用户名: 密码: 验证码:
偏心搅拌槽内宏观不稳定性的分离涡模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌是过程工业中常见的单元操作之一,在化工、食品、生物、制药等行业中的应用非常广泛。搅拌涉及到物料的混合、传热、传质、化学反应等操作,对槽内流场的研究是分析这些过程的基础。搅拌槽内流体的流动是一个高度复杂的、非稳态的过程,存在一种大尺度、低频率的流型变化现象,即宏观不稳定性,该现象对搅拌槽内的混合、传热、传质等过程有重要的影响,引起人们的高度重视。本文采用数值模拟和实验测试相结合的方法对偏心搅拌槽内的宏观不稳定性频率进行了研究,分析了宏观不稳定性对偏心搅拌槽内混合过程的影响。
     基于分离涡模型建立了搅拌数值模拟方法,对搅拌槽内的三维流场和混合过程进行了数值研究。分析了搅拌槽内流体的速度和湍动能分布以及功率消耗情况,并将分离涡模拟结果与LDV实验结果、大涡模拟结果和雷诺应力模拟结果进行了对比。结果证明分离涡模拟与实验结果吻合较好,能准确捕捉搅拌槽内流体的时均特征和非稳态流动特征,对湍动能及功率消耗的模拟结果也很好,具有和大涡模型相近的模拟精度,且计算量小,约为大涡模型计算量的80%。混合过程的模拟结果表明,分离涡模型对混合时间模拟精度远高于雷诺时均法,与实验值吻合较好,说明该模型也适用于搅拌槽内混合过程的模拟。
     利用基于分离涡模型的搅拌数值模拟方法对中心搅拌槽内的宏观不稳定性进行了研究,分析了层流、过渡流和湍流三种不同流动状态下的宏观不稳定性频率,并与大涡模拟及LDV实验结果进行了对比,结果吻合较好。研究发现,不同流动状态下的宏观不稳定性频率不一样,层流和湍流状态下各存在一个单一频率值,而过渡流时存在两个频率值,分别与层流和湍流时的宏观不稳定性频率值相接近。相比之下,层流状态下的宏观不稳定性频率比湍流状态时大,表明层流状态下中心搅拌槽内的宏观不稳定现象比湍流状态时明显。分离涡模拟结果与文献结果吻合较好,说明可以采用分离涡模型研究搅拌槽内的宏观不稳定性。
     建立了偏心搅拌的分离涡数值模拟方法,对偏心搅拌槽内的宏观不稳定性进行了数值模拟和PIV实验测量,对不同工况时的宏观不稳定性进行了可视化实验和频谱分析。结果发现,PIV实验结果与分离涡模拟结果吻合较好,都表明偏心搅拌时的宏观不稳定性频率主要在0.1~0.2 Hz范围内,约比中心搅拌时的宏观不稳定性频率高一个数量级,说明偏心搅拌时的宏观不稳定现象比中心搅拌时明显。对不同偏心率、雷诺数和桨径比时偏心搅拌槽内宏观不稳定性频率的研究发现,偏心搅拌时的宏观不稳定性频率随偏心率的增大而减小,高转速时偏心搅拌槽内的宏观不稳定性频率大,此外,桨径比对偏心搅拌槽内的宏观不稳定频率也有很大的影响,频率值随桨径比的增大而增大。
     采用雷诺时均法和基于分离涡模型建立的偏心搅拌数值模拟方法研究了偏心搅拌槽内的混合过程,对涡内和涡外两种加料位置时的混合时间做了对比,并与实验结果进行了比较。研究表明,分离涡模拟结果与实验结果吻合较好,与大涡模拟的精度相当,而雷诺时均结果与实验结果之间的偏差则高达60%。对涡内和涡外两种加料位置时混合时间的对比表明,宏观不稳定性对偏心搅拌槽内的混合过程有很大的影响,涡内加料时能缩短混合时间约12%~16%,这说明充分利用宏观不稳定性可以加快搅拌槽内的混合过程,提高混合效率。
Stirring has been recognized as a common unit operation in process industry and has numerous applications in chemical engineering, food processes, biological fermentations, pharmaceutical engineering, etc. Stirring involved in the mixing, heat and mass transfer, chemical reactions and other processes. Investigation on the internal flow field of the stirred tank is of great importance to study these processes. The fluid flow in stirred tank is highly complicated and transient. Besides, there is macroinstability (MI), which is essentially a kind of large-scale, low-frequency (large-scale is referred to the replacements of flow pattern and low-frequency means the period of each flow pattern is longer than the time of one rotation of impeller) temporal mean flow variation phenomenon. MI significantly affects the mixing performance of stirred tanks and accordingly has attracted more and more attention. In this paper, the MI in the eccentrically stirred tank was studied by the combination of the computational fluid dynamics (CFD) and experimental methods. The influence of MI on the mixing process in the eccentrically stirred tank was also investigated.
     The numerical simulation method of the stirred tank was firstly established based on the detached eddy simulation (DES) model and the three-dimensional flow fields as well as the mixing processes in stirred tanks were numerically investigated. The velocity and turbulent kinetic energy distributions as well as the power consumption of the stirred tank were mainly investigated and the numerical results were compared with the laser doppler velocimetry (LDV), large eddy simulation (LES) and Reynolds stress model (RSM) results. It was found that there were good agreements between the DES and LDV results, indicating that the DES model can capture the mean and instantaneous flow characteristics in the stirred tank accurately. The simulation results of the turbulent kinetic energy and turbulent kinetic energy dissipation were also satisfactory. The comparisons with the LES model showed that DES model can simulate the flow at less computational cost (about 80% of the LES model) as well as with nearly the same accuracy. Besides, numerical results of the mixing time obtained by the DES model were in good agreements with the experimental data, while the results from the Reynolds-averaged Navier-Stokes (RANS) method were not so good. The results showed that the DES model has higher accuracy than the RANS model, and can be used to simulate the mixing process in stirred tanks.
     The MI in the centrically stirred tank was numerically studied by the numerical simulation method established based on the DES model. The MI frequencies in the laminar, transitional and turbulent regimes were studied. The results were compared with the LES and LDV results and good agreements were observed. It was found that the MI frequencies in the centrically stirred tank under different flow regimes are not the same. There is a single MI frequency under the laminar and turbulent flow regimes, respectively. However, there are two MI frequencies under the transitional flow regime, which are nearly the same as the values observed under the laminar and turbulent flow regimes. By comparison, the value under the laminar flow regime is larger than that under the turbulent flow regime, which shows that the MI phenomenon under laminar flow regime is more obvious. The good agreements between the DES and literature results show that the macroinstability in stirred tanks can be investigated by the DES model accurately.
     The numerical simulation method of the eccentric stirred tank was then established based on the DES model. The macroinstability in the eccentrically stirred tank was studied by the numerical and PIV experimental method. The visualization analyses of the MI vortex under different operation conditions were presented and the frequency analyses were applied to the velocity recordings obtained by PIV measurements. The PIV experimental results were compared with the DES results and good agreements were observed. The MI frequency in eccentrically stirred tank was found in the range of 0.1~0.2 Hz, which is about 10 times larger than that of the centrically stirred tank. Accordingly, it can be concluded that the MI phenomenon in eccentrically stirred tank is more obvious. The influence of eccentricity, Reynolds number and impeller-tank diameter ratio were mainly discussed. It was found that the MI frequency increases with reducing the eccentricity or increasing the impeller rotational speed. Besides, there was great influence of the impeller-tank diameter ratio on the MI frequency. A positive linear correlation can be observed, which means higher ratio corresponding to a higher MI frequency.
     The influence of MI on the mixing process in eccentrically stirred tanks was also investigated by the RANS and DES model. The differences between the mixing times obtained when the tracer was added either inside or outside the processing MI vortex were studied. The DES results were compared with the experimental data and good agreements were observed. The accuracy of DES model is nearly the same with that of the LES model, while the discrepancy between the RANS and experimental results is as high as 60%. The comparison between the mixing times obtained inside and outside the MI vortex indicates that, in the cases studied in this paper, the in-vortex insertion can result in a mixing time reduction of 12%~16%. Results show that the presence of MI in the stirred tank has beneficial implications for mixing operations. The MI phenomenon should be made full use to speed up the mixing process and accordingly improve the mixing efficiency.
