用户名: 密码: 验证码:
杂质元素Si对超高强铝合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高强铝合金是航空航天工业中主要的结构材料。近年来,高纯度的超高强铝合金的应用比重日益增大,但有关杂质元素对合金微观组织和力学性能的影响缺乏针对性研究。本文以典型杂质元素Si为研究对象,以7050合金为基础添加不同含量的Si元素配制合金,通过熔铸、均匀化退火、热挤压和固溶时效处理制备力学性能测试试样,并通过常温拉伸试验、断裂韧性试验、扫描电镜(SEM)、能谱分析(EDS)和金相显微镜(OM)等测试手段和方法,研究杂质元素Si对超高强铝合金微观组织、力学性能和断裂韧性的影响,并探讨杂质元素Si的存在形式、作用机理及容许限度。
     Si元素在超高强铝合金的存在形态与元素含量、热处理状态和加工方式密切相关。当Si含量低于0.134wt.%时,合金中未发现明显的含Si粗大析出相。在Si元素高于0.134wt.%的铸态组织中,Si元素主要以粗大颗粒状AlCuMgSi相(其中Si含量28wt.%)的形式富集在晶界上,同时有部分颗粒状杂质相(其中Si含量3wt.%)弥散分布于晶内;在均匀化退火组织中,晶界含Si析出相转变为AlCuFeSi相(其中Si含量5wt.%),而晶内分布的Si元素仍以弥散的颗粒为主,且Si含量基本不变;在挤压组织中,Al7Cu2Fe相和AlCuFeSi相等粗大不溶物被挤压破碎,并沿加工方向排列,晶内弥散的长条状析出相主要为AlZnMgCuSi相以及和基体成分类似的AlZnMgCu相;固溶时效处理后,粗大异质相呈不规则颗粒状分布于基体各处,数目随Si含量升高而显著增加,Si元素主要以Si含量20%左右的AlCuMgSi相存在。比较了双级时效、MIL处理、RRA回归再时效等多种热处理制度下合金的性能。结果表明,双级时效的温度和时间对合金性能影响较大,预拉伸处理由于变形不均导致合金塑性下降,而采用RRA回归再时效处理的7050合金具有最高的综合性能,屈服强度和抗拉强度分别达到566.04MPa和590.86MPa,伸长率11.18%,断裂韧性41.15MPa.m1/2,为本试验中最佳热处理工艺制度,并以此工艺为基础完成对其他合金的固溶时效处理。
     常温拉伸试验结果表明:当Si含量为0.134wt.%左右时拉伸力学性能最好,合金抗拉强度614.8MPa,屈服强度584.6MPa,伸长率13.7%。当Si含量高于0.134wt.%时,合金的各项性能均显著下降,特别是Si含量高于0.334wt.%时,屈服强度和抗拉强度相比峰值下降~14%,伸长率下降~37%。合金塑性对Si元素更加敏感,Si含量的增加导致合金组织及形变不均匀会强烈降低合金塑性。
     断裂韧性试验表明:Si元素强烈影响合金的断裂韧性。随着Si含量的增加,特别是当合金Si含量大于0.344wt.%时,合金断裂韧性显著下降。Si含量0.491wt.%的合金断裂韧性仅为Si含量0.033wt.%合金的56%。结合Hahn-Rosenfield模型探讨了合金断裂韧性与第二相粒子的关系,计算结果与试验结果的变化规律一致。Si元素形成的AlCuMgSi等粗大异质相质点的不利形状、相对紧凑的分布排列以及它们所占据的大量体积,容易造成局部塑性变形能力的强烈降低,减弱了材料对裂纹扩展的阻力,从而降低了合金的断裂韧性。随着Si含量的增加,这种作用愈加明显。
Considering the current status of research on impurity elements in 7xxx series ultra-high strength aluminum alloys, one of typical impurity elements - silicon is studied by designing alloys with different Si concentrations based on 7050 alloy. The effects of Si and heat treatment on the microstructure and properties of ultra high strength aluminum alloys were studied systematically by tensile test, fracture toughness test, scanning electron microscope (SEM), energy-dispersive spectrometry (EDS) and optical metallography (OM). The existing form, mechanism and allowable limit of these effects were discussed.
