用户名: 密码: 验证码:
湖南省绣球属(Hydrangea)植物资源及耐铝特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绣球属(Hydrangea L.)植物是园林中重要的观赏植物,又具有多种药用价值,同时,由于其在绣球花亚科演化上处于一个中心位置,具有重要的分类学上意义。
     湖南省是绣球属植物的一个分布中心,也是遭受铝毒严重的省份。绣球属中的八仙花作为耐铝植物对铝毒表现出较强的忍耐能力和积累能力。论文通过对湖南省绣球属资源的调查收集,比较绣球属植物的耐铝特性和生理响应,以期筛选出高耐铝的种或品种,为揭示植物耐铝机理和防治铝毒提供理论基础和实践指导。目前国内外对绣球属铝胁迫下耐铝毒特性的研究少见报道。
     论文从以下几个方面对绣球属植物资源及耐铝特性进行研究,结论如下:
     1、首次对湖南省绣球属植物资源进行调查,并以南岳衡山风景名胜区、八大公山国家级自然保护区、大围山国家森林公园的绣球属植物资源为调查对象,实地勘察绣球属植物的典型自然群落及种类数量,得出湖南省绣球属种类丰富,共有绣球属植物15种3变种,占中国现有绣球属资源的39.1%。
     2、为探讨绣球属几种植物叶片气孔器和表皮毛特征与系统学的关系,首次采用光学显微镜和扫描电镜对绣球属植物叶片表面进行观察,结果表明:不同植物单位面积的气孔密度、气孔器形态有差别,八仙花、蜡莲绣球、圆锥绣球气孔呈长椭圆形,柔毛绣球呈卵圆形,气孔密度最大是柔毛绣球,为819.43个/mm2,最小的是圆锥绣球,286.05个/mm2,这可能与其抗逆性和生长势有关。表皮毛及附属物在外形上区别明显,蜡莲绣球表皮毛呈狭长的线状,毛上附属物为丘状突起;柔毛绣球表皮毛呈片状,附属物为乳突状突起;圆锥绣球表皮毛呈圆锥状,附属物为星状突起;八仙花无明显表皮毛,附属物为颗粒状蜡被物。从所观察的气孔器、表皮毛的形态特征及表皮毛上附属物形状等的变化,反映出来的突显差异支持了中国树木志绣球属的划分。
     3、采用单因素试验设计方法,首次建立了绣球属SRAP分子标记最佳反应体系为25μL:10×PCR Buffer2.5μL、DNA模板30ng、Mg2+浓度1.6mmol/L、dNTPs浓度0.6mmol/L、TaqDNA聚合酶3.5U、引物浓度为0.2μmol/L。从110对引物中筛选出14对引物组合,对19份绣球属材料进行了SRAP扩增,共扩增出233条带,其中多态性带为232条,多态性比率为99.7%。基于Nei&Li对19份绣球属材料的遗传相似系数进行分析,大部分材料的遗传距离比较远,在GS值分别为0.27和0.43处,所有材料聚为4类,其中1号伞形绣球单独聚为1类;第2类为除八仙花18号品种外的其余7个栽培品种;第3类为八仙花栽培种18号、蜡莲绣球、阔叶蜡莲绣球、长柄绣球、大枝绣球、紫背绣球、光柄绣球、柔毛绣球、柳叶绣球;第4类包括6号圆锥绣球和10号白背绣球。19份供试材料划分为3个系,即绣球花系(Ser. Petalanthae),由伞形绣球和八仙花7个栽培品种组成;腊莲系(Ser. Piptopetalae):由腊莲绣球、阔叶腊莲绣球、长柄绣球、大枝绣球、紫背绣球、柔毛绣球、光柄绣球、狭叶绣球和八仙花栽培种18组成;挂苦树系(Ser.Heteromallae),由圆锥绣球和白背绣球组成。4、首次对来源绣球属3个系的植物进行铝胁迫下光合特性比较。结果表明:随着Al3+浓度升高,几种绣球属植物的叶绿素含量和类胡萝卜素含量均呈先逐渐升高,而后逐渐降低。较低浓度的铝(≦0.15mmol·L-1)有利于绣球属植物叶绿素和类胡萝卜素的积累,对光合作用起到促进作用。随着Al3+浓度的升高,几种试材的净光合速率(Pn)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、气孔导度(Cond)均呈先上升,而后逐渐下降趋势。而饱和蒸汽压(VpdL)则相反,呈先降后升的趋势。铝胁迫对叶室气温(Tair)和叶面温度(Tleaf)的影响较小。通过隶属函数法分析得出绣球属3个系的几种植物抗性的强弱顺序为柔毛绣球>腊莲绣球>圆锥绣球>八仙花。5、从铝吸收速率、吸收量、增加幅度三个方面对绣球属植物进行铝吸收特性研究,结果表明:八仙花、蜡莲绣球、柔毛绣球、圆锥绣球这四个植物材料Al元素的吸收速率与Al3+浓度的关系呈一元一次直线方程,且相关系数均在0.95以上,与Michaelis-Menten酶动力学方程不相符合。推断该4种绣球属植物对Al元素的吸收属于被动吸收。八仙花、蜡莲绣球、柔毛绣球和圆锥绣球在铝浓度为0.10 mmol.L-1溶液中连续培养一段时间,对Al3+的吸收速率随时间延长而下降,而对Al3+的吸收量随时间延长而增加,但增加幅度随时间延长而减少,在0-4h内增加幅度相对较大,4h以后,铝的吸收渐趋于饱和。
     6、Al3+胁迫下八仙花各品种的生理指标出现一系列的变化。随着Al3+胁迫液浓度的增大,其叶片组织内可溶性糖含量出现明显的增加;脯氨酸含量变化幅度较大;可溶性蛋白质含量的变化与铝胁迫浓度呈负相关;丙二醛的含量因品种不同,增加的速度有异;SOD酶、POD活性的活性呈现先上升后下降的单峰变化趋势;叶片细胞电解质伤害性外漏率(IL)与处理浓度呈正相关。
Hydrangea is an important ornamental plant, which has high medicinal value. There also is an important taxonomic significance for its central position in the evolution of Hydrangeoideae.