引文
[1]Verschuren I, Wijers J, Keurentjes J. Mixing with a Pfaudler Type Impeller:the Effect of Micromixing on Reaction Selectivity in the Production of Fine Chemicals [C]. Proceedings of the 10th European Conference on Mixing. Delft, Netherlands, July 2-5,2000:69-75.
    [2]Mavros P, Mann R, Vlaev S D, et al. Experimental Visualization and CFD Simulation of Flow Patterns Induced by a Novel Energy Saving Dual-Configuration Impeller in Stirred Vessels [J]. Chem. Eng. Res. Des.,2001, 79(8):857-866.
    [3]Campolo M, Paglianti A, Soldati A. Fluid Dynamic Efficiency and Scale-up of a Retreated Blade Impeller CSTR [J]. Ind. Eng. Chem. Res.,2002,41(2):164-172.
    [4]Li M, White G, Wilkinson D, et al. LDA Measurements and CFD Modeling of a Stirred Vessel with a Retreat Curve Impeller [J]. Ind. Eng. Chem. Res.,2004, 43(20):6534-6547.
    [5]Li M, White G, Wilkinson D, et al. Scale Up Study of Retreat Curve Impeller Stirred Tanks using LDA Measurements and CFD Simulation [J]. Chem. Eng. J., 2005,108(1-2):81-90.
    [6]Szalai E S, Arratia P, Johnson K, et al. Mixing Analysis in a Tank Stirred with Ekato Intermig(?) Impellers [J]. Chem. Eng. Sci.,2004,59(18):3793-3805.
    [7]Buwa V, Dewan A, Nassar A F, et al. Fluid Dynamics and Mixing of Single-Phase Flow in a Stirred Vessel with a Grid Disc Impeller:Experimental and Numerical Investigations [J]. Chem. Eng. Sci.,2006,61(9):2815-2822.
    [8]Dewan A, Buwa V, Durst F. Performance Optimizations of Grid Disc Impellers for Mixing of Single-Phase Flows in a Stirred Vessel [J]. Chem. Eng. Res. Des.,2006, 84(8):691-702.
    [9]Lamberto D J, Muzzio F J, Swanson P D. Using Time Dependent RPM to Enhance Mixing in Stirred Vessels [J]. Chem. Eng. Sci.,1996,51(5):733-741.
    [10]Nomura T, Uchida T, Takahashi K. Enhancement of Mixing by Unsteady Agitation of an Impeller in an Agitated Vessel [J]. J. Chem. Eng. Jpn.,1997,30(5):875-879.
    [11]Yao W G, Sato H, Takahashi K, et al. Mixing Performance Experiments in Impeller Stirred Tanks Subjected to Unsteady Rotational Speeds [J]. Chem. Eng. Sci.,1998,53(17):3031-3040.
    [12]Yoshihito K, Yutaka T, Masako B, et al. Improvement of Mixing Efficiencies of Conventional Impeller with Unsteady Speed in an Impeller Revolution [J]. J. Chem. Eng. Jpn.,2005,38(9):688-691.
    [13]高殿荣,郭明杰,李岩,等.变速搅拌混沌混合的PIV试验研究[J].机械工程学报,2006,42(8):44-48.
    [14]Yoshida M, Shigeyama M, Hiura T, et al. Liquid Flow in Impeller Region of an Unbaffled Agitated Vessel with Unsteadily Forward-Reverse Rotating Impeller [J]. Chem. Eng. Comm.,2007,194(9):1229-1240.
    [15]Yoshida M, Hiura T, Yamagiwa K, et al. Liquid Flow in Impeller Region of an Unbaffled Agitated Vessel with an Angularly Oscillating Impeller [J]. Can. J. Chem. Eng.,2008,86(2):160-167.
    [16]Yoshida M, Taguchi Y, Yamagiwa K, et al. Mixing Characteristics of Liquid Phase in an Unbaffled Vessel Agitated by Unsteadily Forward-Reverse Rotating Multiple Impellers [J]. Lat. Am. Appl. Res.,2004,34(1):35-40.
    [17]Yoshida M, Kimura A, Yamagiwa K, et al. Movement of Solid Particle on and off Bottom of an Unbaffled Vessel Agitated by Unsteadily Forward-Reverse Rotating Impeller [J]. J. Fluid Sci. Technol.,2008,3(2):282-291.
    [18]Tezura S, Kimura A, Yoshida M, et al. Agitation Requirements for Complete Solid Suspension in an Unbaffled Agitated Vessel with an Unsteadily Forward-Reverse Rotating Impeller [J]. J. Chem. Technol. Biotechnol.,2007,82(7):672-680.
    [19]Tezura S, Kimura A, Yoshida M, et al. Solid-Liquid Mass Transfer Characteristics of an Unbaffled Agitated Vessel with an Unsteadily Forward-Reverse Rotating Impeller [J]. J. Chem. Technol. Biotechnol.,2008,83(5):763-767.
    [20]Yang B, Kamidate Y, Takahashi K, et al. Unsteady Stirring Method Used in Suspension Polymerization of Styrene [J]. J. Appl. Polym. Sci.,2000,78(7): 1431-1438.
    [21]Yang B, Takahashi K, Takeishi M. Unsteady Stirring Method Staged Used in Suspension Polymerization of Styrene [J]. J. Appl. Polym. Sci.,2001,82(8): 1873-1881.
    [22]Yang B, Takahashi K. Effect of an Unsteady Agitation Method on Drop Coalescence Characteristics in Suspension Polymerization of Styrene [J]. Can. J. Chem. Eng.,2001,79(5):760-764.
    [23]Yoshida M, Kitamura A, Yamagiwa K, et al. Gas Hold-Up and Volumetric Oxygen Transfer Coefficient in an Aerated Agitated Vessel Without Baffles Having Forward-Reverse Rotating Impellers [J]. Can. J. Chem. Eng.,1996,74(1):31-39.
    [24]Yoshida M, Ito A, Yamagiwa K, et al. Power Characteristics of Unsteadily Forward-Reverse Rotating Impellers in an Unbaffled Aerated Agitated Vessel [J]. J. Chem. Technol. Biotechnol.,2001,76(4):383-392.
    [25]Yoshida M, Yamagiwa K, Ito A, et al. Flow and Mass Transfer in Aerated Viscous Newtonian Liquids in an Unbaffled Agitated Vessel Having Alternating Forward-Reverse Rotating Impellers [J]. J. Chem. Technol. Biotechnol.,2001, 76(11):1185-1193.
    [26]Yoshida M, Watanabe M, Yamagiwa K, et al. Behaviour of Gas-Liquid Mixtures in an Unbaffled Reactor with Unsteadily Forward-Reverse Rotating Impellers [J]. J. Chem. Technol. Biotechnol.,2002,77(6):678-684.
    [27]Yoshida M, Taguchi Y, Yamagiwa K, et al. Design and Operation of Unbaffled Aerated Agitated Vessels with Unsteadily Forward-Reverse Rotating Impellers Handling Viscous Newtonian Liquids [J]. J. Chem. Technol. Biotechnol.,2003, 78(4):474-483.
    [28]Masiuk S. Mixing Time for a Reciprocating Plate Agitator with Flapping Blades [J]. Chem. Eng. J.,2000,79(1):23-30.
    [29]Masiuk S, Kawecka J. Mixing Energy Measurements in Liquid Vessel with Pendulum Agitators [J]. Chem. Eng. Process.,2004,43(2):91-99.
    [30]Masiuk S, Rakoczy R. Power Consumption, Mixing Time, Heat and Mass Transfer Measurements for Liquid Vessels that are Mixed using Reciprocating Multiplates Agitators [J]. Chem. Eng. Process.,2007,46(2):89-98.
    [31]Masiuk S, Rakoczy R, Kordas M. Comparison Density of Maximal Energy for Mixing Process Using the Same Agitator in Rotational and Reciprocating Movements [J]. Chem. Eng. Process.,2008,47(8):1252-1260.
    [32]Hirata Y, Dote T, Yoshioka T. Performance of Chaotic Mixing Caused by Reciprocating a Disk in a Cylindrical Vessel [J]. Chem. Eng. Res. Des.,2007, 85(5):576-582.
