffusivity. Numerous approaches directed at overcoming these problems have been described in the literature, including adopting low temperature liquid-phase process to control particle size and morphology, coating conductive material by carbon or fine metal particles to enhance the electrical conductivity, and attempting at doping with supervalent cations to improve the stability of material structure. So we decide to adopt sol-gel method to control particle size and morphology and adopt in-situ polymerization method to coat polyaniline on the surface of LiFePO4 particle to improve the electrochemical performance of LiFePO4. The main contents of this paper are given as following.
     Firstly, we retrospect the development of cathode material for lithium ion batteries, focusing on the synthesis and improvement of properties of LiFePO4. The problems in application and researching direction in the future are analyzed and pointed out. Then the LiFePO4 has been synthesized by solid-state method and sol-gel method, and the synthetic conditions of sol-gel method were optimized. The crystalline structure, morphology of particles and crystalline size of the LiFePO4 samples prepared at this optimized condition were investigated by X-ray diffraction and scanning electron microscopy. The charge-discharge test results of the optimal LiFePO4 sample show that the first discharge capacity is 131.3 mAh/g, the charge-discharge efficiency is 91.5% and the capacity retain ratio is 95.5% after 10 cycles.
     Polyaniline (PAn), one of conductive polymers, is synthesized from aniline (An) by chemical oxidation polymerization method in chapter four. The effects of several factors (including oxidant concentration, reaction temperature, reaction time, acid concentration) were studied. The optimized parameter of synthesis is that the mole ratio of ammonium persulfate (APS) and An is 1:1, reaction temperature is 5℃, reaction time is 6 h, and acid concentration is 1mol/L, respectively. A series of polyaniline-LiFePO4 (PAn-LiFePO4) composites were synthesized by in-situ polymerization in chapter five. Research results showed that PAn-LiFePO4 composites had higher discharge capacity and better cycling performance. The PAn-LiFePO4 composite with 25 wt% polyaniline showed the best electrochemical performance.Its first specific discharge capacity was 140.3 mAh/g at 0.1 C and its specific discharge capacity was 118.7 mAh/g after 50 cycles at 1 C.
引文
[1]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社. 2004
    [2] K. Mizushima, P.C.Jones., P. J. Wiseman, et al. LixCoO2 (0    [3] O. Kazunori. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system[J]. Solid State Ionics, 1994, 69(3-4): 212-221.
    [4] S. Megahed, W. Ebner. Lithium-ion battery for electronic applications[J]. J. Power Sources, 1995, 54(1): 155-162.
    [5] J. M. Paulsen, J. R. Mueller-Neuhaus, J. R. Dahn. Layered LiCoO2 with a different oxygen stacking(O2 structure) as a cathode material for rechargeable lithium batteries [J]. J. Electrochem. Soc., 2000, 147(2): 508-516.
    [6] A. Rougier, P. Gravereau, C. Delmas. Optimization of the Composition of the Lil-ZNil+ZO2 Electrocde Materials: Structural, Magnetic, and Electochimica Studies[J]. J. Electrochem. Soc., 1996, (143): 1168-1175.
    [7] C. Y. Yao, T. H. Kao, C. H. Cheng, et al. Studies of electrochemical properties of lithium cobalt oxide[J]. J. Power Sources, 1995, (54): 491-493.
    [8] E. D. Jeong, M. S. Won, and Y. B. Shim. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction[J]. J. Power Sources, 2003, (119-121):70-77.
    [9] S. G. Kang, S. Y. Kang, K. S. Ryu, et al. Electrochemical and structural properties of HT-LiCoO2 and LT LiCoO2 prepared by the citrate sol-gel method[J]. Solid State Ionics, 1999, (120): 155-161.
    [10] A. Burukhin, O. Brylev, and P Hany. Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries[J]. Solid State Ionics, 2002, 151(1-4): 259-263.
    [11] S. M .Lala, L. A. Montoro, and J. M. Rosolen. LiCoO2 sub-microns particles obtained from micro-precipitation in molten stearic acid[J]. J. Power Sources, 2003, 124(1): 118-123.
    [12] Qiang Wu, Wenrong Li and Yan Cheng, et al. Homogenous LiCoO2 nanoparticles prepared using surfactant P123 as template and its application to manufacturing ultra-thin-film electrode[J]. Mater. Chem. Phys., 2005, (91): 463-467.