     Hunan province is one of the distribution centers of Hydrangea as well as a province suffering serious aluminum toxicity. Hydrangea macrophylla is an Al-tolerant species, and showed a strong Al-tolerance and Al-accumulation ability. This paper studied Al-tolerance characteristics and physiological response of Hydrangea under Al-toxicity stress by collecting and investigated the resources of Hydrangea in Hunan province. The purpose of the study is to select a strong Al-tolerant species or varieties, and provide a theoretical basis practice comment for revealing plant Al-tolerance mechanisms, preventing and remeding Al-toxicity. Up to now, there was few report about Hydrangea Al-tolerance characteristics.
     This paper studied the resource and Al-tolerance characteristic of Hydrangea. The results are as follows:
     1. An investigation on typical natural community, species and quantity of Hydrangea resources in Hunan Province was conducted by randomly set up a number of observation points in Nanyue Mountain Scenic Spots, Badagong Mountain National Nature Reserve and Dawei Mountain National Forest Park. The result showed that there were 15 species and 3 varieties in Hunan Province, account for 39.1%of total Hydrangea resources in China.
     2. To explore relationship between phylogenetic and the character of trichome and stomatal apparatus of leaves of some species of Hydrangea, the leaves surface was observed by using the optical microscope and scanning electron microscope. The result showed that stomatal density and stomatal apparatus shape among four species were differenct. The stomatal shape of H. macrophylla, H.strigosa, and H. paniculata's stomatal were elongated oval, while H.villosa was oval. The stomatal density of H.villosa was the biggest (819.43/mm2), and the smallest one was H. paniculata(286.05/mm2), which may be related to the resistance and growth. Trichome modality differences were shown in the length, width, density and shape, etc., and its trichome appendage had obvious difference in appearance. H.strigosa's trichome was long and narrow linear form, and trichome appendage were hill-like protuberances; H. villosa's trichome was flaky, adjunct for the papilla-like protuberances; H. paniculata's trichome was cylindrical cone, adjunct for the stellate protrusions; H. macrophylla had no obvious trichome, adjunct for granular material.The highlighting differences from the observed morphological characteristics of stomatal apparatus and trichome and the changing of appendage shape on trichome supported the classification published in《Chinese tree species》for the genus Hydrangea.