    [33]Komoda Y, Inoue Y, Hirata Y. Mixing Performance by Reciprocating Disk in Cylindrical Vessel [J]. J. Chem. Eng. Jpn.,2000,33(6):879-885.
    [34]Komoda Y, Inoue Y, Hirata Y. Characteristics of Laminar Flow Induced by Reciprocating Disk in Cylindrical Vessel [J]. J. Chem. Eng. Jpn.,2001,34(7): 919-928.
    [35]Komoda Y, Inoue Y, Hirata Y. Characteristics of Turbulent Flow Induced by Reciprocating Disk in Cylindrical Vessel [J]. J. Chem. Eng. Jpn.,2001,34(7): 929-935.
    [36]Kamienski J, Wojtowicz R. Dispersion of Liquid-Liquid Systems in a Mixer with a Reciprocating Agitator [J]. Chem. Eng. Process.,2003,42(12):1007-1017.
    [37]Arratia P E, Kukura J, Lacombe J, et al. Mixing of Shear Thinning Fluids with Yield Stress in Stirred Tanks [J]. AIChE J.,2006,52(7):2310-2322.
    [38]Alvarez M M. Using Spatio-Temporal Asymmetry to Enhance Mixing in Chaotic Flows:From Maps to Stirred Tanks [D]. Rutgers:The State University of New Jersey,2000.
    [39]Alvarez M M, Arratia P E, Muzzio F J. Laminar Mixing in Eccentric Stirred Tank Systems [J]. Can. J. Chem. Eng.,2002,80(4):546-557.
    [40]Cervantes M I S, Lacombe J, Muzzio F J, et al. Novel Bioreactor Design for the Culture of Suspended Mammalian Cells. Part I:Mixing Characterization [J]. Chem. Eng. Sci.,2006,61(24):8075-8084.
    [41]Ascanio G, Brito M, Fuente E, et al. Unconventional Configuration Studies to Improve Mixing Times in Stirred Tanks [J]. Can. J. Chem. Eng.,2002,80(4): 558-565.
    [42]Cabaret F, Rivera C, Fradette L, et al. Hydrodynamics Performance of a Dual Shaft Mixer with Viscous Newtonian Liquids [J]. Chem. Eng. Res. Des.,2007,85(5): 583-590.
    [43]Cabaret F, Fradette L, Tanguy P A. Effect of Shaft Eccentricity on the Laminar Mixing Performance of a Radial Impeller [J]. Can. J. Chem. Eng.,2008,86(6): 971-977.
    [44]Chung K H K, Barigou M, Simmons M J H. Reconstruction of 3D Flow Field Inside Miniature Stirred Vessels Using a 2D PIV Technique [J]. Chem. Eng. Res. Des.,2007,85(5):560-567.
    [45]高殿荣,李岩.层流搅拌槽内几何非对称三维混沌混合流场的CFD模拟[C].大连:第四届全国流体传动及控制学术会议,2006:564-570.
    [46]Kramers H, Barrs G M, Knoll W H. A Comparative Study on the Rate of Mixing in Stirred Tanks [J]. Chem. Eng. Sci.,1953,8(2):35-42.
    [47]Nishikawa M, Ashiwake K, Hashimoto N, et al. Agitation Power and Mixing Time in Off-Centering Mixing [J]. Int. Chem. Eng.,1979,19(1):153-159.
    [48]Medek J, Fort I. Mixing in Vessel with Eccentrical Mixing [C]. Proceedings of the Fifth European Conference on Mixing. Wurzburg:West Germany,1985:263-280.
    [49]Karcz J, Cudak M, Szoplik J. Stirring of a Liquid in a Stirred Tank with an Eccentrically Located Impeller [J]. Chem. Eng. Sci.,2005,60(8-9):2369-2380.
    [50]Karcz J, Szoplik J. An Effect of the Eccentric Position of the Propeller Agitator on the Mixing Time [J]. Chem. Pap.,2004,58(1):9-14.
    [51]Szoplik J, Karcz J. An Efficiency of the Liquid Homogenization in Agitated Vessels Equipped with Off-Centered Impeller [J]. Chem. Pap.,2005,59(6): 373-379.
    [52]Montante G, Bakker A, Paglianti A, et al. Effect of the Shaft Eccentricity on the Hydrodynamics of Unbaffled Stirred Tanks [J]. Chem. Eng. Sci.,2006,61(9): 2807-2814.
    [53]Hall J F, Barigou M, Simmons M J H, et al. Mixing in Unbaffled High-Throughput Experimentation Reactors [J]. Ind. Eng. Chem. Res.,2004,43(15):4149-4158.
    [54]Hall J F, Barigou M, Simmons M J H, et al. Comparative Study of Different Mixing Strategies in Small High Throughput Experimentation Reactors [J]. Chem. Eng. Sci.,2005,60(8-9):2355-2368.
    [55]Hall J F, Barigou M, Simmons M J H, et al. Just Because It's Small Doesn't Mean It's Well Mixed:Ensuring Good Mixing in Mesoscale Reactors [J]. Ind. Eng. Chem. Res.,2005,44(25):9695-9704.
    [56]Hall J F, Barigou M, Simmons M J H, et al. A PIV Study of Hydrodynamics in Gas-Liquid High Throughput Experimentation (THE) Reactors with Eccentric Impeller Configurations [J]. Chem. Eng. Sci.,2005,60(22):6403-6413.
    [57]Cabaret F, Fradette L, Tanguy P A. Gas-Liquid Mass Transfer in Unbaffled Dual-Impeller Mixers [J]. Chem. Eng. Sci.,2008,63(6):1636-1647.
    [58]Szoplik J, Karcz J. Mixing Time of a Non-Newtonian Liquid in an Unbaffled Agitated Vessel with an Eccentric Propeller [J]. Chem. Pap.,2008,62(1):70-77.
    [59]Galletti C, Brunazzi E. On the Main Flow Features and Instabilities in an Unbaffled Vessel Agitated with an Eccentrically Located Impeller [J]. Chem. Eng. Sci.,2008,63(18):4494-4505.
    [60]Frohlich J, von Terzi D. Hybrid LES/RANS Methods for the Simulation of Turbulent Flows [J]. Prog. Aerosp. Sci.,2008,44(5):349-377.
    [61]Alvarez M M, Shinbrot T, Zalc J, et al. Practical Chaotic Mixing [J]. Chem. Eng. Sci.,2002,57(17):3749-3753.
    [62]Ohmura N, Makino T, Kaise T, et al. Transition of Organized Flow Structure in a Stirred Vessel At Low Reynolds Number [J]. J. Chem. Eng. Jpn.,2003,36(12): 1458~1463.
    [63]Lamberto D J, Alverez M M, Muzzio F J. Experimental and Computational Investigation of the Laminar Flow Structure in a Stirred Tank [J]. Chem. Eng. Sci., 1999,54(7):919-942.
    [64]Zalc J M, Szalai E S, Alvarez M M, et al. Using CFD to Understand Chaotic Mixing in Laminar Stirred Tanks [J]. AIChE J.,2002,48(10):2124-2134.
    [65]Arratia P E, Lacombe J P, Shinbort T, et al. Segregated Regions in Continuous Laminar Stirred Tank Reactors [J]. Chem. Eng. Sci.,2004,59(7):1481-1490.
    [66]Lamberto D J, Alvarez M M, Muzzio F J. Computational Analysis of Regular and Chaotic Mixing in a Stirred Tank Reactor [J]. Chem. Eng. Sci.,2001,56(16): 4887-4899.
    [67]Makino T, Ohmura N, Kataoka K. Observation of Isolated Mixing Regions in a Stirred Vessel [J]. J. Chem. Eng. Jpn.,2001,34(5):574-578.
    [68]Arratia P E, Muzzio F J. Planar Laser-Induced Fluorescence Method for Analysis of Mixing in Laminar Flows [J]. Ind. Eng. Chem. Res.,2004,43(20):6557-6568.
    [69]Alvarez M M, Zalc J M, Shinbrot T, et al. Mechanisms of Mixing and Creation of Structure in Laminar Stirred Tanks [J]. AIChE J.,2002,48(10):2135-2148.
    [70]Harvey Ⅲ A D, West D H, Tufillaro N B. Evaluation of Laminar Mixing in Stirred Tanks Using a Discrete-Time Particle-Mapping Procedure [J]. Chem. Eng. Sci., 2000,55(3):667-684.