    [13] S. Castro-Garcia, M A Senaris-Rodriguez and A. Castro-couceiro. Influence of the synthesis and doping on the morphologic, structural and electrochemical properties of LiCo1-xMxO2 (M=Ni, Al, Mg) oxides[J]. Boletin De La Sociedad Espanola De CeramicaY Cidrio, 2004, 43(4): 780-786.
    [14] X. Yang, J. F. Ni, and Y. Y. Huang. Effect of Ti-doping on different morphologic LiCoO2[J]. Acta Physico-Chimica Sinica, 2006, 22(2): 183-188.
    [15] V. L. Mclarcn, A. R. West, M. Tabuchi. Study of the capacity fading mechanism for Fe-substituted LiCoO2 positive electrode[J]. J. Electrochem. Soc., 2004, 151(5): A672-A681.
    [16] J. Kim, M. Noh, J. Cho. Controlled nanoparticle metal phosphates (metal=Al, Fe, Ce and Sr) coatings on LiCoO2 cathode materials[J]. J. Electrochem. Soc., 2005, 152(6): A1142-A1148.
    [17] J. Cho, T. G. Kim, C. Kim. Comparison of A12O3 and AlPO4 coated LiCoO2 cathode materials for a Li-ion Cell[J]. J. Power Sources, 2005, 146(1-2): 58-64.
    [18] W. Hong, M. C. Chen. Modification of LiCoO2 by surface coating with MgO/TiO2/SiO2 for high-performance lithium-ion battery[J]. Electrochem. Solid State Lett., 2006, 9(2): A82-A85.
    [19] H. Miyashiro, A.Yamanaka and M.Tabuchi. Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2[J]. J. Electrochem. Soc., 2006, 153 (2): A348-A353.
    [20] M. Broussely, P. Biensan, B. Simon. Lithium insertion into host materials: the key to success for Li ion batteries[J]. Electrochim Acta, 1999, 45 (1-2): 3-22.
    [21] Richard Gover, Ryoji Kanno, Brian Mitchell, et al. The effects of sintering time on the structure and electrochemical properties of Li(Ni0.8Co0.2)O2[J]. J. Power Sources, 2000, (90), 82-88.
    [22] A. R. Naghash, J. Y. Lee. Lithium nickel oxyfluoride (Li1?zNi1+zFyO2?y) and lithium magnesium nickel oxide (Li1?z(MgxNi1?x)1+zO2) cathodes for lithium rechargeable batteries: II. Electrochemical investigations[J]. Electrochim. Acta, 2001, (46): 2293-2304.
    [23] Jaephil Cho, Tae-Joon Kim, Yong Jeong Kim, et al. High-Performance ZrO2-Coated LiNiO2 Cathode Material[J]. Electrochem. Solid State Lett., 2001, (4): A159-161.
    [24] Cho J , Thackeray M M. Structural Changes of LiMn2O4 Spinel Electrodes during Electrochemical Cycling[J]. J. Electrochem. Soc., 1999, 146 (10):3577-3581.
    [25] Xia Y Y, Yoshio M. An Investigation of Lithium Ion Insertion into Spinel StructureLi-Mn-O Compounds[J]. J. Electrochem. Soc., 1996, 143(3):825-833.
    [26] Hwang K T, Um W S,Lee H S,et al. Powder Synthesis and Electrochemical Properties of LiMn2O4 Prepared by an Emulsion-drying Method[J]. J. Power Sources, 1998, (74): 169-174.
    [27] Yang W S, Liu Q G, Qiu W H, et al. A Citric Acid Method to Prepare LiMn2O4 for Lithium-Ion Batteries[J]. Solid State Ionics, 1999, (121): 79-84.
    [28] Hwang B J, Santhanam R, and Liu D G. Effect of Various Synthetic Parameters on Purity of LiMn2O4 Spinel Synthesized by a Sol-gel Method at Low Temperature[J]. J. Power Sources, 2001, (101): 86-89.
    [29] Hon Y M,Lin S P,Fung K Z,and Hon M H. Synthesis and Characterization of Nano-LiMn2O4 Powder by Tartaric Acid Gel Process[J]. J European Ceramic Society, 2002, (22): 653-660.