     There is a strong correlation among the existing form of Si, contents, heat treatment and processes. Coarse particles have not been found in alloys with Si content lower than 0.134 wt.%. When Si content is higher than 0.134%, AlCuMgSi phase with 28%Si is found on grain boundaries and heterogeneous phase containing 3%Si in grains. AlCuFeSi phase with 5%Si is observed on grain boundaries in homogeneous annealed alloys. After extrusion process, coarse particles break up and distribute along the extrusion direction together with splinter-liked AlZnMgCuSi precipitates in matrix. After aging treatment, coarse heterogeneous phase is everywhere and the quantity of particles is related to Si content. The existing form is AlCuMgSi with 20wt.%Si.
     The properties under different heat treatments, such as dual-stage aging, MIL and RRA, are compared. The results show that the highest properties are acquired by RRA treatment, with yield strength, tensile strength, elongation and fracture toughness of 566.04MPa, 590.86MPa, 11.18% and 41.15MPa.m1/2 respectively. Therefore, the RRA scheme is selected to treat all other samples. The results of tensile test under room temperature show that 0.134%Si Alloy possesses the best properties with yield strength, tensile strength and elongation of 584.6MPa, 614.8MPa and13.7% respectively. When Si content is higher than 0.344%, all properties, especially plasticity, drop sharply with the increase of Si content.
     The results of fracture toughness show that Si content has strong impact on alloy fracture toughness. The fracture toughness drops by a half as the Si content increases from 0.033% to 0.491%. Combined with Hahn-Rosenfield Model and considering the distribution, shapes and sizes of particles, the negative influence of coarse particles, such as AlCuMgSi phase, on the fracture toughness is discussed. The coarse particles may reduce local plastic deforming ability and resistence to crack propagation, with such an effect increasing with Si content.
引文
[1]冯云祥,刘静安.超高强铝合金的发展与研制开发方向[J].材料导报, 2004, 18(8A): 196.
    [2]陈昌麒.超高强度铝合金的发展[J].中国有色金属学报, 2002(3).
    [3] David A L, Ray M H.Aluminum Alloy Development Efforts for Compression Dominated Structure of Aircraft [J].Light Metal Age, 1991, 2(9): 11-15.
    [4] Srivatsan TS. Microstructure, Tensile Deformation and Fracture Behavior of Aluminum Alloy 7150 [J]. Journal of Materials Sci., 1992, 27 (17):4772.
    [5] Zakharov V V, Rostova T D. High-Resource High-Strength Aluminum Alloys [J]. Metal Science and Heat Treatment, 1995, 37(5-6): 203.
    [6] Senkov ON, Bhat RB, Senkova SV, et al. Effect of Sc and Heat Treatment on Microstructure and Properties of a 7xxx DC Cast Alloy [A]. The 9th Inter. Conf. on Aluminum Alloys [C]. 2004, Australia: 501.
    [7]刘昌斌等.高强高韧铝合金的研究现状及发展趋势[J].矿业工程, 2003, 23(5): 74-78, 82.
    [8]王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属, 2006, 30(2): 197-202.
    [9]潘志军.高强铝合金的研究现状及展望[J].铝加工, 2001, 24(4): 39-41.
    [10] L.F.Mondolfo. Aluminum Alloys: Structure & Properties [M], London, 1976: 845.
    [11] John Liu, Michael Kulak. A New Paradigm in the Design of Aluminum Alloys for Aerospace Application [J]. Materials Science Forum, 2000, 331-337: 127-140.
    [12] J.N.Fridlyander, O. G. Senatorova. Development and Application of High Strength Al-Zn-Mg-Cu Alloys [J]. Materials Science Forum, 1996, 217-212: 1813-1818.
    [13] D. A. Lukasak. Strong Aluminum Alloy Shaves Aircraft Weight [J]. Advanced Materials and Processes, 1991, 10: 46-49.