    [71]Nikiforaki L, Montante G, Lee K C, et al. On the Origin, Frequency and Magnitude of Macro-Instabilities of the Flows in Stirred Vessels [J]. Chem. Eng. Sci.,2003, 58(13):2937-2949.
    [72]Galletti C, Paglianti A, Lee KC, et al. Reynolds Number and Impeller Diameter Effects on Instabilities in Stirred Vessels [J]. AIChE J.,2004,50(9):2050-2063.
    [73]Montante G, Lee K C, Brucato A, et al. An Experimental Study of Double-to-Single-Loop Flow Pattern Transition in Stirred Vessels [J]. Can. J. Chem. Eng.,1999,77(4):649-659.
    [74]Rutherford K, Mahmoudi S M S, Lee K C, et al. Hydrodynamic Characteristics of Dual Rushton Impeller Stirred Vessels [J]. AIChE J.,1996,42(2):332-346.
    [75]Kresta S M, Wood P E. The Mean Flow Field Produced by a 45°Pitched Blade Turbine:Changes in the Circulation Pattern Due to Off Bottom Clearance [J]. Can. J. Chem. Eng.,1993,71(1):42-53.
    [76]Jahoda M, Machon V, Vlach L, et al. Macro-Instabilities of a Suspension in an Axially Agitated Mixing Tank [J]. Acta Polytechnica,2002,42(3):3-7.
    [77]Jaworski Z, Dyster K N, Nienow A W. The Effect of Size, Location and Pumping Direction of Pitched Blade Turbine Impellers on Flow Patterns:LDA Measurements and CFD Predictions [J]. Chem. Eng. Res. Des.,2001,79(8): 887-984.
    [78]Armenante P M, Luo C, Chou C C, et al. Velocity Profiles in a Closed, Unbaffled Vessel:Comparison Between Experimental LDV Data and Numerical CFD Predictions [J]. Chem. Eng. Sci.,1997,52(20):3483-3492.
    [79]Nouri J M, Whitelaw J H. Flow Characteristics of Stirred Reactors with Newtonian and Non-Newtonian Fluids [J]. AIChE J.,1990,36(4):627-629.
    [80]Distelhoff M F W, Laker J, Marquis A J, et al. The Application of Strain Gauge Technique to the Measurement of the Power Characteristics of Five Impellers [J]. Exp. Fluids,1995,20(1):56-58.
    [81]Hockey R, Nouri J M. Turbulent Flow in a Baffled Vessel Stirred by a 60°Pitched Blade Impeller [J]. Chem. Eng. Sci.,1996,51(19):4405-4421.
    [82]Schafer M, Yianneskis M, Wachter P, et al. Trailing Vortices Around a 45° Pitched-Blade Impeller [J]. AIChE J.,1998,44(6):1233-1246.
    [83]Nurtono T, Setyawan H, Altway A, et al. Macro-Instability Characteristic in Agitated Tank Based on Flow Visualization Experiment and Large Eddy Simulation [J]. Chem. Eng. Res. Des.,2009,87(7):923-942.
    [84]Yianneskis M, Popiolek Z, Whitelaw J H. An Experimental Study of the Steady and Unsteady Flow Characteristics of Stirred Reactors [J]. J. Fluid Mech.,1987, 175:537-555.
    [85]Ducci A, Yianneskis M. Vortex Tracking and Mixing Enhancement in Stirred Processes [J]. AIChE J.,2007,53(2):305-315.
    [86]Ducci A, Doulgerakis Z, Yianneskis M. Decomposition of Flow Structures in Stirred Reactors and Implications for Mixing Enhancement [J]. Ind. Eng. Chem. Res.,2008,47(10):3664-3676.
    [87]Derkson J J. Numerical Simulation of Solids Suspension in a Stirred Tank [J]. AIChE J.,2003,49(11):2700-2714.
    [88]Micheletti M, Nikiforaki L, Lee K C, et al. Particle Concentration and Mixing Characteristics of Moderate to Dense Solid-Liquid Suspensions [J]. Ind. Eng. Chem. Res.,2003,42(24):6236-6249.
    [89]Haam S, Brodkey R S, Fasano J B. Local Heat Transfer in a Mixing Vessel Using Heat Flux Sensors [J]. Ind. Eng. Chem. Res.,1992,31(5):1384-1391.
    [90]Bakker A, van den Akker H E A. Gas-Liquid Contacting with Axial Flow Impellers [J]. Chem. Eng. Res. Des.,1994,72(4):573-582.
    [91]Bakker A, van den Akker H E A. Single-Phase Flow in Stirred Reactors [J]. Chem. Eng. Res. Des.,1994,72(4):583-593
    [92]Kratena J, Fort I, Bruha O, et al. Distribution of Dynamic Pressure along a Radial Baffle in an Agitated System with Standard Rushton Turbine Impeller [J]. Chem. Eng. Res. Des.,2001,79(8):819-823.
    [93]Galletti C, Paglianti A, Yianneskis M. Observations on the Significance of Instabilities Turbulence and Intermittent Motions on Fluid Mixing Processes in Stirred Reactors [J]. Chem. Eng. Sci.,2005,60(8-9):2317-2331.
    [94]Nikiforaki L, Yu J, Baldi S, et al. On the Variation of Processional Flow Instabilities with Operational Parameters in Stirred Vessels [J]. Chem. Eng. J., 2004,102(3):217-231.
    [95]Winardi S, Nagase Y. Unstable Phenomenon of Flow in a Mixing Vessel with a Marine Propeller [J]. J. Chem. Eng. Jpn.,1991,24(2):243-249.
    [96]Chapple D, Kresta S. The Effect of Geometry on the Stability of Flow Patterns in Stirred Tanks [J]. Chem. Eng. Sci.,1994,49(21):3651-3660.
    [97]Paglianti A, Montante G, Magelli F. Novel Experiments and Mechanistic Model for Macroinstabilities in Stirred Tanks [J]. AIChE J.,2006,52(2):426-437.
    [98]Paglianti A, Liu Z H, Montante G, et al. Effect of Macroinstabilities in Single-and Multiple-Impeller Stirred Tanks [J]. Ind. Eng. Chem. Res.,2008,47(14): 4944-4952.
    [99]Bruha O, Fort I, Smolka P. Phenomenon of Turbulent Macro-Instabilities in Agitated Systems [J]. Collect. Czech. Chem. Commun.,1995,60(1):85-94.
    [100]Bruha O, Fort I, Smolka P, et al. Experimental Study of Turbulent Macro-Instabilities in an Agitated System with Axial High-Speed Impeller and with Radial Baffles [J]. Collect. Czech. Chem. Commun.,1996,61(6):856-867.
    [101]Hasal P, Fort I, Kratena J. Force Effects of the Macro-Instability of Flow Pattern on Radial Baffles in a Stirred Vessel with Pitched-Blade and Rushton Turbine Impellers [J]. Chem. Eng. Res. Des.,2004,82(9):1268-1281.
    [102]金哲山,李志鹏,高正明,等.应用功率谱密度与小波分析组合法研究搅拌槽内宏观不稳定性[J].过程工程学报,2007,7(2):241-245.
    [103]Chapple D, Kresta S M. The Effect of Geometry on the Stability of Flow Patterns in a Stirred Tank [J]. Chem. Eng. Sci.,1994,49(21):3651-3660.
    [104]Guillard F, Tragardh C, Fuchs L. A Study on the Instability of Coherent Mixing Structures in a Continuously Stirred Tank [J]. Chem. Eng. Sci.,2000,55(23): 5657-5670.
    [105]Guillard F, Tragardh C, Fuchs L. A Study of Turbulent Mixing in a Turbine-Agitated Tank Using Fluorescence Technique [J]. Exp. Fluids,2000, 28(3):225-235.
    [106]Hasal P, Montes J L, Boisson H C, et al. Macro-Instabilities of Velocity Field in Stirred Vessel:Detection and Analysis [J]. Chem. Eng. Sci.,2000,55(2):391-401.
    [107]Roussinova V T, Grgic B, Kresta S M. Study of Macro-Instabilities in Stirred Tanks Using a Velocity Decomposition Technique [J]. Chem. Eng. Res. Des.,2000, 78(7):1040-1052.