    [30] Huang H T, Bruce P G. A 4V Lithium Manganese Oxide Cathode for Rocking-chair Lithium Ion Cells[J]. J. Electrochem. Soc., 1994, 141 (9):L106.
    [31] Liu W, Farrington G C. Synthesis and Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared by the Pechini Process[J]. J. Electrochem. Soc., 1996, 143(3): 879-881.
    [32] Lee Y J, Grey C P. 6Li Magic Angle Spinning Nuclear Magnetic Resonance Study of the Cathode Materials Li1+aMn2-aO4-a[J]. J. Electrochem. Soc., 2002, 149(2): A103-A114.
    [33] Taniguchi I, Song D, Wakihara M. Electrochemical Properties of LiM1/6Mn11/6O4 (M=Mn,Co,Al and Ni)as Cathode Materials for Li-Ion Batteries Prepared by Ultrasonicspray Pyrolysis Method[J]. J. Power Sources, 2002, (109): 333-339.
    [34] Wang G X, Bradhurst D H, Liu H K, and Dou S X. Improvement of Electrochemical Properties of the Spinel LiMn2O4 Using a Cr Dopant Effect[J]. Solid State Ionics, 1999, (120): 95–101.
    [35] Sugiyama. Positive Electrode Material for Secondary Lithium Battery[P]. US Patent, No.6087042, July 11, 2000
    [36] Kannan A M, Manthiram A. Surface/Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries[J]. Electrochem. Solid State Lett., 2002, 5(7): A167-A169.
    [37] T. Matsumura, R. Kanno, Y. Inaba, et al. Synthesis, structure, and electrochemical properties of a new cathode material, LiFeO2, with a tunnel structure[J]. J. Electrochem. Soc., 2002, 149(12): A1509-1513.
    [38] Y. S. Lee, S.S ato, Y. K. Sun, et al. A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling[J]. J. Power Sources, 2003, (119): 285-289.
    [39] A.Yamada, S.C.Chung, K.Hinokuma. Optimized LiFePO4 for lithium battery cathodes[J]. J. Electrochem. Soc., 2001, 148(3): A224-A229.
    [40] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1997, 144(4): 1188-1194.
    [41] M.Thackeray. Lithium-ion batteries-An unexpected conductor[J]. Nature Mater., 2002, 1(2): 81-82.
    [42] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.
    [43] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem. Soc., 1997, 144(5):1609-1613.
    [44] K. S. Nanjundaswamy, A. K. Padhi, J. B. goodenough, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds[J]. Solid State Ionics, 1996, 92(1-2): 1-10.
    [45] Osaka T, Nakajima T, Naoi K, et al. Electroactive polyaniline film deposited from nonaqueous organic media[J], Journal of Electrochemical Society, 1990, (137): 2139-2142.
    [46] V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson et al. Multipole Analysis of the Electron Density in Triphylite, LiFePO4, Using X-ray Diffraction Data[J]. Acta Cryst., 1993, (B49), 147-153.
    [47] N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. J. Power Sources, 2001, (97-98): 503-507.
    [48] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. J. Power Sources, 2001, (97-98): 508-511
    [49] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources, 2001, (97-98): 498-502.
    [50] Franger S, Le Cras F, Bourbon B, et al. LiFePO4 synthesis routes for enhanced electrochemical performance[J]. J. Electrochem. Soc., 2002, 5(10):A231-A233.
    [51] M. Higuchi, K. katayama, Y Azuma et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. J. Power Sources, 2003(119-121): 258-261.
    [52] Park K S, Son J T, Chung J T, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating[J]. Electrochemistry Communications, 2003, 5(10): 839-842.
    [53] Barker J, Saidi M Y, Swoyer J L. Lithium iron (Ⅱ) phospho-olivines prepared by a novel carbo- thermal reduction method[J]. Electrochem. Solid State Lett., 2003, 6(3):A53-A55.
    [54] Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 liuthium battery cathode[J]. Electrochem. Solid State Lett., 2002, 5(3): A47-A50.
    [55] Doeff M M, FinonesR, Yaoqin H. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium battery[A]. 11th International Meeting on Lithium Battery (IMLB) [C]. Monterey, CA, USA: 2002
    [56] Tucker M C, Doeff M M,Richardson T J, et al. 7Li and 31P magic angle spinning nuclear magnetic resonance of LiFePO4 type materials[J]. Electrochem. Solid State Lett., 2002, 5(5): A95-98.