     3. The optimal SRAP system in Hydrangea was established with single factor's experimental design for 25μL:10×PCR Buffer2.5μL, template DNA 30ng, Mg2+1.6mmol/L, dNTPs0.6 mmol/L, Taq enzyme3.5U, primer 0.2μmol/L. Fourteen out of 110 pairs of primer combinations were selected,233 SRAP bands were generated in 19 materials of Hydrangea, of which 232 were polymorphic, polymorphism rate is 99.7%.The genetic similarity coefficient based on Nei&Li of 19 materials of Hydrangea were analyzed, most of which had far genetic distance, and were classified into four groups at the GS(0.43and 0.27). Group 1 included H.umbellata; Group 2 included the other 7 cultivated species besides No.18; Group3 included No.18 and H.strigosa, H.strigosa var, H.longipes, H.rosthornii, H.strigosa var, H.villosa, H.glabripes, H.lingii; Group4 included H. hypoglauca and H. panciulata. The result of cluster analysis based on SRAP showed that the 19 materials of Hydrangea can be divided into 3 series, namely, Ser.Petalanthae, including H.umbellata and No12,13,14,15,16,17,19; Ser. Piptopetalae, including No 18 and H.strigosa, H.strigosa var, H.longipes, H.rosthornii, H.strigosa var, H.villosa, H.glabripes, H.lingii; Ser. Heteromallae, including H. hypoglauca and H. panciulata.
     4. The photosynthetic characteristics was studied. The result showed that chlorophyll and carotenoid content of several Hydrangea gradually increased first and then gradually decreased when the Al3+concentration increased. It was suggested that low concentration of aluminum (≦0.15mmol·L-1) was conducive to the accumulation of chlorophyll and carotenoids of Hydrangea, and played a positive role on photosynthesis. Net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci) of several Hydrangea increased first with the increase of Al3+concentration, and then gradually declined, while the saturated vapor pressure (VpdL), by contrast, showed tendency to ascend first and then descend, Aluminum stress had little effect on Tair (leaves room temperature) and Tleaf (leaf temperature) of several Hydrangea. The ability of Al-tolerance was H.villosa.>H.strigosa>H.paniculata>H.macrophylla by Subordinate Function (SF).
     5. Aluminum absorption characteristics of Hydrangea were studied on the three aspects of aluminum absorption rate, absorption capacity and increase extent. The results showed that the absorption rate of Al in the four materials of H.macrophylla、Hstrigosa、H.villosa and H.paniculata was related with Al3+concentration as a linear equation in one variable, and the correlation coefficient was over 0.95, which didn't match the Michaelis-Menten enzymatic kinetic equations. Therefore, we concluded that Al absorption of four Hydrangea were passive absorption. Continuously cultivated for some time in 0.10 mmol.L"1 solution of Al3+,the aluminum absorption rate of H.macrophylla,H.strigosa,H.villosa and H.paniculata descended with time, while the absorption capacity increased and increase extent descended. The increase extent was relatively large in the 0~4h, and after 4h the absorption of aluminum gradually saturated.
     6. Physiological characteristics of H.macrophylla changed a lot under Al3+stress, with the increase of stress, the soluble sugar content in leaf tissue of 7 H.macrophylla had significantly increased. The proline content of H.macrophylla was very sensitive to Al3+stress, with the stress increased, it changed in a big range. There was a negative relationship between soluble protein content in leaf and Al3+stress, while injurious electrolyte leakage rate (IL) was positively correlated. The MDA content under aluminum stress increased as the stress increased, but the rate of increase varied by species.Along with the stress increase,SOD and POD activity of 7 varieties first increased and then decreased in the manner of a single peak curve.