    [108]Roussinova V T, Kresta S M, Weetman R. Resonant Geometries for Circulation Pattern Macroinstabilities in a Stirred Tank [J]. AIChE J.,2004,50(12): 2986-3005.
    [109]Montes J L, Boisson H C, Fort I, et al. Velocity Field Macro-Instabilities in an Axially Agitated Mixing Vessel [J]. Chem. Eng. J.,1997,67(2):139-145.
    [110]Myers K J, Ward R W, Bakker A. A Digital Particle Image Velocimetry Investigation of Flow Field Instabilities of Axial-Flow Impellers [J]. J. Fluids Eng.,1997,119(3):623-632.
    [[11]Fan J H, Rao Q, Wang Y D, et al. A Study on Intermittency Phenomena in the Impeller Stream via Digital Particle Image Velocimetry (DPIV) [J]. Chem. Eng. J.,2004,102(1):25-33.
    [112]Fan J H, Rao Q, Wang Y D, et al. Spatio-Temporal Analysis of Macro-Instability in a Stirred Vessel via Digital Particle Image Velocimetry (DPIV) [J]. Chem. Eng. Sci.,2004,59(8-9):1863-1873.
    [113]樊建华,饶麒,王运东,等.搅拌槽内流场脉动的频谱分析研究[J].高校化学工程学报[J],2004,18(3):287-292.
    [114]周国忠,施力田,王英琛.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报,2002,16(1):17-22.
    [115]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008:271-296.
    [116]于勇,张俊明,姜连田.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008:206-222.
    [117]Roussinova V T, Kresta S M, Weetman R. Low Frequency Macro-Instabilities in a Stirred Tank:Scale-up and Prediction Based on Large Eddy Simulations [J]. Chem. Eng. Sci.,2003,58(11):2297-2311.
    [118]Hartmann H, Derksen J J, van den Akker H E A. Macroinstability Uncovered in a Rushton Turbine Stirred Tank by Means of LES [J]. AIChE J.,2004,50(10): 2383-2393.
    [119]Fan J H, Wang Y D, Fei W Y. Large Eddy Simulations of Flow Instabilities in a Stirred Tank Generated by a Rushton Turbine [J]. Chin. J. Chem. Eng.,2007,15(2): 200-208.
    [120]Nurtono T, Setyawan H, Altway A, et al. Numerical Analysis of Macro-Instability Characteristic in a Stirred Tank by Means of Large Eddy Simulations:Off-Bottom Clearance Effect [J]. Chem. Prod. Process Model.,2008,3(1):Article 45.
    [121]Galletti C, Pintus S, Brunazzi E. Effect of Shaft Eccentricity and Impeller Blade Thickness on the Vortices Features in an Unbaffled Vessel [J]. Chem. Eng. Res. Des.,2009,87(4):391-400.
    [122]Brucato A, Ciofalo M, Grisafi F, et al. Numerical Prediction of Flow Field in Baffled Stirred Vessels:A Comparison of Different Modeling Approaches [J]. Chem. Eng. Sci.,1998,53(21):3653-3684.
    [123]Jenne M, Reuss M. A Critical Assessment on the Use of k-ε Turbulence Models for Simulation of the Turbulent Liquid Flow Induced by a Rushton-Turbine in Baffled Stirred-Tank Reactors [J]. Chem. Eng. Sci.,1999,54(17):3921-3941.
    [124]Murthy B N, Joshi J B. Assessment of Standard k-s, RSM and LES Turbulence Models in a Baffled Stirred Vessel Agitated by Various Impeller Designs [J]. Chem. Eng. Sci.,2008,63(22):5468-5495.
    [125]Alcamo R, Micale G, Grisafi F, et al. Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine [J]. Chem. Eng. Sci.,2005, 60(8-9):2303-2316.
    [126]Ng K, Yianneskis M. Observations on the Distribution of Energy Dissipation in Stirred Vessels [J]. Chem. Eng. Res. Des.,2000,78(3):334-341.
    [127]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:10,82-86,113-118,228-230.
    [128]Eggels J G M. Direct and Large-Eddy Simulation of Turbulent Fluid Flow Using the Lattice-Boltzmann Scheme [J]. Int. J. Heat Fluid Flow,1996,17(3):307-323.
    [129]Revstedt J, Fuchs L, Tragardh C. Large Eddy Simulation of the Turbulent Flow in a Stirred Tank [J]. Chem. Eng. Sci.,1998,53(24):4041-4053.
    [130]Derksen J, van den Akker H E A. Large Eddy Simulations on the Flow Driven by a Rushton Turbine [J]. AIChE J.,1999,45(2):209-221.
    [131]Hartmann H, derksen J J, Montavon C, et al. Assement of Large Eddy and RANS Stirred Tank Simulations by Means of LDA [J]. Chem. Eng. Sci.,2004,59(12): 2419-2432.
    [132]Hartmann H, derksen J J, van den Akker H E A. Mixing Times in a Turbulent Stirred Tank by Means of LES [J]. AIChE J.,2006,52(11):3696-3706.
    [133]Yeoh S L, Papadakis G, Yianneskis M. Numerical Simulation of Turbulent Flow Characteristics in a Stirred Vessel Using the LES and RANS Approaches with the Sliding/Deforming Mesh Methodology [J]. Chem. Eng. Res. Des.,2004,82(7): 834-848.
    [134]Yeoh S L, Papadakis G, Yianneskis M. Determination of Mixing Time and Degree of Homogeneity in Stirred Vessels with Large Eddy Simulation [J]. Chem. Eng. Sci.,2005,60(8-9):2293-2302.
    [135]Yoon H S, Balachandar S, Ha M Y, et al. Large Eddy Simulation of Flow in a Stirred Tank [J] J. Fluids Eng.,2003,125(3):486-499.
    [136]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005,163-267.
    [137]龙天渝,苏亚欣,向文英,等.计算流体力学[M].重庆:重庆大学出版社,2007,13-28.
    [138]Ciofalo M, Brucato A, Grisafi F, et al. Turbulent Flow in Closed and Free-Surface Unbaffled Tanks Stirred by Radial Impellers [J]. Chem. Eng. Sci.,1996,51(14): 3557-3573.
    [139]周昊,岑可法,樊建人.分离涡方法模拟浓淡气固射流两相非稳态流动特性研究[J].中国电机工程学报,2005,25(7):1-6.
    [140]Rivera C, Heniche M, Ascanio G, et al. A Virtual Finite Element Model for Centered and Eccentric Mixer Configurations [J]. Comput. Chem. Eng.,2004, 28(12):2459-2468.
    [141]Derksen J, Van den Akker H E A. Large Eddy Simulation on the Flow Driven by a Rushton Turbine [J]. AIChE J.,1999,45(2):209-221.
    [142]Spalart P R, Jou W H, Strelets M, et al. Comments on the Feasibility of LES for Wings and on a Hybrid RANS/LES Approach [C]. Liu C, Liu Z. Advances in DNS/LES, columbus, Ohio:Greyden Press,1997:137-147.
    [143]Strelets M. Detached Eddy Simulation of Massively Separated Flows [C]. AIAA, Aerospace Sciences Meeting and Exhibit,39th, Reno, NV; United States,8-11 Jan., 2001
    [144]李显祥,任玉新.分离涡模拟κ-ε湍流模式及在火灾模拟中的应用[J].清华大学学报,2004,44(8):1126-1129.
    [145]Spalart P R, Deck S, Shur M L, et al. A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities [J].2006,20(3):181-195.
    [146]Bunge U, Mockett C, Thiele F. Guidelines for Implementing Detached-Eddy Simulation using Different Models [J]. Aerosp. Sci. Technol.,2007,11(5): 376-385.
    [147]Gil A J, Zhang Z, Hassan O, et al. Parallel Multigrid Detached Eddy Simulation Algorithm for Three-Dimensional Unsteady Incompressible Flows on Unstructured Meshes [J]. J. Aerosp. Eng.,2006,19(4):271-280.
    [148]Spalart P R. Young Person's Guide to Detached-Eddy Simulation Grids.2001, NASA Contractor Report NASA/CR-2001-211032. Langley Res. Center, Hampton.
