用户名: 密码: 验证码:
鲤鱼IECs GLS和TOR基因cDNA克隆及Gln对IECs蛋白合成的影响和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究率先研究建立的鲤鱼(Cyprinus carpio)悬浮原代肠上皮细胞(IECs)研究模型,进一步利用该研究模型结合同位素示踪技术,分子克隆、生物信息学和荧光定量方法,克隆了IECs谷氨酰胺酶(GLS)和蛋白合成信号调控分子雷帕霉素靶(TOR)基因cDNA序列,研究了GLS和TOR基因在鲤鱼肠道不同部位的表达及GLS活力分布,探索了Gln对鲤鱼肠道不同肠段IECs蛋白质合成能力的影响及机理。结果如下:
     1.研究建立了鲤鱼悬浮原代IECs研究模型。结果表明:分离鲤鱼IECs呈圆形,可见明显两极特征,纯度95%,活力93%,分离IECs提取的DNA纯度更高,提取的总RNA结构完整。结果表明:该模型可应用于PCR分子生物实验研究。
     2.克隆了鲤鱼IECs GLS基因cDNA序列。该序列长1788bp,包含从起始密码子1位到末端终止密码子1788位的开放阅读框,编码595个氨基酸残基的GLS蛋白前体,分子量65.96kDa。核苷酸序列与斑马鱼的相似性为89.9%,与原鸡的相似性为69.4%,与小鼠K-和L-GLS的相似性分别为70.2%和65.2%,与大鼠K-和L-GLS的相似性分别为70.4%和65.9%,与人K-和L-GLS的相似性分别为69.8%和64.3%。蛋白质结构分析表明:鲤鱼GLS氨基酸残基序列含有两个非常保守的区域,分别为171~457位氨基酸残基的GLS蛋白家族区域和484~570位氨基酸残基的锚定蛋白重复序列;氨基酸残基中118、355、409、438和502位的丝氨酸残基磷酸化位点,205位的苏氨酸残基磷酸化位点和393、511位的酪氨酸残基磷酸化位点高度保守,是GLS蛋白功能调控位点;含有10个高度保守的半胱氨酸残基,位于GLS蛋白家族区域和锚定蛋白重复序列,与GLS蛋白分子结构稳定性和亚细胞定位密切相关。
     3.克隆了鲤鱼IECs TOR基因cDNA序列。该序列长7548bp,包含从起始密码子1位到末端终止密码子7548位的开放阅读框,编码2515个氨基酸残基的TOR蛋白,分子量为286.03kDa。核苷酸序列与斑马鱼相似性为92.0%,与原鸡相似性为78.0%,与鸭嘴兽、小鼠和大鼠相似性分别为74.5、78.4和78.5%,与人相似性为78.6%。蛋白质结构分析表明:鲤鱼TOR蛋白的1~348氨基酸残基为HEAT重复序列;349~2515位氨基酸残基为PIKKs蛋白质家族结构域,包括1365~1948位的FAT结构域,1985~2078位的FRB结构域(FKBP12-RAP复合物结合区域),2119~2397位的激酶催化区域,2485~2515位的FATC结构域,这些结构域序列非常保守,对TOR蛋白空间构象和生物活性非常重要;N-端931~1039氨基酸残基序列含有内质网和高尔基体的定位序列,对TOR蛋白定位于内质网和高尔基体膜非常重要。
     4.研究了鲤鱼不同肠段谷丙转氨酶(AlaAT)、谷草转氨酶(AspAT)、谷氨酸脱氢酶(GDH)、苹果酸脱氢酶(MDH)和乳酸脱氢酶(LDH)活力大小。结果表明:AlaAT活力,5肠段显著高于其它各肠段(P<0.05),3肠段显著高于1~2、4和6~7肠段(P<0.05),2、4肠段显著高于1、6~7肠段(P<0.05),1与6~7肠段差异不显著(P>0.05):AspAT活力,2肠段显著高于其它各肠段(P<0.05),3~5肠段显著高于1、6~7肠段,1与6~7肠段差异不显著(P>0.05):GDH活力,3肠段显著高于其它各肠段(P<0.05),2与4~6肠段差异不显著(P>0.05),但显著高于1、7肠段(P<0.05),1与7段差异不显著(P>0.05);MDH活力,3肠段显著高于其它各肠段(P<0.05),2肠段显著高于1、4~7肠段(P<0.05),4肠段显著高于1、5~7肠段(P<0.05),1与5肠段差异不显著(P>0.05),但显著高于6~7肠段(P<0.05),6与7肠段差异不显著(P>0.05);LDH活力,2肠段显著高于其它各肠段(P<0.05),4肠段显著高于1、3和5~7肠段(P<0.05),3肠段显著高于1、5~7肠段(P<0.05),1与5~7肠段差异不显著(P>0.05)。结果说明:AlaAT、AspAT、GDH、MDH和LDH活力均以鲤鱼中肠(2~5肠段)较高。
     5.研究了鲤鱼不同肠段GLS活力大小和基因表达。结果表明:不同肠段GLS活力,3~4肠段显著高于1~2肠段和6~7肠段(P<0.05),5肠段显著高于1、6~7肠段(P<0.05),2肠段显著高于1、7肠段(P<0.05),6肠段显著高于1、7肠段(P<0.05),1肠段显著高于7肠段(P<0.05),5、2~4肠段之间及2、6肠段之间差异不显著(P>0.05)。不同肠段GLS mRNA表达量,3~4肠段显著高于7肠段(P<0.05),其余各肠段差异不显著(P>0.05),其分布规律与GLS活力基本相同。结果说明:鲤鱼中肠(2~5肠段)GLS活力和mRNA表达量均较高。
     6.研究了生长期不同体重鲤鱼不同肠段TOR基因表达量。结果表明:1肠段,18.1g组TOR mRNA相对表达量显著低于其它各体重组(P<0.05),18.1、31.1g组之间以及40.6、58.0、73.9g组之间差异不显著(P>0.05);2~5肠段和6~7肠段,18.1g和31.1g组TOR mRNA相对表达量显著低于其它各体重组(P<0.05),18.1、31.1g组之间以及40.6、58.0、73.9g组之间差异不显著(P>0.05)。40.6、58.0、73.9g组TOR mRNA相对表达量各肠段之间差异不显著(P>0.05),但是18.1g组1肠段显著高于6~7肠段,31.1g组1肠段则显著高于2~5肠段和6~7肠段(P<0.05)。结果说明:随体重增加,鲤鱼肠道TOR mRNA表达量增加,同时在幼龄阶段(30g前)前中肠表达量高。
     7.研究了鲤鱼肠道不同肠段IECs蛋白质合成能力及Gln对不同肠段IECs合成能力的影响。结果表明:蛋白质合成率2~3肠段显著高于其它各肠段(P<0.05),1肠段显著高于4~7肠段(P<0.05),4肠段显著高于5~7肠段(P<0.05),5~7肠段差异不显著(P>0.05);1mg/L Gln组1~3肠段IECs蛋白质合成率显著高于0mg/L Gln组(P<0.05),但4~7肠段则差异不显著(P>0.05)。结果说明:鲤鱼前中肠(1~3肠段)蛋白合成能力高于后肠(5~7肠段),Gln可提高前中肠(1~3肠段)IECs蛋白质合成能力。
     8.TOR抑制剂RAP、GLS抑制剂DON和Gln对鲤鱼IECs蛋白质合成的影响。结果表明:1mg/L Gln组蛋白质合成率显著高于0mg/L Gln组(P<0.05);1mg/L Gln+RAP、1mg/L Gln+DON和1mg/L Gln+RAP+DON组均显著低于1mg/L Gln组(P<0.05),高于0mg/L Gln组(P<0.05);1mg/L Gln+DON组显著高于1mg/L Gln+RAP和1mg/L GlnRAP+DON组(P<0.05);1mg/L Gln+RAP组显著高于1mg/L Gln+RAP+DON组(P<0.05)。结果说明:GLS和TOR信号分子参与了Gln提高鲤鱼IECs蛋白质合成的调控。
     9.研究了Gln对鲤鱼IECs GLS基因表达的影响。结果表明:30~120min,1mg/L Gln组GLS mRNA相对表达量显著高于0mg/LGln组(P<0.05);1mg/LGln组中,120min GLSmRNA相对表达量显著低于70min(P<0.05),与30min差异不显著(P>0.05):0mg/LGln组中,30~120min,GLS mRNA相对表达量差异不显著(P>0.05)。结果说明:Gln促进了鲤鱼IECs GLS基因表达。
     10.研究了Gln、TOR抑制剂RAP和GLS抑制剂DON对鲤鱼IECs TOR基因表达的影响。结果表明:1mg/L Gln组IECs TOR mRNA相对表达量显著高于0mg/L Gln组(P<0.05);1mg/L Gln+RAP组显著低1mg/L Gln组(P<0.05),与0mg/L Gln差异不显著(P>0.05);1mg/L Gln+DON组与1mg/L Gln差异不显著(P>0.05),但显著高于1mg/LGln+RAP组和0mg/L Gln组(P<0.05)。Gln作用时间,15min,30min组IECs TOR mRNA相对表达量显著高于5min组(P<0.05);30min与15min组之间差异不显著(P>0.05)。结果说明:Gln可通过TOR信号分子调控TOR基因表达,提高了TOR mRNA表达量;GLS没有参与Gln对鲤鱼IECs TOR基因表达的调控过程。
     综上所述:在鲤鱼肠道存在IECs蛋白合成信号调控分子TOR,随着体重增加,TORmRNA在肠道中表达量逐步增加,30g前幼龄鲤鱼前中肠表达量高;鲤鱼前中肠IECs蛋白质合成能力强;Gln提高前中肠IECs蛋白质的合成能力,Gln提高其蛋白质合成能力受到TOR和GLS的调控。
In this study,using research model of suspension primary carp intestinal epithelial cells (IECs) by established in this study,combining with isotope tracer technique,molecular cloning, bioinformatics and fluorescence quantitative PCR method,the gene eDNA sequence of target of rapamyein(TOR),which is a signal regulation molecular of protein synthesis in intestinal epithelial cells(IECs),and glutaminase(GLS) were cloned,GLS and TOR gene expression and the GLS activity in the carp intestinal tract different section,further the influence of L-glutarnine(Gin) on carp intestines different section IECs ability of protein synthesis and mechanism were studied.The results are as follows:
     1.Established the research model of carp suspension primary IECs.The results showed that IECs isolated from carp intestine were round under light microscopy,the polarization characteristics can be seen clearly.A high proportion of IECs,representing the total number of cells,95%,cell viability,93%.And the extraction DNA from isolation IECs is purity,the extraction total RNA structure is complete.