引文
[1]卫兆芬.绣球属[A].中国植物志[M].北京:科学出版社,1995,V35(1):203-258
    [2]卫兆芬.中国绣球属植物的修订[J].广西植物,1994,14(2):101~121
    [3]陈有民主编.园林树木学[M].北京:中国林业出版社.1991,
    [4]绣球根有望用于治疗自体免疫疾病(简报).广东药学院学报,2009,25(3):241
    [5]戚继忠,由士江,王洪俊,等.园林植物清除细菌能力的研究[J].城市环境与城市生态,2000,4(13):36-38
    [6]McClintock E. A monograph of the genus Hyarangea [J]. Proc Calif Acad Sci,1957.29:147~256.
    [7]Ma, J. F. Hiradate, S. Nomoto, K. Iwashita, T. Matsumoto, H. Internal Detoxification Mechanism of Al in Hydrangea[J]. Plant Physiology+Plant Cell 0032-0889, Volume 113, Issue 4, 1997, Pages 1033~1039
    [8]彭尽晖,周朴华,周红灿,等.湖南省绣球属植物资源调查[J].湖南农业大学学报(自然版),2008,5(34):563~567
    [9]陈焕镛.绣球亚科资料的研究[J].植物分类学报,1954,3(2):108~161
    [10]郑万钧.中国树木志[M].第二卷.北京:中国林业出版社,1985
    [11]Maximowicz, C.J. Revision Hydrangearum ASIAE Orientalis[J]. Mem. Acad. Sci. St. Petersb. Ser, 1867,7,10 (16):6~18
    [12]Rehder,A.Saxifragaceae-Hydrangea.In:Sargent(ed.),Pl. Wills,1911-1913,1:25~41,150~151,579
    [13]McClintock, E. The cultivated Hydrangeas[J]. Baileya,1956,4:165~175
    [14]McClintock, E. Hydrangeas[J]. Nation. Hort. Mag,1957b,36:270~279
    [15]McClintock, E. Climbing Hydrangeas[J]. Calif. Hort. J.1973,34(4):141~145
    [16]杜洁.四川省及重庆市绣球属的系统与进化[D].硕士论文.2000,5
    [17]孔红.甘肃绣球属植物的分类研究[J].廊坊师范学院学报,2006,4:79~80,100
    [18]黄林,黄小云,何平,等.四川省及重庆市绣球属(HydrangeaLinn.)的分类研究(Ⅰ)—研究历史及地理分布[J].西南师范大学学报(自然版),2001,26(3):317~319
    [19]黄小云,何平,黄林.四川省及重庆市绣球属的分类研究(Ⅱ)[J].西南师范大学学报,2001,26(5):603~615
    [20]Lin Zhang. X,Nie. Y,He. D,Wu. Construction of a genetic linkage map for cotton based on SRAP [J]. Chinese Science Bullitin.2003,48(19):2063~2067
    [21]李严,张春庆.西瓜杂交种遗传多样性的SRAP标记分析[J].园艺学报,2005,32~41
    [22]郭大龙.部分柿属植物SRAP-PCR反应体系的优化[J].果树学报,2006,23(1):138~141
    [23]RiazA, PotterD, StePhen M.GenotyPing of Peach and nectarine eultivars with SSR and SRAP moleeular markers[J]. J Amer Soc Hort Sci,2004,129:204~211
    [24]Budak H. Comparative analysis of seeded and vegetative biotype buffalograsses based on phgho-genetic relationship using ISSRs,SSRs,RAPDs, andSRAPs[J]. Crop Science,2004,44:623~633
    [25]RiazA, PotterD, StePhen M.GenotyPing of Peach and nectarine eultivars with SSR and SRAP moleeular markers[J]. J Amer Soc Hort Sci,2004,129:204~211
    [26]Ferriol M.Pico B.Nuez F.Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLPmarkers[J].Theor Appl Genet,2003,107:271~282
    [27]Ruiz J J,Gareia M S,PieoB, etal.Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers[J]. J Amer Soe Hort Sci,2005, 130:88~95
    [28]WANG C H.SHU H R.Development of the study in apple germplasm resources and genome by DNA molecular marke r techniques [J]. Journal of Fruit Science,2001,18 (2):104~109 (in Chinese)
    [29]王刚.黄瓜SRAP遗传连锁图谱的构建及侧枝基因定位[J].生命科学,2004,34(6):510~516
    [30]G. Li. C. F. Quiros Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001,103:455~461
    [31]于栓仓..栽培番茄与秘鲁番茄种间杂种的DNA指纹鉴定[J].分子遗传育种,2005,3(1):61-65
    [32]于栓仓.主要番茄品种的分子鉴别研究[J].中国农学通报,2005,21(5):84-89
    [33]LI G, GAO M,YANG B.QUIROS C F.Ggne for gene alignment between the Brassica and Arobidopsis genomes by direct transcripto me mapping[J].Theor.Appl.Genet,2003,107:168~180
    [34]沈晓莹.水稻抗铝毒害分子机理研究[C].浙江大学,2001.