    [14]王祝堂,田荣璋.铝合金及其加工手册[M],中南大学出版社,长沙, 2000.
    [15]陈亚莉.波音777及其侯选动力装置的选材(一),航空制造工程, 1995, 1: 32.
    [16]刘云旭等.有色金属及热处理[M].北京:国防工业出版社. 1981.
    [17]张静,彭建,潘复生.工业纯铝中的化合物相[J].轻合金加工技术, 2000(5):1-6.
    [18]汝继刚等.高纯化对Al-Zn-Mg-Cu系高强铝合金性能的影响[J].航空材料学报, 2003, 23(10): 5-7.
    [19] Jeffvey B P,Nicholas J G,周建辉.喷射成形含铁、硅7150铝合金的组织和性能[J].上海钢研, 1998, 5: 35.
    [20] Poganitsch R,张育钦.高强Al-Zn-Mg-Cu合金的金属间化合物[J].轻合金加工技术, 1984, 9: 40.
    [21] You C P, Thompson A W, Ductile I M. Ductile Fracture Processes in 7075 Aluminum Alloy [J]. Metallurgical and Materials Transactions, 1995, 26A(2): 407-415.
    [22] Takanori Ohira, Teruo Kishi. Effect of Iron Content on Fracture Toughness and Cracking Processes in High Strength Al-Zn-Mg-Cu Alloy[J], Material Science and Engineering, 1986, 78: 9-19.
    [23]谢根栓,李晓钢. LC4铝合金断裂韧度的研究[J],材料科学与工艺, 1993, 1(2): 46-50.
    [24]李念奎,崔建忠. Al-Zn-Mg-Cu系合金组织对性能的影响[J].轻合金加工技术, 2008, 36(1): 5-10, 54.
    [25]吉田英雄.飞机用7050合金挤压材料的各种特性[J].高革译.轻合金加工技术, 1986(8): 38 -49.
    [26]田福全,崔建忠.超高强铝合金的显微组织[J].轻合金加工技术, 2006, 34(2): 48-53.
    [27] E. A. Tкаченко(前苏联)等.高强变形铝合金[J].任继嘉译,张录泉校.轻合金加工技术, 1986, 2: 36.
    [28] D. Najjar, T. Magnin, T.J. Warner. Influence of Critical Surface Defects and Localized Competition between Anodic Dissolution and Hydrogen Effects during Stress Corrosion Cracking of a 7050 Aluminium Alloy[J]. Materials Science and Engineering A, 1997, 238(2): 293-302.
    [29]蔡元华,郝斌,杨滨等.锰增韧高强铝合金的制备及微观组织[J] .材料热处理学报, 2006, 27(4): 69-72.
    [30]武恭,姚良均等.铝及铝合金材料手册[M],科学出版社,北京,1997.
    [31]王洪斌等. Al-Zn-Mg-Cu系超高强铝合金的研究现状和发展趋势[J].材料导报, 2003, 17(9): 1-5.
    [32]吴一雷,李永伟,强俊,等.超高强度铝合金的发展与应用[J].航空材料学报, 1994, 14(1): 49-55.
    [33]王永海,梁忠华,毛翔. 7022-T6, T73和T76热处理状态的电镜观察[J].轻合金加工技术, 1992, 21(6): 35.
    [34] Lorimer G W, Nicholson R B. The mechanism of phase transformation in crystalline solids [J]. Inst. Metals, London, 1968, 36.
    [35]贺永波,曾苏民.电解铝液中的Fe、Si、H、氧化铝夹杂对Al-Zn-Mg-Cu合金组织性能的影响[J].材料热处理学报, 2006, 27(4): 96-100.
    [36]张国英等. Al-Zn-Mg-Cu系铝合金中不同区域电子结构及应力腐蚀机理分析[J].金属学报, 2009, 45(6): 687-691.
    [37]赵中魁等.含Li的Al-Zn-Mg-Cu合金的研究进展[J].材料导报, 2006, 20(7): 69-70, 75.