     2.The carp GLS eDNA was cloned.This sequence contains from start eodon 1 to the terminal termination codon 1788bp opening reading frame,coded includes 595 amino acid residue GLS protein precursor,molecular weight 65.96kDa.The nucleotide sequence with the zebrafish homology is 89.9%,with the original chicken homology is 69.4%,with mouse K-and the L-GLS homology respectively is 70.2%and 65.2%,with rat K-and the L-GLS homology respectively is 70.4%and 65.9%,with human K-and the L-GLS homology respectively is 69.8%and 64.3%.The protein structure analysis indicated that carp GLS amino acid sequence includes two very conservative regions,respectively GLS protein family region from 171 to 457 amino acid residue and anchor protein repetitive sequence from 484 to 570 amino acid residues.118,355,409,438 and 502 serine residue phosphorylation position spot,205 threonine residue phosphorylation position spot and 393,511 tyrosine residue phosphorylation position spot of GLS are highly conservative and important to the GLS function regulation.The GLS protein includes 18 cysteine residues,and has highly conservative 10 cysteine residues,which locates at GLS protein family region and anchor protein repetitive sequence,relates with GLS protein molecular structure,stable and subcellular localization. 3.The carp TOR cDNA was cloned.This sequence contains from start codon 1 to the terminal termination codon 7548bp opening reading frame,coded includes 2515 amino acid residue GLS protein,molecular weight 286.03kDa.The nucleotide sequence with the ,-'ebrafish homology is 92.0%,with the original chicken homology is 78.0%,with the platypus, mouse and rat homology respectively is 74.5,78.4 and 78.5%,and with human homology is 78.6%.The protein structure analysis indicated that Carp TOR protein includes 5 structure region.Between amino acid residues 1-348 of the HEAT repeat,between 349-2515 amino acid residue of PIKKs protein family's domain.The PIKKs protein family's domain includes between 1365-1948 amino acid residue is FAT.domain,between 1985-2078 amino acid residues is the FRB domain(FKBP 12-RAP complex binding domains),between 2119-2397 amino acid residues is kinase catalytic region,between 2485-2515 amino acid residue is FATC domain,which domains are very conservative and play vital role to the TOR protein's spatial conformation and the biological activity.The N-terminal 93I-1039 amino acid residue sequence includes the endoplasmic reticulum and the golgiosome localization sequence, which is very important to TOR protein located in the endoplasmic reticulum and Golgi apparatus membrane. 4.Alanine aminotransferase(AIaAT),aspartate aminotransferase(AspAT),glutamate dehydrogenase(GDH),malate dehydrogenase(MDH) and lactate dehydrogenase(LDH) activities in carp different intestinal section have been determined.The results showed that the AIaAT activity in 5 intestinal section is significant higher than other various intestinal section (P<0.05),2 intestinal section enzyme activity is significant higher than 1-2,4 and 6-7 intestinal sections(P<0.05),2,4 sections activity is significant higher than 1,6-7 sections(P<0.05),1,6-7 section activity is not significant difference(P>0.05).The AspAT activity in 2 section is significant higher than other various sections(P<0.05),3-5 sections is significant higher than 1,6-7 sections(P<0.05),1,6-7sections is not significant difference(P>0.05).The GDH activity in 3 section is signifcantly higher than other various intestines sections(P<0.05),2, 4-6 sections is not significant difference(P>0.05),but significant higher than 1 and 7 section (P<0.05),1 and 7 section is not significant difference(P>0.05).The MDH activity in 3 scection is significant higher than other various section(P>0.05),2 section is significantyl higher than 1,4-7 sections(P>0.05),4 section is significant higher than 1,5-7 sections (P>0.05),1 and 5 section is not significant difference(P>0.05),but is significant higher than 6-7 sections(P>0.05),6-7 section is not significant difference(P>0.05).The LDH activity in 2 scection is significantly higher than other various sections(P>0.05),4 section is significantyl higher than 1,3,5-7 sections(P>0.05),3 section is significantly higher than 1, 5-7 sections(P>0.05),1 and 5-7 section is not significant difference(P>0.05).The result indicated that AlaAT,AspAT,GDH,MDH and LDH activities are higher in carp midintestine (2-5 intestines sections).
     5.The GLS activity and gene expression in carp different intestines section was studied. The results showed that GLS activity in carp intestine 3-4 sections is significantly higher than 1-2 sections and 6~7 sections(P<0.05),5 section is significantly higher than 1,6-7 sections (P<0.05);2 section is significantly higher than 1,7 sections(P<0.05);6 section is significantly higher than 1,7 sections(P<0.05);1 section is significantly higher than 7 sections(P<0.05).The GLS the mRNA expression quantity in 3-4 intestinal sections is significantly higher than 7 sections,other various sections is not signifcant difference.The result indicated that the GLS activity and the mRNA expression quantity in the carp midintestine(2-5 sections) are higher.