    [149]Yan J, Mockett C, Thiele F. Investigation of Alternative Length Scale Substitutions in Detached Eddy Simulation [J]. Flow turbulence Combust.,2005, 74(1):85-102.
    [150]Spalart P R. Strategies for Turbulence Modelling and Simulations [J]. Int. J. Heat Fluid Flow,2000,21(3):252-263.
    [151]Spalart P R. Detached Eddy Simulation [J]. Annu. Rev. Fluid Mech.,2009,41(1): 181-202.
    [152]Travin A, Shur M, Strelets M, et al. Detached-Eddy Simulations Past a Circular Cylinder [J]. Flow, Turb. Comb.,1999,63(1):293-313.
    [153]Schmidt S, Thiele F. Comparison of Numerical Methods Applied to the Flow over Wall-Mounted Cubes [J]. Int. J. Heat Fluid Flow,2002,23(3):330-339.
    [154]Abe K. A Hybrid LES/RANS Approach Using an Anisotropy-Resolving Algebraic Turbulence Model [J]. Int. J. Heat Fluid Flow,2005,26(2):204-222.
    [155]Saric S, Jakirlic S, Tropea C. A Periodically Perturbed Backward-Facing Step Flow by Means of LES, DES and T-RANS:An Example of Flow Separation Control [J]. J. Fluids Eng.,2005,127(5):879-887.
    [156]Viswanathan A K, Tafti D K. Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Duct [J]. J. Fluids Eng.,2005,127(5):888-896.
    [157]Paterson E G, Peltier L J. Detached-Eddy Simulation of High Reynolds Number Beveled-Trailing-Edge Boundary Layers and Wakes [J]. J. Fluids Eng.,2005, 127(5):897-906.
    [158]Qin N, Xia H. Detached Eddy Simulation of a Synthetic Jet for Flow Control [J]. Proc. IMechE,2008,222(5):373-380.
    [159]Nikitin N V, Nicoud F, Wasistho B, et al. An Approach to Wall Modeling in Large-Eddy Simulations [J]. Phys. Fluids,2000,12(7):1629-1632.
    [160]Li D. Numerical Simulation of Thin Airfoil Stall by Using a Modified DES Approach [J]. Int. J. Numer. Meth. Fluids,2007,54(3):325-332.
    [161]李栋,Menshov I,中村佳朗.翼型失速特性的RANS方法与DES方法数值模拟对比分析[J].西北工业大学学报,2006,24(2):228-231.
    [162]Paik J, Sotiropoulos F, Porte-Agel F. Detached Eddy Simulation of Flow around two Wall-Mounted Cubes in Tandem [J]. Int. J. Heat Fluid Flow,2009,30(2): 286-305.
    [163]刘学强,伍贻兆,程克明.用基于M-SST模型的DES数值模拟喷流流场[J].力学学报,2004,36(4):401-406.
    [164]Zhou H, Cen K, Fan J R. Detached Eddy Simulation of Particle Dispersion in a Gas-Solid Two-Phase Fuel Rich/Lean Burner Flow [J]. Fuel,2005,84(6):723-731.
    [165]王扬平,姜培学.应用分离涡模型计算斜圆柱孔气膜冷却[J].工程热物理学报,2005,26(4):668-670.
    [166]Jayaraju S T, Brouns M, Lacor C, et al. Large Eddy and Detached Eddy Simulation of Fluid Flow and Particle Deposition in a Human Mouth-Throat [J]. Aerosol Sci., 2008,39(10):862-875.
    [167]周国忠.搅拌槽内流动与混合过程的实验研究及数值模拟[D].北京化工大学博士学位论文,2002,1-112.
    [168]张艳红,杨超,毛在砂.大涡模拟搅拌槽中的液相流动[J].化工学报,2007,58(10):2474-2479.
    [169]李志鹏,高正明.涡轮桨搅拌槽内单循环流动特性的大涡模拟[J].过程工程学报,2007,7(5):900-904.
    [170]苗一,潘家祯,闵健,等.涡轮桨搅拌槽内混合过程的大涡模拟[J].华东理工大学学报(自然科学版),2006,32(5):623-628.
    [171]刘沛清,邓学蓥.明渠中跌坎后突扩分离流数值研究[J].力学学报,1998,30(1):9-19.
    [172]Harvey A D, Rogers S E. Steady and Unsteady Computation of Impeller Stirred Reactor [J]. AIChE J.,1996,42(10):2701-2712.
    [173]Murthy S S, Jayanti S. CFD Study of Power and Mixing Time for Paddle Mixing in Unbaffled Vessels [J]. Chem. Eng. Res. Des.,2002,80(5):482-498.
    [174]Bujalski J M, Jaworski Z, Bujalski W, et al. The Influence of the Addition Position of a Tracer on CFD Simulated Mixing Times in a Vessel Agitated by a Rushton Turbine [J]. Chem. Eng. Res. Des.,2002,80(8):824-831.
    [175]周国忠,王英琛,施力田.用CFD研究搅拌槽内的混合过程[J].化工学报,2003,54(7):886-890.
    [176]Jaworski Z, Bujalski W, Otomo N, et al. CFD Study of Homogenization with Dual Rushton Turbines-Comparison with Experimental Results:Part I:Initial Studies [J]. Chem. Eng. Res. Des.,2000,78(3):327-333.
    [177]Schmalzriedt S, Reuss M. Application of Computational Fluid Dynamics to Simulations of Mixing and Biotechnical Conversion Process in Stirred Tank Bioreactors [C]. Proceedings of 9th Europe Conference on Mixing, Paris,1997, pp. 171-178.
    [178]Osman J J, Varley J. The Use of Computational Fluid Dynamics (CFD) to Estimate Mixing Times in a Stirred Tank [J]. IChemE Symposium Series,1999,146:15-22.
    [179]Bujalski W, Jaworski Z, Nienow A W. CFD Study of Homogenization with Dual Rushton Turbines-Comparison With Experimental Results:Part II:the Multiple Reference Frame [J]. Chem. Eng. Res. Des.,2002,80(1):97-104.
    [180]尹丽波.搅拌槽内宏观不稳定现象的实验研究[D].北京化工大学硕士学位论文,2005:1-64.
    [181]金哲山.搅拌槽内宏观不稳定现象的研究[D].北京化工大学硕士学位论文,2006:1-55.
    [182]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社,2003:175-195.
    [183]薛年喜.Matlab在数字信号处理中的应用[M].北京:清华大学出版社,2003:252-273.
    [184]杨绿溪.现代数字信号处理[M].北京:科学出版社,2007:186-211.
    [185]Melling A. Tracer Particles and Seeding for Particle Image Velocimetry [J]. Meas. Sci. Technol.,1997,8(12):1406-1416.
    [186]Willert C E, Gharib M. Digital Particle Image Velocimetry [J]. Exp. Fluids,1991 10(4):181-193.
    [187]盛森之,沈熊,舒玮.流速测量技术[M].北京:北京大学出版社,1987:165-170.
    [188]Keane R D, Adrian R J. Theory of Cross-Correlation Analysis of PIV Images [J]. Appl. Sci. Res.,1992,49(3):191-215.
    [189]刘春波.流场可视化及DPIV图像处理[D].燕山大学硕士学位论文,2004,9-19.
    [190]Manna L. Comparison Between Physical and Chemical Methods for the Measurement of Mixing Times [J]. Chem. Eng. J.,1997,67(3):167-173.
    Abe, K.,2005, A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model, Int. J. Heat Fluid Flow,26(2):204-222.
    Alcamo, R., Micale, G., Grisafi, F., Brucato, A. and Ciofalo, M.,2005, Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem. Eng. Sci.,60(8-9):2303-2316.
    Armenante, P.M., Luo, C., Chou, C.C., Fort, I. and Medek, J.,1997, Velocity profiles in a closed, unbaffled vessel:comparison between experimental LDV data and numerical CFD predictions. Chem. Eng. Sci.,52(20):3483-3492.
    Aubin, J., Mavros, P., Fletcher, D.F., Bertrand, J. and Xuereb, C,2001, Effect of axial agitator configuration (up-pumping, down-pumping, reverse rotation) on flow patterns generated in stirred vessels. Chem. Eng. Res. Des.,79(8):845-856.
    Brucato, A., Ciofalo, M., Grisafi, F. and Micale, G.,1998, Numerical prediction of flow field in baffled stirred vessels:a comparison of different modeling approaches. Chem. Eng. Sci.,53(21):3653-3684.