    [38] Liu JH, et al. Slow Strain Rate Tension Test of High-Strength Aluminum Alloy 7075[J]. Mat. Sci. Technol., 2001.1: 37-40.
    [39] Kusui J, Fujii K. Development of Super High Strength Al-Zn-Mg-Cu PM Alloys[J]. Materials Science Forum. , 1996, 217-222: 1823.
    [40]段玉波等. 7050合金波音锻件用铸锭铸造工艺研究[J].铝加工, 2001, 24(6): 10-14.
    [41]祝国梁,疏达,王俊,等.铝及其合金熔体中去除杂质硅元素的研究进展[J].材料导报,2008, 22(10): 61-65.
    [42]石宝东等.铝合金熔体净化工艺的研究进展[J].材料导报, 2009, (23)4: 45-48, 65.
    [43]李天晓,许振明,张雪萍等.电磁分离降低铝硅合金中铁含量[J].上海交通大学学报, 2001, 35(5): 664-667.
    [44] J.W. Gao, D. Shu, J. Wang, et al. Effects of Na2B4O7 on the Elimination of Iron From Aluminum Melt[J]. Script Mater., 2007, 57: 197-200.
    [45]段海丽,张恒华,邵光杰,等.铈对过共晶Al-Si合金组织和性能的影响[J].铸造, 2005, (54): 1265.
    [46]王庆良,潘复生.稀土对7075铝合金相组成及力学性能影响[J].中国矿业大学学报, 1993, 12: 59-65.
    [47]高建卫.硼化物对铝熔体中杂质铁的净化作用及机理[D],上海交通大学博士学位论文,2010.
    [48] Hyde K B, Norman A F, Prangnel P B. The Effect of Cooling Rate on the Morphology of primary A13Sc Intermetallic Particles in Al-Sc Alloy[J]. Acta Mat, 2001, 49: 1327-1337.
    [49] Marquis E A, Seidman D N. Nanoscade Structural Evolution of A13Sc Precipitates in Al-Sc Alloy[J]. Acta Mat, 2001, 49: 1909-1919.
    [50]李海. Ag, Sc合金化及热处理工艺对7075铝合金的微观组织与性能影响研究[D].中南大学博士学位论文, 2005.
    [51] Milman Y V, Sirko A J, Lotsko P V, et al. Microstructure and Mechanical Porperties of Cast and Wrought Al-Zn-Mg-Cu Alloys Modified with Zr and Sc[J]. Mat. Sci. Forum, 2002, 396-402: 1217-1222.
    [52]陈祥,陈康华等.稀土Pr对Al-Zn-Mg-Cu-Zr合金组织和性能的影响[J].粉末冶金材料科学与工程, 2009, 14(3): 147-151.
    [53]王旭东,聂祚仁等. Er对Al-Zn-Mg-Cu合金抗腐蚀性能的影响[J].特种铸造及有色合金, 2009, 29(1): 76-79.
    [54]张茁,陈康华等.微量Yb对Al-Zn-Mg-Cu-Zr合金力学性能和断裂韧性的影响[J].粉末冶金材料科学与工程, 2008, 13(3): 145-149.
    [55] Durand J P H A, Pelloux, R M, et al. Properties of Splat-Quenched 7075 Aluminum Type Alloys [J]. Materials Science and Engineering, 1975, 23(2-3): 247-256.
    [56] E. Lavernia, G. Rai, N. J. Grant. A Review Rapid Solidification Processing of 7XXX Aluminum Alloys [J]. Materials Science and Engineering, 1986, 79: 211-221.
    [57] C. Suryanarayana, S. F. H. Froes. Development of Light Alloys by Rapid Solidification Processing [J]. The International Journal of powder metallurgy, 1990, 26, (2): 117-129.
    [58] X. Z. Li, V. Hansen, L.R. Wallenberg. HERM Study and Structure Modeling ofη'Phase, The Hardening Precipitates in Commercial Al-Zn-Mg-Cu Alloys [J]. Acta. Mater., 1999, 47(9): 2651-2659.