     6.The TOR gene expression in different intestinal section of different body weight carp was studied.The results showed that 1 section,18.1g group TOR the mRNA relative expression quantity is significantly lower than other weight groups(P<0.05),between 18.1g and 31.1g group as well as between 40.6,58.0,and 73.9g groups were no significant differences(P>0.05);2-5 sections and 6-7 sections,18.1g and 31.1g group TOR mRNA relative expression level was significantly lower than the other weight group(P<0.05),18.1g and 31.1g group as well as between 40.6,58.0,and 73.9g groups were no significant differences(P>0.05).40.6,58.0,73.9g group relative TOR mRNA expression in different section was no significant difference(P>0.05),but 18.1g group,1 section was significantly higher than 6-7 sections,31.1g group 1 section was significantly higher than 2-5 sections and 6-7 sections(P<0.05).The result indicated that with weight increasing,TOR the mRNA expression quantity in carp intestinal tract increased,simultaneously the fore and midgut expression quantity is higher in the young age stage(before 30g).
     7.The protein synthesis ability in different section IECs of the carp intestinal tract and the influence of Gin on IECs synthesis ability of the different intestines section were studied. The results showed that 2-3 sections is significantly higher than other section(P<0.05),but not significant difference each other(P>0.05);1 section is significantly higher than 4-7 sections(P<0.05);4 section is significantly higher than 5-7 sections(P<0.05),5-7 sections is not significant difference(P>0.05).IECs protein synthesis rate of 1-3 sections,1mg/L Gin group is significantly higher than 0mg/L Gin group(P<0.05),4-7 sections,lmg/L and 0mg/L Gln group is not significantly difference(P>0.05).The result indicated IECs protein synthesis ability of the carp fore and midgut(1-3 section) is higher than hindgut(5-7 sections);Gin promoted fore and midgut(1-3 section) IECs protein synthesis ability,but has on influence on hindgut(5-7 sections).
     8.Studied the influence of TOR inhibitor RAP,GLS inhibitor DON and Gin on IECs protein synthesis ability.The results showed that protein synthesis rate of 1mg/L Gin group was significantly higher than 0mg/L Gin group(P<0.05),lmg/L Gln+RAP,DON or RAP+DON group were significantly lower than 1mg/L Gln group(P<0.05),higher than 0mg/L Gin group(P<0.05).1mg/L Gln+DON group was significantly higher than 1mg/L GIn+RAP and 1mg/L Gin RAP+DON Group.1mg/L Gln+RAP group was significantly higher than 1mg/L Gln+RAP+DON Group.The results indicated that GLS and TOR signaling molecules are involved in regulation of Gin improving the ability of fish IECs protein synthesis.
     9.The influence of Gin on the GLS gene expression of carp IECs was studied.The results showed that 30-120min,1mg/LGln group GLS mRNA relative expression was significantly higher than 0mg/LGln group(P<0.05).1mg/LGln group,120min GLS mRNA relative expression was significantly lower than 70min(P<0.05),but no significant differences with 30min(P>0.05);0mg/LGln group,30-120min,GLS mRNA relative expression difference was not significant(P>0.05).The results indicated that Gln can influence GLS gene expression of carp IECs.
     10.The influence of Gln on the TOR gene expression of carp IECs was studied.The results showed that 1mg/L Gin group IECs TOR mRNA expression was significantly higher than 0mg/L Gin group(P<0.05),Gln 1mg/L+RAP group was significantly lower than 1mg/L Gin group(P<0.05),but no significant difference with 0mg/L Gln(P>0.05),Gln 1mg/L+DON group was no significant difference with 1mg/L Gin group(P>0.05),but significantly higher than Gin 1mg/L+RAP group and 0mg/L Gln group(P<0.05).15min group IECs TOR mRNA relative expression was significantly higher than 5min group(P<0.05);30min group was significantly higher than 5min group(P<0.05),but was no significant difference with 15min group(P>0.05).The results indicated that Gln through TOR signaling molecules regulating TOR gene expression,increase TOR mRNA expression levels. GLS did not take part in Gln on the regulation of TOR gene expression process of carp IECs.
     In summary,TOR,this is a signal regulation molecular of protein synthesis in IECs, esists in carp intestine.With the weight gain,TOR mRNA expression in the intestine gradually increase,the fore and midgut expression quantity is higher in the young age stage (before 30g).The carp fore and midgut IECs protein synthesis ability is higher,Gln promoted fore and midgut IECs protein synthesis ability.Gln improves IECs protein synthesis ability to receive TOR and the GLS regulation.
引文
[1] Fange, R., Grove, D. 4 Digestion. in: Hoar, W. S., Randall, D. J., Brett, J. R. (eds.), Fish physiology. Academic Press, 1979, pp. 161-260.
    