    [35]Paul B. Larsen, etal. Molecular and physiological analysis of Arabidopsismutants exhibiting altered sensitivities to aluminium [J].Plant and Soil,1997,192~327.
    [36]李海生,张志权.茶Camellia sinensis L对铝的吸收与累积研究[J].中山大学学报(自然科学版),2002,1(41).72~75
    [37]熊毅,李庆逵.中国土壤[M].科学出版社,1987,39
    [38]冯英明,喻敏,王昌全,等.铝毒诱导植物细胞反应研究进展[J].华中农业大学学报.2005,3(24):320~324
    [39]Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants[J]. Plant Physiol, 1995,107: 315~321.
    [40]孔繁翔,桑伟莲,蒋新,等.铝对植物毒害及植物抗铝作用机理[J].生态学报.2000,5(20).855~862
    [41]Parker D R, Bertsch P M. Formation of the Al13 tridecameic polycation under diverse synthesis conditions. Environ. Sci. Technol.,1992,26:914~921.
    [42]姜应和,周莉菊,彭秀英.铝在土壤中的形态及其植物毒性研究概况[J].草原与草坪.2004,3(106):16~19
    [43]刘冬莲,石洪凌.浅谈铝的污染及毒性效应[J].化学世界,2002,(4):223~224.
    [44]黄娟,孔国辉,夏汉平.铝毒与有机酸和磷的关系[J].应用与环境生物学报.2005,11(4):498~503
    [45]李海生,张志权,陈连周.铝对茶幼苗生长的影响[J].广东教育学院报,2000,3(20):107-110
    [46]曹洪法,高吉喜,舒俭民.铝对马尾松幼苗影响的研究[J].生态学报,1992,5(3):217~219
    [47]Jian F M. Role of organic acids in detoxification of aluminum in higher plants[J]. Plant Cell Physiol, 2000,41(4):383~390.
    [48]Sivaguru M, Horst W J. The distal part of the transition zone is the most aluminium—sensitive apical root zone of Zea mays 1. Plant Physiol,1998,116:155~163
    [49]M atsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol, 2000,200:1~46
    [50]Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol,1995,1(7): 315-321
    [51]Horst W J. The role of the apoplast in aluminum toxicity and resistance of higher plants:a review. Z Pflanzenern ehr Bodenkd.1995,158:419~428
    [52]Samuals TD, Kucukekyuz K and Mngaly RZ. AI partitioning patterns and root growth as related to AI sensitivity and Al tolerance in wheat. Plant Physiol.1997.113; 527~534.
    [53]沈宏,严小龙.铝对植物的毒害和植物抗铝毒机理及其影响因素[J].土壤通报,2001,32(6):281-285.
    [54]Bennet R J, Breen C M. The aluminum signal:new di. mensions to mechanisms of aluminum tolerance[J]. Plant S 1,1991,143:153~166.
    [55]Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap[J]. J Exp Bot,1993,44:437~446.
    [56]刘鹏,徐根娣,郭水良,等.南方4种草本植物对铝胁迫生理响应的研究[J].植物生态学报2005,29(4):644~651
    [57]Blarney F P C, Edmeades D C, Wheeler D M. Roleof root cation exchange capacity in differential aluminum tolerance of Lotus species [J].JPlantNutr,1990,13:729~744.