    Campolo, M., Sbrizzai, F. and Soldati A.,2003, Time-dependent flow structures and Lagrangian mixing in Rushton-impeller baffled-tank reactor. Chem. Eng. Sci.,58(8): 1615-1629.
    Constantinescu, G.S. and Squires K.D.,2003, LES and DES investigations of turbulent flow over a sphere at Re= 10,000. Flow Turbulence Combust.,70(1-4):267-298.
    Derksen, J. and van den Akker, H.E.A.,1999, Large eddy simulations on the flow driven by a Rushton turbine. AIChE J.,45(2):209-221.
    Derksen, J.J., Kontomaris, K., McLaughlin, J.B. and van den Akker, H.E.A.,2007, Large-eddy simulation of single-phase flow dynamics and mixing in an industrial crystallizer. Chem. Eng. Res. Des.,85(2):169-179.
    Eggels, J.G.M.,1996, Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow,17(3):307-323.
    Fan, J.H., Wang, Y.D. and Fei, W.Y.,2007, Large eddy simulations of flow instabilities in a stirred tank generated by a Rushton turbine. Chin. J. Chem. Eng.,15(2):200-208.
    Frohlich, J. and von Terzi D.,2008, Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci.,44(5):349-377.
    Gil, A.J., Zhang, Z., Hassan, O. and Morgan, K.,2006, Parallel multigrid detached eddy simulation algorithm for three-dimensional unsteady incompressible flows on unstructured meshes. J.Aerosp. Eng.,19(4):271-280.
    Hartmann, H., derksen, J.J., Montavon, C., Pearson, J., Hamill, I.S. and van den Akker, H.E.A.,2004a, Assement of large eddy and RANS stirred tank simulations by means of LDA. Chem. Eng. Sci.,59(12):2419-2432.
    Hartmann, H., derksen, J.J. and van den Akker, H.E.A.,2004b, Macroinstability uncovered in a Rushton turbine stirred tank by means of LES. AIChE J.,50(10):2383-2393.
    Hartmann, H., derksen, J.J. and van den Akker, H.E.A.,2006, Mixing times in a turbulent stirred tank by means of LES. AIChE J.,52(11):3696-3706.
    Jayaraju, S.T., Brouns, M., Lacor, C., Belkassem, B. and Verbanck, S.,2008, Large eddy and detached eddy simulation of fluid flow and particle deposition in a human mouth-throat. J.Aerosol Sci.,39(10):862-875.
    Jenne, M. and Reuss, M.,1999, A critical assessment on the use of k-ε turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors. Chem. Eng. Sci.,54(17):3921-3941.
    Luo, J.Y., Issa, R.I. and Gosman, A.D.,1994, Prediction of impeller-induced flows in mixing vessels using multiple frames of reference. Proceedings of the 8th European Conference on Mixing, Cambridge, U.K.,21-23 September, pp.549-556.
    Min, J. and Gao, Z.M.,2006, Large eddy simulations of mixing time in a stirred tank. Chin. J. Chem. Eng.,14(1):1-7.
    Modek, J. and Fort, I.,1994, Liquid circulation in mechanically agitated closed vessels. Proceedings of the 8th European Conference on Mixing, Cambridge, U.K.,21-23 September, pp.475-480.
    Murthy, B.N. and Joshi, J.B.,2008, Assessment of standard k-ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem. Eng. Sci.,63(22):5468-5495.
    Ng, K. and Yianneskis, M.,2000, Observations on the distribution of energy dissipation in stirred vessels. Chem. Eng. Res. Des.,78(3):334-341.
    Nurtono, T., Setyawan, H., Altway, A. and Winardi, S.,2009, Macro-instability characteristic in agitated tank based on flow visualization experiment and large eddy simulation. Chem. Eng. Res. Des.,87(7):923-942.
    Paik, J., Sotiropoulos, F. and Porte-Agel, F.,2009, Detached eddy simulation of flow around two wall-mounted cubes in tandem. Int. J. Heat Fluid Flow,30(2):286-305.
    Revstedt, J., Fuchs, L. and Tragardh, C.,1998, Large eddy simulation of the turbulent flow in a stirred tank. Chem. Eng. Sci.,53(24):4041-4053.
    Rollet-Miet, P., Laurence, D. and Ferziger, J.,1999, LES and RANS of turbulent flow in tube bundles. Int. J. Heat Fluid Flow,20(3):241-254.
    Roussinova, V., Kresta, S.M. and Weetman, R.,2003, Low frequency macroinstabilities in a stirred tank:scale-up and prediction based on large eddy simulations. Chem. Eng. Sci., 58(11):2297-2311.
    Schmidt, S. and Thiele, F.,2002, Comparison of numerical methods applied to the flow over wall-mounted cubes. Int. J. Heat Fluid Flow,23(3):330-339.
    Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K.,1999, Detached-eddy simulation of an airfoil at high angle of attack. Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements, Ajaccio, France; U.K., 24-26 May, pp.669-678.
    Spalart, P.R., Jou, W.H., Strelets, M. and Allmaras, S.R.,1997, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach.1st AFOSR International Conference on DNS/LES, Ruston, LA,4-8 August, pp.137-147.
    Squires, K.D., Forsythe, J.R. and Spalart, P.R.,2005. Detached-eddy simulation of the separated flow over a rounded-corner square. J. Fluids Eng.,127(5):959-966.
    Travin, A., Shur, M., Strelets, M. and Spalart, P.R.,1999, Detached-eddy simulations past a circular cylinder. Flow Turbulence Combust.,63(1):293-313.
    Viswanathan, A.K. and Tafti, D.K.,2005, Detached eddy simulation of turbulent flow and heat transfer in a ribbed duct. J. Fluids Eng.,127(5):888-896.
    Yeoh, S.L., Papadakis, G. and Yianneskis, M.,2004, Numerical simulation of turbulent flow characteristics in a stirred vessel using the LES and RANS approaches with the sliding/deforming mesh methodology. Chem. Eng. Res. Design,82(7):834-848.
    Yeoh, S.L., Papadakis, G. and Yianneskis, M.,2005, Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation. Chem. Eng. Sci.,60(8-9): 2293-2302.
    Yoon, H.S., Balachandar, S., Ha, M.Y. and Kar, K.,2003, Large eddy simulation of flow in a stirred tank. J. Fluids Eng.,125(3):486-499.
    Alcamo, R., Micale, G., Grisafi, F., Brucato, A. and Ciofalo, M.,2005, Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem. Eng. Sci,60(8-9):2303-2316.
    Alvarez, M.M., Shinbrot, T., Zalc J. and Muzzio, F.J.,2002a, Practical chaotic mixing. Chem. Eng. Sci.,57(17):3749-3753.
    Alvarez, M.M., Zalc, J., Shinbrot, T., Arratia, P.E. and Muzzio, F.J.,2002b, Mechanisms of mixing and creation of structure in laminar stirred tanks. AIChE J.,48(10):2135-2148.
    Ascanio, G., Brito-Bazan, M., Brito-De La Fuente, E., Carreau, P.J. and Tanguy, P.A., 2002, Unconventional configuration studies to improve mixing times in stirred tanks. Can. J. Chem. Eng.,80(4):558-565.
    Ascanio, G., Castro, B. and Galindo, E.,2004, Measurement of power consumption in stirred vessels-a review. Chem. Eng. Res. Des.,82(9):1282-1290.
    Ascanio, G. and Tanguy, P.A.,2005, Mixing of shear-thinning fluids with dual off-centered impellers. Can. J. Chem. Eng.,83(3):393-400.
    Brucato, A., Ciofalo, M., Grisafi, F. and Micale, G.,1998, Numerical prediction of flow field in baffled stirred vessels:a comparison of different modeling approaches. Chem. Eng. Sci.,53(21):3653-3684.
    Bujalski, W., Jaworski, Z. and Nienow, A.W.,2002a, CFD study of homogenization with dual Rushton turbines-comparison with experimental results:PartⅡ:the multiple reference frame. Chem. Eng. Res. Des.,80(1):97-104.