    [2] Rust, M. B. Nutritional physiology. in: Hardy, R. W., Halver, J. E. (eds.), Fish Nutrition, 3rd ed. San Diego, Academic Press, 2002, pp. 367-452.
    
    [3] Zapata, A. G., Chib, A., Varas, A. 1 Cells and Tissues of the Immune System of Fish. in: George, I., Teruyuki, N. (eds.), Fish physiology. Academic Press, 1997, pp. 1-62.
    
    [4] Lin, Y., Zhou, X.-Q. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2006,256: 389-394.
    
    [5] Chen, J., Zhou, X.-Q., Feng, L., et al. Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp {Cyprinus carpio var. Jian). Aquaculture 2009,288: 285-289.
    
    [6] Jiang, J., Zheng, T., Zhou, X.-Q., et al. Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquac. Nutr. 2009: doi: 10.1111/j.1365-2095.2008.00605.x.
    
    [7] Marquez, J., de la Oliva, A. R., Mates, J. M., et al. Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem Int 2006,48: 465-471.
    
    [8] Higashiguchi, T., Hasselgren, P. O., Wagner, K., et al. Effect of glutamine on protein synthesis in isolated intestinal epithelial cells. JPEN J Parenter Enteral Nutr 1993, 17: 307-314.
    
    [9] Higashiguchi, T., Noguchi, Y., Meyer, T., et al. Protein synthesis in isolated enterocytes from septic or endotoxaemic rats: regulation by glutamine. Clin Sci (Lond) 1995, 89: 311-319.
    
    [10] Rhoads, J. M., Argenzio, R. A., Chen, W., et al. Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, Raf-independent mechanism. Gastroenterology 2000,118:90-100.
    
    [11] Wullschleger, S., Loewith, R., Hall, M. N. TOR signaling in growth and metabolism. Cell 2006, 124: 471-484.
    
    [12] Loewith, R., Hall, M. TOR signalling in yeast: Temporal and spatial control of cell growth. in: Hall, M. N., Raff, M., Thomas, G. (eds.), Cell Growth: Control of Cell Size. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 2004, pp. 139-165.
    [13] Wang, X., Campbell, L. E., Miller, C. M., et al. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 1998, 334 ( Pt 1): 261-267.
    
    [14] Fox, H. L., Pham, P. T., Kimball, S. R., et al. Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol 1998,275: C1232-1238.
    
    [15] Xu, G., Kwon, G., Marshall, C. A., et al. Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem 1998,273: 28178-28184.
    
    [16] Kimball, S. R., Horetsky, R. L., Jefferson, L. S. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 1998, 273: 30945-30953.
    
    [17] Stroband, H. W., Debets, F. M. The ultrastructure and renewal of the intestinal epithelium of the juvenile grasscarp, Ctenopharyngodon idella (Val.). Cell Tissue Res 1978, 187: 181-200.
    
    [18] Aruin, L. I., Smotrova, I. A., Gorodinskaya, V. S., et al. Apoptosis and renewal of enterocytes in experimental atrophy of the small intestinal mucosa. Bulletin of Experimental Biology and Medicine 1987, 104: 1159-1162.
    
    [19] Tso, P., Nauli, A., Lo, C. M. Enterocyte fatty acid uptake and intestinal fatty acid-binding protein. Biochem Soc Trans 2004,32: 75-78.
    
    [20] Oxley, A., Tocher, D. R., Torstensen, B. E., et al. Fatty acid utilisation and metabolism in caecal enterocytes of rainbow trout (Oncorhynchus mykiss) fed dietary fish or copepod oil. Biochim Biophys Acta 2005,1737: 119-129.
    
    [21] Rotllant, J., Guerreiro, P., Redruello, B., et al. Ligand binding and signalling pathways of PTH receptors in sea bream ( Sparus auratus ) enterocytes. Cell and Tissue Research 2006, 323:333-341.
    
    [22] Almaida-Pagan, P. F., Hernandez, M. D., Garcia, B., et al. Effects of total replacement of fish oil by vegetable oils on n-3 and n-6 polyunsaturated fatty acid desaturation and elongation in sharpsnout seabream (Diplodus puntazzo) hepatocytes and enterocytes. Aquaculture 2007,272: 589-598.
    
    [23] Freshney, R. I. Culture of animal cells: a manual of basic technique (4th ed). Wiley-Liss Inc, New York 2000.
    
    [24] 程宝鸾. 动物细胞培养技术 中山大学出版社,广州 2006.
    
    [25] Evans, G., Flint, N., Somers, A., et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci 1992,101: 219-231.
    [26]Booth,C.,O'Shea,J.A.Isolation and Culture of Intestinal Epithelial Cells.in:Freshney,R.I.,Freshney,M.G(eds.),Culture of Epithelial Cells(Second Edition).2002,pp.303-335.
    [27]姜俊.谷氨酰胺对鲤鱼肠上皮细胞生长和代谢的影响.[学位论文].四川雅安,四川农业大学,2005.
    [28]Bols,N.C.,Mosser,D.D.,Steels,G B.Temperature studies and recent advances with fish cells in vitro.Comparative Biochemistry and Physiology Part A:Physiology 1992,103:1-14.
    [29]Bols,N.C.Recent developments and applications of fish cell cultures and cell lines.Comparative Biochemistry and Physiology - Part A:Molecular & Integrative Physiology 1999,124:S36-S36.
    [30]Bodnar,A.G,Ouellette,M.,Frolkis,M.,et al.Extension of life-span by introduction of telomerase into normal human cells.Science 1998,279:349-352.
    [31]朱永良,钟献,郑树.正常大肠干细胞的条件永生化.浙江大学学报(医学版)2004,33:379-384.
    [32]Quaroni,A.,Tian,J.Q.,Goke,M.,et al.Glucocorticoids have pleiotropic effects on small intestinal crypt cells.Am J Physiol Gastrointest Liver Physiol 1999,277:G1027-1040.
    [33]Negrel,R.,Rampal,P.,Nano,J.L.,et al.Establishment and characterization of an epithelial intestinal cell line from rat fetus.Exp Cell Res 1983,143:427-437.
    [34]Nano,J.L.,Fournel,S.,Rampal,P.Characterization of d-opioid receptors and effect of enkephalins on IRD 98 rat epithelial intestinal cell line.Pfl(u|¨)gers Archly European Journal of Physiology 2000,439:547-554.
    [35]Kitamura,S.,Miyazaki,Y.,Shinomura,Y.,et al.Peroxisome Proliferator-activated Receptor γ Induces Growth Arrest and Differentiation Markers of Human Colon Cancer Cells.Cancer Science 1999,90:75-80.
    [36]Worrell,R.T.,Butt,A.G.,Cliff,W.H.,et al.A volume-sensitive chloride conductance in human colonic cell line T84.Am J Physiol Cell Physiol 1989,256:C1111-1119.
    [37]Bols,N.C.,Dayeh,V.R.,Lee,L.E.J.,et al.Chapter 2 Use of fish cell lines in the toxicology and ecotoxicology of fish.Piscine cell lines in environmental toxicology.Biochemistry and Molecular Biology of Fishes.Elsevier,2005,pp.43-84.
    [38]Le Bacquer,O.,Nazih,H.,Blottiere,H.,et al.Effects of glutamine deprivation on protein synthesis in a model of human enterocytes in culture.American Journal of Physiology-Gastrointestinal and Liver Physiology 2001,281:G1340-G1347.
    [39]Flint,N.,Cove,F.,Evans,G Heparin stimulates the proliferation of intestinal epithelial cells in primary culture.J Cell Sci 1994,107:401-411.
    [40]Rusu,D.,Loret,S.,Peulen,O.,et al.Immunochemical,biomolecular and biochemical characterization of bovine epithelial intestinal primocultures.BMC Cell Biology 2005,6:42.
    [41]冯琳.大豆凝集素对鲤鱼肠道上皮细胞增殖分化及其功能的影响.[学位论文].四川雅安,四川农业大学,2006.
    [42]郭林英.大豆β-伴球蛋白提取物对鲤鱼肠上皮细胞增殖及其功能的影响.[学位论文].四川雅安,四川农业大学,2006.
    [43]宋增福,吴天星,潘晓东.鲫肠道上皮细胞原代培养方法的研究.淡水渔业2008,38:67-69
    [44]Flint,N.,Cove,F.L.,Evans,G S.A low-temperature method for the isolation of small-intestinal epithelium along the crypt-villus axis.Biochem J 1991,280(Pt 2):331-334.
    [45]Perez,J.A.,Rodriguez,C.,Henderson,R.J.The uptake and esterification of radiolabelled fatty acids by enterocytes isolated from rainbow trout(Oncorhynchus mykiss).Fish Physiol.Biochem.1999,20:125-134.
    [46]Dopido,R.,Rodriguez,C.,Gomez,T.,et al.Isolation and characterization of enterocytes along the intestinal tract of the gilthead seabream(Sparus aurata L.).Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 2004,139:21-31.
    [47]Coeffier,M.,Marion,R.,Ducrotte,P.,et al.Modulating effect of glutamine on IL- 1beta-induced cytokine production by human gut.Clin Nutr 2003,22:407-413.
    [48]Belmonte,L.,Coeffier,M.,Le Pessot,F.,et al.Effects of glutarnine supplementation on gut barrier,glutathione content and acute phase response in malnourished rats during inflammatory shock.World J Gastroenterol 2007,13:2833-2840.
    [49]Nath,S.K.,Dechelotte,P.,Darmaun,D.,et al.[15N]- and[14C]glutamine fluxes across rabbit ileum in experimental bacterial diarrhea.Am J Physiol 1992,262:G312-318.
    [50]Rhoads,J.M.,Keku,E.O.,Woodard,J.P.,et al.L-glutamine with D-glucose stimulates oxidative metabolism and NaCl absorption in piglet jejunum.Am J Physiol 1992,263:G960-966.
    [51]Kelly,D.,Wischmeyer,P.E.Role of L-glutamine in critical illness:new insights.Curr Opin Clin Nutr Metab Care 2003,6:217-222.
    [52]Li,N.,Lassman,B.J.,Liu,Z.,et al.Effects of protein deprivation on growth and small intestine morphology are not improved by glutamine or glutamate in gastrostomy-fed rat pups.J Pediatr Gastroenterol Nutr 2004,39:28-33.
    [53]Kandil,H.M.,Argenzio,R.A.,Chen,W.,et al.L-glutamine and L-asparagine stimulate ODC activity and proliferation in a porcine jejunal enterocyte line. Am J Physiol 1995, 269: G591-599.
    