    [58]Taylor G T. The physiology of aluminum tolerance in higher plants [J].Commun Soil Sci PlantAnal,1988,19:1179~1194.
    [59]ISHIKA W A S, WAGATSUMA S. Plasm a membrane permeability of root-tip cells following temporary exposure to Alionsis a rapid measure of Altolerance among plants pecies [J].Plant Cell Physiol,1998,39(5):516~525.
    [60]Miyasaka S C, Kochian L V, Shaff J E, et al. Mechanisms of aluminum tolerance in wheat. Aninvesti-gation of genotypic differences in rhizosphere pH, K+andH+transport, and root-cell membrane potentials[J]. Plant Physiol,1989,91:1188~1196.
    [61]Pellet D M, Paoemik L A, Jones D L, et al. Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat[J].Plantsoil,1997,192:63~68.
    [62]Miyasaka S C,Burajg, Hhowellrk, etal.Mechanism of aluminum tolerance in snapbeans. Root exudation of citricacid [J].PlantPhysiol,1991,96:737~743.
    [63]Delhaize E, Craig S, Beatom C D, et al. Aluminum tolerance in wheat(Triticum aestivum).I. Uptake and distribution of aluminum in root apices[J]. PlantPhysiol,1993,103:685~693.
    [64]Mayf, Taketa S, Nomotok et al Aluminum tolerance genes on the short arm of chromosome Rare linked to organic acid release in triticale [J].Plant Physiol,2000,122:687~694.
    [65]何龙飞,刘友良,沈振国,等.铝对小麦根营养元素吸收和分布的影响[J].电子显微学报,2000,19(5):685~694.
    [66]Martin R B. Aluminium speciation in biology [A].CHADWICKDJ,WHELANJ. Aluminium in Biology and Medicine[C].NewYork:Wiley,1988.5~25.
    [67]Majf, Hifadates, Nomotok, et al. Internal detoxification mechanism of Al in hydrangea. Identification of Al from in the leaves[J]. PlantPhysiol,1997,113:1033~1039.
    [68]何龙飞,沈振国,刘友良.铝胁迫对小麦根系液泡膜ATP酶、焦磷酸酶活性和膜脂组成的效应[J].植物生理学报,1999,25(4):350~356.
    [69]Nordsteom D K, May H M. Aqueous equilibrium data for mononuclear aluminum species[A].Sposito G. Environment Chemistry of Aluminum[C].Boca Raton,FL:CRC Press,1996.39~80.
    [70]Ma J F, Hiradates, Matsumoto H. High aluminum resistance in buck wheat.II. oxalic acid detoxifier aluminum internally[J].Plant Physiol,1998,117:753~759.
    [71]Suhaydac G, Haug A. Organic acids reduce aluminum toxicity in maize root membranes [J]. Physiol Plant,1986,68:189~195.
    [72]Martin F, Rubini P, Cote R, et al. Aluminum polyphosphate complenes in the mycorrhizal basidiomycete Laccaris bicolor. a 27Al-nuclear magnetic resonance study [J]. Planta,1994, 194:241~246.
    [73]Anill A.Induction of aluminum tolerance by low doses of aluminum in the nutrient solution[J].Plant Physiol,1984,76:551~ 555.
    [74]Basu U, Godbold D, Taylorg J.Aluminum resistance in Triticum aestivum associated with enhanced exudation of malate [J].J Plant Physiol,1994,144:747~753.
    [75]Fink W, Liefland M, Mendgen K. Comparsion of various stress responses in oat in compatible and nonhost resistant interactions with rust fungi [J].Mol Plant Pathol,1990,37:309~321.
    [76]Snowden K C, Gardner R C. Five genes induced by aluminum in wheat(TriticumaestivumL.) roots[J].PlantPhysiol,1993,103:855~861.
    [77]Zhang G, Taylorg J. Effect of biological inhibitiors on kinetics of aluminium uptake by excised roots and purified cell wall material of aluminium-tolerant and aluminium-sensitive cultivars of Triticum aestivum [J]J Plant Physiol,1991,138:533~539.
    [78]郑成经,喻勋林,郑重.华中植物区的特有种子植物[J].中南林学院学报,1998,18(1):1-4.