    [59] J. C. Werenskiold, A. Deschamps, Y. Brechet. Characterization and Modeling of Precipitation Kinetics in an Al-Zn-Mg-Cu Alloy [J]. Mater. Sci. Eng. A., 2000, 293: 267-274.
    [60] M.Nicolas, A. Deschamps. Characterization and Modeling of Precipitate Evolutionin an Al-Zn-Mg-Cu Alloy during Non-isothermal Heat Treatments[J]. Acta. Mater., 2003, 51: 6077-6094.
    [61]大西忠一.改善高强铝合金耐SCC性的新热处理方法[J].唐明达译.热处理, 1992, 6(2): 83-88.
    [62]谷亦杰,林建国,张永刚,等.回归再时效(RRA)处理对7050铝合金的影响[J].金属热处理, 2001, 1: 15-19.
    [63] T. Ogura, S. Hirosawa, T. Stao. Quantitative Characterization of Precipitate Free Zones in Al-Zn-Mg-Cu Alloys by Microchemical Analysis and Nanoindentation Measurement[J]. Sci. Tech. Adv. Mater., 2005, 5: 491-496.
    [64] T. S. Srivatsan, S. Sriram, D. Veeraraghaven. Microstructure, Tensile Deformation and Fracture Behavior of Aluminum Alloy 7055[J]. Mater. Sci., 1997, 32: 2883-2894.
    [65] T. Krol, D. Baither, E. Nembah. Quantification of the Detrimental Effects of Precipitate Free Zones on the Yield Strength of a Superalloy. Scripta Mater., 2003, 48: 1189-1194.
    [66] N. Ryum. The Influence of a Precipitation Free Zone on Mechanical Properties of an Al-Zn-Mg Alloy. Acta. Metall., 1968, 16(3): 327-332.
    [67]阎大京.时效制度对7475和7050铝合金应力腐蚀及剥落腐蚀性能的影响.材料工程, 1993, 4(2): 13-16.
    [68] Kelly A., Nichson RB. Strengthening Methods in Crystals[M]. Elsevier, Amsterdam, 1971.
    [69]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂韧性行为的影响[J].中南工业大学学报, 2000, 31(6): 528.
    [70]中国航空材料手册编辑委员会,中国航空材料手册[M].北京:中国标准出版社, 1989, 3: 256.
    [71]张录泉. 7xxx铝合金的双极时效[J].轻合金加工技术, 1986, 12: 16.
    [72] Xiong B Q, Zhang Y A, Shi L K, et al. Research on Ultra-High Strength Al-11Zn-2.9Mg-1.7Cu Alloy Prepared by Spray Forming Process[J]. Mater. Sci. Forum., 2005, 475 - 479: 2785.
    [73] Cina B. Reducing the Susceptibility of Alloy, Particular Aluminum Alloys to Stress Corrosion Cracking. U.S. Patent, No.3856584, Dec 24, 1974.
    [74] W. U. Islam, W. Wallace. 7475铝合金的你转变和再时效之敏感性[J].李西铭译,安希庸校.轻金属, 1985, 5:49.
    [75]宫波,赖祖涵.时效和RRA处理对国产7050铝合金性能的影响[J].东北工学院学报, 1989, 10(5): 49.
    [76]谢燮揆,范靖亚. Al-Zn-Mg-Cu系高强铝合金RRA处理[J].轻合金加工技术, 1996, 24(2): 31.
    [77]邱宏伟,于淑斌,马洪武. 7050铝合金厚板RRA处理过程中性能和组织的变化[J].轻合金加工技术, 1997, 25(9): 34.
    [78]金延,李春志,赵英涛,等. 7050合金显微结构分析[J].金属学报, 1991, 27(5): A317.
    [79] Mondal C,Mukhopashyay A K. On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) Phases Present in As-Cast and All-Healed 7055 Aluminum Alloy [J]. Mater. Sci. and Eng. A, 2005, 391: 367.
    [80]王晨,周静,杨志峰,等. 7050合金铸锭均匀化过程中的相的转变[J].轻合金加工技术, 2007, 35(1): 23.