    [54] Rhoads, J. M., Argenzio, R. A., Chen, W., et al. L-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 1997, 272: G943-953.
    
    [55] Papaconstantinou, H. T., Hwang, K. O., Rajaraman, S., et al. Glutamine deprivation induces apoptosis in intestinal epithelial cells. Surgery 1998, 124: 152-159; discussion 159-160.
    
    [56] Papaconstantinou, H. T., Chung, D. H., Zhang, W., et al. Prevention of mucosal atrophy: role of glutamine and caspases in apoptosis in intestinal epithelial cells. J Gastrointest Surg 2000,4:416-423.
    
    [57] Evans, M. E., Jones, D. P., Ziegler, T. R. Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. J Nutr 2003,133: 3065-3071.
    
    [58] Boza, J. J., Turini, M., Moennoz, D., et al. Effect of glutamine supplementation of the diet on tissue protein synthesis rate of glucocorticoid-treated rats. Nutrition 2001,17: 3540.
    
    [59] Coeffier, M., Claeyssens, S., Hecketsweiler, B., et al. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am J Physiol Gastrointest Liver Physiol 2003,285: G266-273.
    
    [60] Crompton, L. A., Lomax, M. A. Hindlimb protein turnover and muscle protein synthesis in lambs: a comparison of techniques. Br J Nutr 1993,69: 345-348.
    
    [61] Driscoll, D. M., Casanova, E. Characterization of the apolipoprotein B mRNA editing activity in enterocyte extracts. J Biol Chem 1990,265: 21401-21403.
    
    [62] Curthoys, N. P., Watford, M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 1995,15: 133-159.
    
    [63] Watford, M. Hepatic glutaminase expression: relationship to kidney-type glutaminase and to the urea cycle. Faseb J 1993,7: 1468-1474.
    
    [64] Curthoys, N. P., Lowry, O. H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem 1973,248: 162-168.
    
    [65] Pinkus, L. M., Windmueller, H. G. Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys 1977, 182: 506-517.
    
    [66] Sarantos, P., Abouhamze, Z., Copeland, E. M., et al. Glucocorticoids regulate glutaminase gene expression in human intestinal epithelial cells. J Surg Res 1994, 57: 227-231.
    
    [67] Klimberg, V. S., Souba, W. W., Salloum, R. M., et al. Intestinal glutamine metabolism after massive small bowel resection. Am J Surg 1990,159: 27-32; discussion 32-23.
    
    [68] Linder-Horowitz, M., Knox, W. E., Morris, H. P. Glutaminase Activities and Growth Rates of Rat Hepatomas. Cancer Res 1969,29: 1195-1199.
    
    [69] Knox, W. E., Linder, M., Friedell, G. H. A series of transplantable rat mammary tumors with graded differentiation, growth rate, and glutaminase content. Cancer Res 1970, 30: 283-287.
    
    [70] Brand, K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 1985,228: 353-361.
    
    [71] Mock, B., Kozak, C., Seldin, M. F., et al. A glutaminase (gis) gene maps to mouse chromosome 1, rat chromosome 9, and human chromosome 2. Genomics 1989, 5: 291-297.
    
    [72] Modi, W. S., Pollock, D. D., Mock, B. A., et al. Regional localization of the human glutaminase (GLS) and interleukin-9 (IL9) genes by in situ hybridization. Cytogenet Cell Genet 1991, 57: 114-116.
    
    [73] Chung-Bok, M. I., Vincent, N., Jhala, U., et al. Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter. Biochem J 1997, 324 (Pt 1): 193-200.
    
    [74] Chung-Bok, M. I., Watford, M. Characterization of the hepatic glutaminase promoter. Contrib Nephrol 1997,121: 43-47.
    
    [75] Smith, E. M., Watford, M. Molecular cloning of a cDNA for rat hepatic glutaminase. Sequence similarity to kidney-type glutaminase. J Biol Chem 1990,265: 10631-10636.
    
    [76] Hwang, J. J., Curthoys, N. P. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem 1991, 266: 9392-9396.
    