    [79]陈功锡,廖文波,张宏达.武陵山地区种子植物区系特征及植物地理学意义[J].中山大学学报(自然 科学版),2001,40(3):74~77.
    [80]祁承经.湖南植被[M]长沙:湖南科学技术出版社.1990,1~420.
    [81]祁承经,林亲众.湖南树木志[M]长沙:湖南科学技术出版社.2001,7,210~217.
    [82]左家哺,朱巽,彭代文.湖南省南岳原生性森林群落的研究Ⅳ包石栎锐齿槲栎林[J].广西植物,2004,24(3):224~231
    [83]左家哺,田伟政,彭代文,等.湖南省南岳原生性森林群落研究Ⅰ甜槠林[J].湖南农业大学学报(自然科学版),2001,27(2):121~126.
    [84]王影,周守标,王春景,等.安徽贝母属植物叶片的比较解剖学研究[J].植物研究,2006,26(6):676~684
    [85]杨丽华,黄璜,陈灿,等.湖南省三种野生鱼腥草气孔显微观察[J].作物研究,2006(3):243~245
    [86]傅志强,黄磺,何保良,等.水稻叶片气孔特性及其相关性[J].湖南农业大学学报(自然科学版),2007,33(6):646~650
    [87]邹锋,谭晓风,何小勇,等.不同种源小叶蚊母气孔长度、宽度与密度的关系[J].西南林学院学报,2009,29(3):19~21,43
    [88]郝刚,胡启明.绣球亚科花粉形态的研究[J].热带亚热带植物学报19964(3):26~31
    [89]郝刚,胡启明.绣球亚科的脉序研究[J].广西植物16(2):155-160
    [90]赵兰枝,刘弘,宋海鹏,等.不同观赏南瓜品种叶片气孔研究[J].河南科技学院学报(自然科学版),2008,36(2):29~31
    [91]马丁.气孔[M].张崇浩译.北京:科学出版社,1987.1-73
    [92]李润唐.张映南.田大伦.柑橘类植物叶片的气孔研究[J]..果树学报.2004,21(5):419~424
    [93]曹五七,李逊,谢林,等.杂种棉花叶片气孔形态及数量的扫描电镜观察[J]..四川农业大学学报.1995.13(2):158~160,256
    [94]谢果珍,舒少华,王沫,等.不同居群栝楼叶表皮气孔形态研究[J].时珍国医国药,2008,19(12):2956~2958
    [95]吉春容,李世清,冯宏昭,等.不同株型夏玉米冠层叶片气孔特性的差异[J].西北农林科技大学学报(自然科学版),2008,36(5):57~63
    [96]刘丽霞,程红卫,陈温福.不同类型水稻剑叶气孔长、宽度与气孔密度的研究[J].水稻栽培,2001(2):5~8
    [97]强胜主编.植物学[M].北京:高等教育出版社,2006.63-65
    [98]FERRIOL M,PICO B.NUEZE Genetic diversity of some accessions of some Cucurbita maximafrom Spain using RAPD and SRAP markers[J].Genetic Resources and Crop Evolution,2003,50(3):227-238
    [99]李艳香,李达,彭尽晖,等.八仙花SRAP反应体系的建立与优化[J].湖南农业科学,2008,6:14-16
    [100]郭大龙,罗正荣.部分柿属植物SRAP-PCR反应体系的优化[J].果树学报,2006,23(1):138~141
    [101]文雁成,王汉中,沈金雄,等.用SRAP分析中国甘蓝油菜品种的遗传多样性和遗传基础,中国农业科学,20063,9(2):246~256
    [102]应小芳,刘鹏.铝胁迫对大豆叶片光合特性的影响[J].应用生态学报,2005,16(1):166~170.
    [103]HAMPP H,SCHNABL H. Effect of aluminum ions on 14CO2 2 fixation and membrane system of isolated spinach chloroplast s. Z Pflanzenphysiol,1975,76:300~306.