    Bujalski, J.M., Jaworski, Z., Bujalski, W. and Nienow, A.W.,2002b, The influence of the addition position of a tracer on CFD simulated mixing times in a vessel agitated by a Rushton turbine. Chem. Eng. Res. Des.,80(8):824-831.
    Buwa, V., Dewan, A., Nassar, A.F. and Durst, F.,2006, Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller:Experimental and numerical investigations. Chem. Eng. Sci.,61(9):2815-2822.
    Campolo, M., Paglianti, A. and Soldati, A.,2002, Fluid dynamic efficiency and scale-up of a retreated blade impeller CSTR. Ind. Eng. Chem. Res.,41(2):164-172.
    Campolo, M., Sbrizzai, F. and Soldati A.,2003, Time-dependent flow structures and Lagrangian mixing in Rushton-impeller baffled-tank reactor. Chem. Eng. Sci.,58(8): 1615-1629.
    Dewan, A., Buwa, V. and Durst, F.,2006, Performance optimizations of grid disc impellers for mixing of single-phase flows in a stirred vessel. Chem. Eng. Res. Des.,84(8): 691-702.
    Distelhoff, M.F.W., Marquis, A.J., Nouri, J.M. and Whitelaw, J.H.,1997, Scalar mixing measurements in batch operated stirred tanks. Can. J. Chem. Eng.,75(4):641-652.
    Frohlich, J. and von Terzi, D.,2008, Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci.,44(5):349-377.
    Hall, J.F., Barigou, M., Simmons, M.J.H. and Stitt, E.H.,2005, A PIV study of hydrodynamics in gas-liquid high throughput experimentation (THE) reactors with eccentric impeller configurations. Chem. Eng. Sci.,60(22):6403-6413.
    Hartmann, H., Derksen, J.J. and van den Akker, H.E.A.,2006, Mixing times in a turbulent stirred tank by means of LES. AIChE J.,52(11):3696-3706.
    Harvey, A.D. and Rogers, S.E.,1996, Steady and unsteady computation of impeller stirred reactor. AIChE J.,42(10):2701-2712.
    Jaworski, Z., Bujalski, W., Otomo, N. and Nienow, A.W.,2000, CFD study of homogenization with dual Rushton turbines-comparison with experimental results:Part I: initial studies. Chem. Eng. Res. Des.,78(3):327-333.
    Jenne, M. and Reuss, M.,1999, A critical assessment on the use of k-s turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors. Chem. Eng. Sci.,54(17):3921-3941.
    Karcz, J. and Szoplik, J.,2004, An effect of the eccentric position of the propeller agitator on the mixing time. Chem. Pap.,58(1):9-14.
    Karcz, J., Cudak, M. and Szoplik, J.,2005, Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chem. Eng. Sci.,60(8-9):2369-2380.
    Kramers, H., Barrs, G.M. and Knoll, W.H.,1953, A comparative study on the rate of mixing in stirred tanks. Chem. Eng. Sci.,8(2):35-42.
    Lamberto, D.J., Muzzio, F.J. and Swanson, P.D.,1996, Using time-dependent RPM to enhance mixing in stirred vessels. Chem. Eng. Sci.,51(5):733-741.
    Lamberto, D.J., Alvarez, M.M. and Muzzio, F.J.,2001, Computational analysis of regular and chaotic mixing in a stirred tank reactor. Chem. Eng. Sci.,56(16):4887-4899.
    Li, M., White, G., Wilkinson, D. and Roberts, K.J.,2004, LDA measurements and CFD modeling of a stirred vessel with a retreat curve impeller. Ind. Eng. Chem. Res.,43(20): 6534-6547.
    Li, M., White, G., Wilkinson, D. and Roberts, K.J.,2005, Scale up study of retreat curve impeller stirred tanks using LDA measurements and CFD simulation. Chem. Eng. J.,108(1-2): 81-90.
    Manna, L.,1997, Comparison between physical and chemical methods for the measurement of mixing times. Chem. Eng. J.,67(3):167-173.
    Mavros, P., Mann, R., Vlaev, S.D. and Bertrand, J.,2001, Experimental visualization and CFD simulation of flow patterns induced by a novel energy saving dual-configuration impeller in stirred vessels. Chem. Eng. Res. Des.,79(8):857-866.
    Medek, J. and Fort, I.,1985, Mixing in vessel with eccentrical mixing. In:Proceedings of the Fifth European Conference on Mixing, Wurzburg, West Germany, June10-12, pp. 263-280.
    Min, J. and Gao, Z.M.,2006, Large eddy simulations of mixing time in a stirred tank. Chin. J. Chem. Eng.,14(1):1-7.
    Montante, G., Lee, K.C., Brucato, A. and Yianneskis, M.,2001, Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels. Chem. Eng. Sci., 56(12):3751-3770.
    Montante, G., Bakker, A., Paglianti, A. and Magelli, F.,2006, Effect of the shaft eccentricity on the hydrodynamics of unbaffled stirred tanks. Chem. Eng. Sci.,61(9): 2807-2814.
    Murthy, S.S. and Jayanti, S.,2002, CFD study of power and mixing time for paddle mixing in unbaffled vessels. Chem. Eng. Res. Des.,80(5):482-498.
    Murthy, B.N. and Joshi, J.B.,2008, Assessment of standard k-ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem. Eng. Sci.,63(22):5468-5495.
    Nagata, S.,1975, Mixing principles and applications. Kodansha Ltd, Tokyo, Japan.
    Nishikawa, M., Ashiwake, K., Hashimoto, N. and Nagata, S.,1979. Agitation power and mixing time in off-centering mixing. Inter. Chem. Eng.,19(1):153-159.
    Nomura, T., Uchida, T. and Takahashi, K.,1997, Enhancement of mixing by unsteady agitation of an impeller in an agitated vessel. J. Chem. Eng. Jpn.,30(5):875-879.
    Nurtono, T., Setyawan, H., Altway, A. and Winardi, S.,2009, Macro-instability characteristic in agitated tank based on flow visualization experiment and large eddy simulation. Chem. Eng. Res. Des.,87(7):923-942.
    Osman, J.J. and Varley, J.,1999, The use of computational fluid dynamics (CFD) to estimate mixing times in a stirred tank. IChemE Symposium Series 146,15-22.
    Ottino, J.M.,1989, The kinematics of mixing:stretching, chaos and transport. Cambridge University Press, Cambridge.
    Szalai, E.S., Arratia, P., Johnson, K. and Muzzio, F.J.,2004, Mixing analysis in a tank stirred with Ekato Intermig(?) impellers. Chem. Eng. Sci.,59(18):3793-3805.
    Szoplik, J. and Karcz, J.,2005, An efficiency of the liquid homogenization in agitated vessels equipped with off-centered impeller. Chem. Pap.,59(6):373-379.
    Szoplik, J. and Karcz, J.,2008, Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chem. Pap.,62(1):70-77.
    Takahashi, K.,2007, Recent advance in chaotic mixing in a mixing equipment. J. Chem. Eng. Jpn.,40(8):605-610.
    Verschuren, I., Wijers, J. and Keurentjes, J.,2000, Mixing with a Pfaudler type impeller: the effect of micromixing on reaction selectivity in the production of fine chemicals. Proceedings of the 10th European Conference on Mixing, July 2-5, Delft, Netherlands, pp. 69-75.
    Yang, F.L., Zhou, S.J. and Zhang, C.X.,2009, Detached eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton impeller. Chin. J. Proc. Eng.,9(4): 641-646.
    Yao, W.G., Sato, H., Takahashi, K. and Koyama, K.,1998, Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds. Chem. Eng. Sci., 53(17):3031-3040.
    Yeoh, S.L., Papadakis, G. and Yianneskis, M.,2005, Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation. Chem. Eng. Sci.,60(8-9): 2293-2302.
    Yoshida, M., Shigeyama, M., Hiura, T., Yamagiwa, K., Ohkawa, A. and Tezura, S.,2007, Liquid flow in impeller region of an unbaffled agitated vessel with unsteadily forward-reverse rotating impeller. Chem. Eng. Commun.,194(9):1229-1240.
    Yoshihito, K., Yutaka, T., Masako, B., Yuichiro, N., Shuichi, I. and Kazushi Y.,2005, Improvement of mixing efficiencies of conventional impeller with unsteady speed in an impeller revolution. J. Chem. Eng. Jpn.,38(9):688-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700