    [77] Shenoy, V., Roig, J. C., Kubilis, P., et al. Characterization of glutaminase in the developing rat small intestine. J Nutr 1996, 126: 1121S-1130S.
    
    [78] Shapiro, R. A., Haser, W. G., Curthoys, N. P. The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Arch Biochem Biophys 1985, 243: 1-7.
    
    [79] Kvamme, E., Torgner, I., Roberg, B. Evidence indicating that pig renal phosphate-activated glutaminase has a functionally predominant external localization in the inner mitochondrial membrane. J. Biol. Chem. 1991,266: 13185-13192.
    
    [80] Roberg, B., Torgner, I. A., Kvamme, E. The orientation of phosphate activated glutaminase in the inner mitochondrial membrane of synaptic and non-synaptic rat brain mitochondria. Neurochem Int 1995,27: 367-376.
    
    [81] Haser, W. G., Shapiro, R. A., Curthoys, N. P. Comparison of the phosphate-dependent glutaminase obtained from rat brain and kidney. Biochem J 1985,229: 399-408.
    
    [82] Perera, S. Y., Chen, T. C., Curthoys, N. P. Biosynthesis and processing of renal mitochondrial glutaminase in cultured proximal tubular epithelial cells and in isolated mitochondria. J Biol Chem 1990,265: 17764-17770.
    
    [83] Srinivasan, M., Kalousek, F., Curthoys, N. P. In vitro characterization of the mitochondrial processing and the potential function of the 68-kDa subunit of renal glutaminase. J Biol Chem 1995,270: 1185-1190.
    
    [84] Srinivasan, M., Kalousek, F., Farrell, L., et al. Role of the N-terminal 118 amino acids in the processing of the rat renal mitochondrial glutaminase precursor. J Biol Chem 1995, 270: 1191-1197.
    
    [85] Dingemanse, M. A., Lamers, W. H. Expression patterns of ammonia-metabolizing enzymes in the liver, mesonephros, and gut of human embryos and their possible implications. Anat Rec 1994,238: 480-490.
    
    [86] James, L. A., Lunn, P. G., Middleton, S., et al. Distribution of glutaminase and glutamine synthetase activities in the human gastrointestinal tract. Clin Sci (Lond) 1998,94: 313-319.
    
    [87] James, L. A., Lunn, P. G., Elia, M. Glutamine metabolism in the gastrointestinal tract of the rat assess by the relative activities of glutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2). Br J Nutr 1998,79: 365-372.
    
    [88] Nagy, L. E., Pittler, A., Kretchmer, N. Development of glutaminase along the villus-crypt axis in the jejunum of rat. J Pediatr Gastroenterol Nutr 1988,7: 907-913.
    
    [89] McCauley, R., Kong, S. E., Heel, K., et al. The role of glutaminase in the small intestine. Int J Biochem Cell Biol 1999,31: 405-413.
    
    [90] Anderson, N. M., Bennett, F. I., Alleyne, G. A. Ammonia production by the small intestine of the rat. Biochim Biophys Acta 1976,437: 238-243.
    
    [91] Kong, S. E., Hall, J. C., Cooper, D., et al. Starvation alters the activity and mRNA level of glutaminase and glutamine synthetase in the rat intestine. J Nutr Biochem 2000, 11: 393-400.
    
    [92] Klimberg, V. S., Salloum, R. M., Kasper, M., et al. Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation. Arch Surg 1990, 125: 1040-1045.
    
    [93] Chen, K., Okuma, T., Okamura, K., et al. Glutamine-supplemented parenteral nutrition improves gut mucosa integrity and function in endotoxemic rats. JPEN J Parenter Enteral Nutr 1994,18: 167-171.
    
    [94] Haque, S. M., Chen, K., Usui, N., et al. Alanyl-glutamine dipeptide-supplemented parenteral nutrition improves intestinal metabolism and prevents increased permeability in rats. Ann Surg 1996,223: 334-341.
    
    [95] McCauley, R. D., Heel, K. A., Hall, J. C. Enteral branched-chain amino acids increase the specific activity of jejunal glutaminase and reduce jejunal atrophy. J Gastroenterol Hepatol 1997, 12:429-433.
    
    [96] O'Dwyer, S. T., Smith, R. J., Hwang, T. L, et al. Maintenance of small bowel mucosa with glutamine-enriched parenteral nutrition. J Parenter Enteral Nutr 1989, 13: 579-585.
    
    [97] Hahn, P., Taller, M., Chan, H. Pyruvate carboxylase, phosphate-dependent glutaminase and glutamate dehydrogenase in the developing rat small intestinal mucosa. Biol Neonate 1988, 53: 362-366.
    
    [98] Nagy, L. E., Kretchmer, N. Utilization of glutamine in the developing rat jejunum. J Nutr 1988,118: 189-193.
    
    [99] Ardawi, M. S. The maximal activity of phosphate-dependent glutaminase and glutamine metabolism in late-pregnant and peak-lactating rats. Biochem J 1987,242: 75-80.
    
    [100] Mueller, A. R., Nalesnik, M. A., Langrehr, J. M., et al. Evidence that small bowel preservation causes primarily basement membrane and endothelial rather than epithelial cell injury. Transplantation 1993, 56: 1499-1504.
    
    [101] Muller, A. R., Langrehr, J. M., Nalesnik, M., et al. Mucosal glutaminase activity and histology as parameters of small bowel preservation injury. J Surg Res 1994,56: 207-215.
    
    [102] Muller, A. R., Nalesnik, M., Platz, K. P., et al. Evaluation of preservation conditions and various solutions for small bowel preservation. Transplantation 1994,57: 649-655.
    
    [103] Ardawi, M. S., Jalalah, S. M. Effects of hypothyroidism on glucose and glutamine metabolism by the gut of the rat. Clin Sci (Lond) 1991, 81: 347-355.
    
    [104] Souba, W. W., Herskowitz, K., Klimberg, V. S., et al. The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann Surg 1990, 211: 543-549; discussion 549-551.
    
    [105] Austgen, T. R., Chen, M. K., Dudrick, P. S., et al. Cytokine regulation of intestinal glutamine utilization. Am J Surg 1992,163: 174-179; discussion 179-180.
    
    [106] Sarantos, P., Abouhamze, Z., Copeland, E. M., et al. Decrease of glutaminase expression by interferon-gamma in human intestinal epithelial cells. Ann Surg Oncol 1994,1: 428-435.
    [107] Salleh, M., Ardawi, M., Majzoub, M. F., et al. Effect of glucocorticoid treatment on glucose and glutamine metabolism by the small intestine of the rat. Clin Sci (Lond) 1988,75: 93-100.
    
    [108] Fox, A. D., Kripke, S. A., Berman, J. M., et al. Dexamethasone administration induces increased glutaminase specific activity in the jejunum and colon. J Surg Res 1988, 44: 391-396.
    
    [109] Vezina, C., Kudelski, A., Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975,28: 721-726.
    