    [81]王树滨,张光炎,赵莉等.对铝材国际统一状态代号的详细解读[J].铝合金加工技术, 2008, 36(6): 1-4.
    [82] MIL-H 6088G,美国军用标准,铝合金热处理.
    [83] LUKASAK. Aluminum Alloy Development Efforts for Compression Dominated Structure of Aircraft [J]. Light Metal Age, 1991, 49(10): 11-15.
    [84]曾渝,尹志民,潘青林等. RRA处理对超高强铝合金微观组织和性能的影响[J].中国有色金属学报, 2004, 14(7): 1188-1196.
    [85]张坤,刘志义,郑青春等.高Zn超高强铝合金的回归再时效处理[J].中南大学学报(自然科学版), 2005, 36(2): 188-195.
    [86]陆海庆,张思平. 7050-T7651铝合金预拉伸厚板生产工艺研究[J].铝加工, 2004, 157: 48-52.
    [87]冯正海.超高强铝合金的固溶处理及双级时效研究[J].轻合金加工技术, 2009, 37(10): 52-54.
    [88]韩小磊,熊柏青,张永安等.双级时效制度对7150铝合金微观组织和性能的影响[J].稀有金属, 2010, 34(2): 302-306.
    [89]尹志民,蒋蓉蓉,李建湘等.固溶后预冷拉伸变形对时效态HS755合金组织和性能的影响[J].铝加工, 2009, 6: 8-13.
    [90]李海,王芝秀,郑子樵.预变形及时效处理对7055铝合金组织和性能的影响[J]. 2006, 35(8): 1276-1279.
    [91]刘晓涛,董杰,崔建忠等.高强铝合金均匀化热处理[J].中国有色金属学报, 2003, 13(4): 909-913.
    [92] LI Hai, CAO Da-hu, WANG Zhi-xiu, et al. High-Pressure Homogenization Treatment of Al-Zn-Mg-Cu Aluminum Alloy [J]. Journal of Materials Science, 2008, 43(5): 1583-1586.
    [93]秦铁光.高强度铝合金多级时效处理[J].航空工艺技术, 1995, 2: 39.
    [94] Garcia-Cordovilla C, Louis E. Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy [J]. Mater. Sci. Eng., 1991, A132: 135.
    [95]侯太学.热处理对LC9铝合金锻件性能的影响[J].航天工艺, 1992, 5: 19.
    [96]戴晓元,夏长清,孙振起等. Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织和性能[J].中国有色金属学报, 2007, 17(3): 396-402.
    [97]潘连明,朱正锋,张国荣等.Al-Si系铸造铝合金材料的研究[J].机车车辆工艺, 2001, 7: 5-7.
    [98]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社, 2003: 189.
    [99]徐云庆. 7A04(LC4)超高强铝合金断裂韧性研究[D].广西大学硕士学位论文, 2008.
    [100]哈宽福.断裂物理基础[M].北京:科学出版社, 2003, 13.
    [101] Broek D. ROLE OF INCLUSIONS IN DUCTILE FRACTURE AND FRACTURE TOUGHNESS [J]. Engineering Fracture Mechanics: 1973, 5(1): 55-66.
    [102] Toda H, Kobayashi T, Takahashi A. Mechanical Analysis of Toughness Degradation Due to Premature Fracture of Course Inclusions in Wrought Aluminum Alloys [J]. Materials Science and Engineering A: 2000, 280(1): 69-75.
    [103] Kobayashi T. Strength and Fracture of Aluminum Alloys [J]. Mater. Sci. and Eng. A, 2000, 280(1): 8-16.
    [104] Nakai M, Eto T. New Aspect of Development of High Strength Aluminum Alloys for Aerospace Applications [J]. Mater. Sci. and Eng. A, 2000, 285(1-2): 62-68.
    [105] G. T. Hahn and A. R. Rosenfield. Metallurgical Factors Affecting Fracture Toughness of Aluminum Alloys [J]. Metall. Trans. A, 1975, 6: 653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700