    [104]PETTERSSON A,HALLBOR L,BERGMAN B,et al. Al effect s on uptake and metabolism of phosphorus by the cyanobacterium anabaena cylindrical [J]. Plant Physiol,1988,86(1):112~116.
    [105]赵会娥,贺立源,章爱群,等.铝胁迫对植物光合作用的影响及其机理的研究进展[J].华中农业大学学报.2008,2(1):155~160
    [106]丁磊,胡万良,王伟.遮荫对天女木兰光合特性及生长的影响[J].林业资源管理,2009,3(6)
    [107]徐根成.四川两种野生假俭草耐荫性的研究[D].北京林业大学硕士论文,2003.
    [108]肖浪涛,王三根.植物生理学实验技术[M].中国农业出版社.2005,8.
    [109]吴楚,范志强,王政权.磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格局的影响[J].应用生态学报,2004,15(6):935-940.
    [110]KONRAD M L F,SILVA J B,FURLANI P R,et al.Gas ex-change and chlorophyll fluorescence in six coffee cultivars un-der aluminum stress[J].Bragantia Campinas,2005,64(3):339~347.
    [111]肖祥希,刘星辉,杨宗武,等.铝胁迫对龙眼幼苗光合作用的影响[J].热带作物学报,2005,26(1):63-69.
    [112]Kozaki A, Takeka G. Photorespiration protects C3 plants from photo oxidation [J]. Nature,1999, 384:557~560.
    [113]Nogues S, Alogre L. An increase in water deficit has no impact on the photosynthetic capacity of field grown Mediterranean plants [J].Funct. Plant Bio.,2002,29:621~630.
    [114]Takeba G, Kozaki A. Photorespiration in an essential mechanism for the protection of C3 plants from photo oxidation [A]. In:Satoh K, Murata N. Stress responses of photosynthetic organisms [M]. Amsterdam:Elsevier Science.1998.1:5~36.
    [115]周云龙主编.植物生物学[M].北京:高等教育出版社.1999,11,53~56.
    [116]韩振海,王永章,王倩.植物的离子吸收动力学研究的现状和前景.北京农业大学学报,1994,20(4):381~387
    [117]田仁生,刘厚田.酸化土壤中铝及其植物毒性[J]..环境科学,1990,11(6):41~46
    [118]肖祥希.龙眼幼苗铝吸收特性的研究[J].林业科学,2005,3(41):43~47
    [119]高丽花.铝试剂比色法测定饮料中微量铝[J].华南热带农业大学学报,2006,4(12):12~14
    [120]王宝利,吴沿友,刘丛强.植物吸收环境中金属元素的动力学模型[J].地质地球化学,2002,4(30):53~56
    [121]焦海华.根的溢泌现象和根限微生物[J].晋东南师专学报,1997,3
    [122]尤江峰,杨振明.铝胁迫下植物根系的有机酸分泌及其解毒机理[J].植物生理与分子生物学学报,2005,2(4):111~118
    [123]Ma J.Role of organic acids in detoxification of Al in higher plants [J]. Plant and Cell Physiology,2000,44:383~390
    [124]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.
    [125]汤章诚.现代植物生理学试验指南[M].北京:科学出版社,1999.
    [126]张志良.植物生理学试验指导(第二版)[M].北京:高等教育出版社,1990.
    [127]王惠群,孙福增,彭克勤,等.淹水处理对水稻叶片膜脂过氧化作用及细胞透性的影响[J].湖南农业大学学报,1996,22(3):222~224.
    [128]吴国胜,王永健,姜亦巍.细胞膜热稳定性及保护酶和大白菜耐热性的关系[J].园艺学报1995,22(4):353~358
    [129]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56~61.
    [130]萧浪涛,王三根.植物生理学试验技术[M].北京:中国农业出版社,2005.
    [131]吕长平,徐艳,成明亮.土壤含水率对牡丹生理生化特性的影响[J].湖南农业大学学报(自然科学版),2007,33(5):580~583.
    [132]Devi S R, Yamamoto Y, Matsumoto H. An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells [J]. Inorganic Biochemistry, 2003,97(1):59~68.
    [133]周红灿.八仙花铝胁迫下的生理特性研究[D].硕士论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700