    [110] Hidalgo, M., Rowinsky, E. K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000,19: 6680-6686.
    
    [111] Heitman, J., Movva, N. R., Hiestand, P. C., et al. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1991, 88: 1948-1952.
    
    [112] Michnick, S., Rosen, M., Wandless, T., et al. Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science 1991,252: 836-839.
    
    [113] Heitman, J., Movva, N. R., Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991,253: 905-909.
    
    [114] Bierer, B. E., Mattila, P. S., Standaert, R. F., et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. P Natl Acad Sci USA 1990, 87: 9231-9235.
    
    [115] Chen, J., Zheng, X. F., Brown, E. J., et al. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A 1995, 92: 4947.4951.
    
    [116] Choi, J., Chen, J., Schreiber, S. L., et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996,273:239-242.
    
    [117] Lorenz, M. C., Heitman, J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995,270: 27531-27537.
    
    [118] Stan, R., McLaughlin, M. M., Cafferkey, R., et al. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 1994, 269: 32027-32030.
    
    [119] Crespo, J. L., Hall, M. N. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2002,66: 579-591.
    [120] Adami, A., Garcia-Alvarez, B., Arias-Palomo, E., et al. Structure of TOR and its complex with KOG1. Mol Cell 2007,27: 509-516.
    
    [121] Dames, S. A. A fast and simple method to prepare the FKBP-rapamycin binding domain of human target of rapamycin for NMR binding assays. Protein Expr Purif 2008, 59: 31-37.
    
    [122] Paulmurugan, R., Massoud, T. F., Huang, J., et al. Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res 2004, 64: 2113-2119.
    
    [123] Andrade, M. A., Bork, P. HEAT repeats in the Huntington's disease protein. Nat Genet 1995,11: 115-116.
    
    [124] Groves, M. R., Barford, D. Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 1999,9. 383-389.
    
    [125] Perry, J., Kleckner, N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 2003,112: 151-155.
    
    [126] Chook, Y. M., Blobel, G. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 1999,399: 230-237.
    
    [127] Kunz, J., Schneider, U., Howald, I., et al. HEAT. repeats mediate plasma membrane localization of Tor2p in yeast. J Biol Chem 2000,275: 37011-37020.
    
    [128] Bosotti, R., Isacchi, A., Sonnhammer, E. L. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 2000,25: 225-227.
    
    [129] Magis, A. T., Bailey, K. M., Kurenova, E. V., et al. Crystallization of the focal adhesion kinase targeting (FAT) domain in a primitive orthorhombic space group. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008,64: 564-566.
    
    [130] Crespo, J. L., Powers, T., Fowler, B., et al. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A 2002, 99: 6784-6789.
    
    [131] Fingar, D. C., Blenis, J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004,23:3151-3171.
    
    [132] Jefferies, H. B., Fumagalli, S., Dennis, P. B., et al. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J 1997,16: 3693-3704.
    
    [133] Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 2000,267. 6321-6330.
    
    [134] Nelson, D. L., Cox, M. M. Lehninger Principles of Biochemistry Freeman New York 2005.
    [135]Gingras,A.C.,Raught,B.,Sonenberg,N.Control of translation by the target of rapamycin proteins.Prog Mol Subcell Biol 2001,27:143-174.
    [136]Raught,B.,Gingras,A.C.,Sonenberg,N.The target of rapamycin(TOR) proteins.Proc Natl Acad Sci U S A 2001,98:7037-7044.
    [137]Chiu,M.I.,Katz,H.,Berlin,V.RAPT1,a mammalian homolog of yeast Tor,interacts with the FKBP12/rapamycin complex.Proc Natl Acad Sci U S A 1994,91:12574-12578.
    [138]Evans,D.,Claiborne,J.The physiology of fishes.CRC press 2006.
    [139]He,Y,Chu,S.H.,Walker,W.A.Nucleotide supplements alter proliferation and differentiation of cultured human(Caco-2) and rat(IEC-6) intestinal epithelial cells.J Nutr 1993,123:1017-1027.
    [140]Ruthig,D.J.,Meek.ling-Gill,K.A.Both(n-3) and(n-6) Fatty Acids Stimulate Wound Healing in the Rat Intestinal Epithelial Cell Line,IEC-6.J.Nutr.1999,129:1791-1798.
    [141]Boza,J.J.,Moennoz,D.,Bournot,C.E.,et al.Role of glutamine on the de novo purine nueleotide synthesis in Caco-2 cells.Eur J Nutr 2000,39:38-46.
    [142]Mumin,M.,Kumar,A.,Li,G D.,et al.Effects of glutamine isomers on human(Caco-2)intestinal epithelial proliferation,strain-responsiveness,and differentiation.J Gastrointest Surg 2000,4:435-442.
    [143]Maeartney,K.K.,Baumgart,D.C.,Carding,S.R.,et al.Primary murine small intestinal epithelial cells,maintained in long-term culture,are susceptible to rotavirus infection.J Virol 2000,74:5597-5603.
    [144]Francisco,J.S.,Moraes,H.P.,Dias,E P.Evaluation of the Image-Pro Plus 4.5software for automatic counting of labeled nuclei by PCNA immunohistochemistry.Braz Oral Res 2004,18:100-104.
    [145]Jauregui,H.,Hayner,N.,Driscoll,J.,et al.Trypan blue dye uptake and lactate dehydrogenase in adult rat hepatocytes-Freshly isolated cells,cell suspensions,and primary monolayer cultures.In Vitro Cellular & Developmental Biology - Plant 1981,17:1100-1110.
    [146]罗素兰,张本,长孙东亭.芋螺基因组DNA提取方法的优化.中国海洋药物2004,19:21-25.
    [147]Tocher,D.R.,Fonseca-Madrigal,J.,Dick,J.R.,et al.Effects of water temperature and diets containing palm oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout(Oncorhynchus mykiss).Comp Biochem Physiol B Biochem Mol Biol 2004,137:49-63.
    [148]Sambrook,J.,Russell,D.Molecular cloning:a laboratory manual.CSHL press 2001.
    [149]Seear,P.J.,Sweeney,G E.Stability of RNA isolated from post-mortem tissues of Atlantic salmon(Salmo salar L.).Fish Physiol Biochem 2008,34:19-24.
    [150]Kong,S.E.,Hall,J.C.,Cooper,D.,et al.Glutamine-enriched parenteral nutrition regulates the activity and expression of intestinal glutaminase.Biochim Biophys Acta 2000,1475.:67-75.
    [151]Yamamoto,T.An electron microscope study of the columnar epithelial cell in the intestine of fresh water teleosts:goldfish(Carassius auratus) and rainbow trout(Salmo irideus).Cell and Tissue Research 1966,72:66-87.
    [152]Noaillac-Depeyre,J.,Gas,N.Fat absorption by the enterocytes of the carp(Cyprinus carpio L.).Cell and Tissue Research 1974,155:353-365.
    [153]Kuz'mina,V.V.,Gelman,A.G.Membrane-linked digestion in fish.Reviews in Fisheries Science 1997,5:99-129.
    [154]Hochachka,P.W.,Mommsen,T.P.Biochemistry and Molecular Biology of Fishes.Elsevier 1995.
    [155]Mommsen,T.P.,Osachoff,H.L.,Elliott,M.E.Metabolic zonation in teleost gastrointestinal tract.Effects of fasting and cortisol in tilapia.J Comp Physiol[B]2003,173:409-418.
    [156]Villanueva,J.,Vanacore,R.,Goicoechea,O.,et al.Intestinal alkaline phosphatase of the fish Cyprinus carpio:Regional distribution and membrane association.J Exp Zool 1997,279:347-355.
    [157]Zhou,X.-Q.,Zhao,C.-R.,Lin,Y.Compare the effect of diet supplementation with uncoated or coated lysine on juvenile Jian Carp(Cyprinus carpio Var.Jian).Aquae.Nutr.2007,13:457-461.
    [158]郑婷.维生素E对鲤鱼肠上皮细胞生长发育及抗氧化能力的影响.[学位论文].四川雅安,四川农业大学,2007.
    [159]Tucek,S.Subcellular distribution of acetyl-CoA synthetase,ATP citrate lyase,citrate synthase,choline acetyltransferase,fumarate hydratase and lactate dehydrogenase in mammalian brain tissue.J Neurochem 1967,14:531-545.
    [160]Montamat,E.E.,Vermouth,N.T.,Blanco,A.Subcellular localization of branched-chain amino acid aminotransferase and lactate dehydrogenase C4 in rat and mouse spermatozoa.Biochem J 1988,255:1053-1056.
    [161]Kaplan,N.O.,Ciotti,M.M.,Bieber,R.E.,et al.Molecular Heterogeneity and Evolution of Enzymes.Science 1960,131:392-397.
    [162]Dawson,D.M.,Goodfriend,T.L.,Kaplan,N O.Lactic Dehydrogenases:Functions of the Two Types Rates of Synthesis of the Two Major Forms Can Be Correlated with Metabolic Differentiation. Science 1964,143: 929-933.
    