    [57] Shoufeng Y, Peter Y Z. Whittinggham M S. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Communications, 2001, 3(9): 505-508.
    [58] Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. J. Power Sources, 2003(119-121):247-251.
    [59] N Iltcher, Y Chen, S Okada. J Yamaki. LiFePO4 storage at room and elevated temperatures[J]. J. Power Sources, 2003, (119-121):749-754.
    [60] P P Prosini, D Zane, M Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta, 2001, (46): 3517-3523.
    [61] S Franger, F L Cras, C Bourbon, H Rouault. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J]. J. Power Sources, 2003, (119-121): 252-257.
    [62] S Okada, S Sawa, M Egashira, J Yamaki, M Tabuchi, H Kageyama, T Konishi, A Yoshino. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries[J]. J. Power Sources, 2001, (97-98): 430-432.
    [63] H Huang, S-C Yin, L F Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochem. Solid State Lett., 2001, 4(1): A170-A172.
    [64]倪江锋,苏光耀,周恒辉等.锂离子电池正极材料LiMPO4的研究进展[J].化学进展, 2004, 16 (4): 554-560.
    [65] S. Yang, Y Song, P.Y Zavalij. Reactivity, stability and electrochemical behavior of lithium iron phosphates[J]. Electrochemistry Communications, 2002, 4(3):239-244.
    [66] S. Y. Chung, Y. M. C.. Microscale measurements of the electrical conductivity of doped LiFePO4[J]. Electrochem. Solid State Lett., 2003. 6(12): A278-A281.
    [67]丁燕怀,苏光耀,刘黎等.锆离子掺杂对LiFePO4电化学性能的影响[J].电源技术, 2006, 30(8): 657-659.
    [68] Heinze J. Electrochemistry of conducting polymers[J]. Synthetic Metals, 1991, 43(1-2): 2805-2823.
    [69] MacDiarmid A G, Mu S L, Somasiri N L D, et al. Electrochemical characteristics of“polyaniline”cathodes and anodes in a aqueous electrolytes[J]. Molecular Crystals and Liquid Crystals, 1985, 121(5): 187-190.
    [70] Desureville R, Jozefowicz M, Yu L T, et al. Elechemical chains using protolytic organic semiconductors[J]. Electrochemica Acta, 1968, 13(6): 1451–1458.
    [71] Macdiarmid A G, Chiang J C, Huang W S, et al. Protonic acid doping to the metallic regime[J]. Molecular Crystals and Liquid Crystals, 1985, 125(6):309-318.
    [72] Chiang J C, Macdiarmid A G.“Polyaniline”: Protonic acid doping of the emeraldine form to the metallic regime[J]. Synthetic Metals, 1986, 13(1-3): 193-205.
    [73] Macdiarmid A G; Chiang J C, Richter A F.“Polyaniline”: A new concept in conducting polymers[J]. Synthetic Metals, 1987, 18(3): 285-290.
    [74]曾幸荣.新型导电聚合物一聚苯胺[J].化工进展, 1988, (l): 42-46.
    [75]任斌,余成.导电聚苯胺的合成及其性能研究[J].光谱实验室, 2005, 22(l): 148-151.
    [76] Diaz A F, Logan J A. Electroactive polyaniline films[J]. Journal of Electroanalytical Chemistry, 1980, 111(1): 111-114.
    [77]潘春跃,曾燕.乳液聚合条件对聚苯胺性能的影响[J].高分子材料科学与工程, 2001, 17(3): 163-165.
    [78]朱新生,王新波,孙东豪.微乳液法制备导电聚苯胺的研究[J].合成技术及应用, 2002, 17(3): 5-7.
    [79] D D MacNeil, J R Dahn. The reaction of charged cathodes with nonaqueous solvents and electrolytes Li0.5CoO2[J]. J. Electrochem. Soc., 2001, 148(11): A1205-A1210.
    [80]刘汉三,杨勇,张忠如等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学, 2001, 7(2): 145-154.
    [81] B W Lee. Synthesis and characterization of spinel Li1-xCoyMn2-yO4 by oxalate precipitation[J]. Materials Letters, 2002, 55(6): 420-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700