    [163] Chapman, A. D., Cortes, A., Dafforn, T. R., et al. Structural basis of substrate specificity in malate dehydrogenases: crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase, alpha-ketomalonate and tetrahydoNAD. J Mol Biol 1999, 285: 703-712.
    
    [164] Goward, C. R., Nicholls, D. J. Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci 1994, 3: 1883-1888.
    
    [165] Lo, A. S., Liew, C. T., Ngai, S. M., et al. Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase (MDH1). J Cell Biochem 2005, 94: 763-773.
    
    [166] Fields, P. A., Strothers, C. M., Mitchell, M. A. Function of muscle-type lactate dehydrogenase and citrate synthase of the Galapagos marine iguana, Amblyrhynchus cristatus, in relation to temperature. Comp Biochem Physiol B Biochem Mol Biol 2008,150: 62-73.
    
    [167] Steffens, W. Principles of fish nutrition. Halsted Press, New York 1989.
    
    [168] Ballantyne, J. S., Patricia, W., Paul, A. Amino acid metabolism. Fish Physiology. Academic Press, 2001, pp. 77-107.
    
    [169] Halver, J. E., Hardy, R. W. Fish nutrition. Academic Press, San Diego, Califfornia 2002.
    
    [170] Auerswald, L., Jurss, K., Schiedek, D., et al. The Influence of Salinity Acclimation on Free Amino Acids and Enzyme Activities in the Intestinal Mucosa of Rainbow Trout, Oncorhynchus mykiss (Walbaum). Comparative Biochemistry and Physiology Part A: Physiology 1997,116: 149-155.
    
    [171] Ando, M. Amino Acid Metabolism and Water Transport Across the Seawater Eel Intestine. J Exp Biol 1988,138: 93-106.
    
    [172] Wu, G. Intestinal Mucosal Amino Acid Catabolism. J. Nutr. 1998, 128: 1249-1252.
    
    [173] Krebs, H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 1935,29:1951-1969.
    
    [174] Errera, M., Greenstein, J. P. Phosphate-activated glutaminase in kidney and other tissues. J Biol Chem 1949, 178:495-502.
    
    [175] Wu, G., Chung-Bok, M. I., Vincent, N., et al. Distribution of phosphate-activated glutaminase isozymes in the chicken: absence from liver but presence of high activity in pectoralis muscle. Comp Biochem Physiol B Biochem Mol Biol 1998,120: 285-290.
    
    [176] Banner, C., Hwang, J. J., Shapiro, R. A., et al. Isolation of a cDNA for rat brain glutaminase. Brain Res 1988,427: 247-254.
    
    [177] Shapiro, R. A., Farrell, L., Srinivasan, M., et al. Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem 1991,266: 18792-18796.
    
    [178] Lo, J., Lee, S., Xu, M., et al. 15,000 Unique Zebrafish EST Clusters and Their Future Use in Microarray for Profiling Gene Expression Patterns During Embryogenesis. Genome Res. 2003,13: 455-466.
    
    [179] Tsunemoto, K., Osatomi, K., Nozaki, Y., et al. Molecular characterization of cathepsin L from hepatopancreas of the carp Cyprinus carpio. Comp Biochem Physiol B Biochem Mol Biol 2004, 137: 107-114.
    
    [180] Tingaud-Sequeira, A., Cerda, J. Phylogenetic relationships and gene expression pattern of three different cathepsin L (Ctsl) isoforms in zebrafish: Ctsla is the putative yolk processing enzyme. Gene 2007, 386: 98-106.
    
    [181] Claros, M. G., Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996,241: 779-786.
    
    [182] Blom, N., Gammeltoft, S., Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999,294: 1351-1362.
    
    [183] Kovacevic, Z., McGivan, J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol. Rev. 1983,63: 547-605.
    
    [184] Gomez-Fabre, P. M., Aledo, J. C., Del Castillo-Olivares, A., et al. Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem J 2000, 345 Pt 2: 365-375.
    
    [185] Castell, L., Vance, C., Abbott, R., et al. Granule localization of glutaminase in human neutrophils and the consequence of glutamine utilization for neutrophil activity. J Biol Chem 2004,279: 13305-13310.
    
    [186] Steinke, D., Salzburger, W., Braasch, I., et al. Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 2006, 7: 20.
    
    [187] Zhu, H., Zon, L. I. Use of zebrafish models for the analysis of human disease. Curr Protoc Hum Genet 2002, Chapter 15: Unit 15 13.
    
    [188] Brown, E. J., Albers, M. W., Shin, T. B., et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994, 369: 756-758.
    
    [189] Sabatini, D. M., Erdjument-Bromage, H., Lui, M., et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994,78: 35-43.
    [190] Sabers, C. J., Martin, M. M., Brunn, G. J., et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995,270: 815-822.
    
    [191] Brown, E. J., Beal, P. A., Keith, C. T., et al. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 1995, 377: 441-446.
    
    [192] Brunn, G. J., Fadden, P., Haystead, T. A., et al. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 1997,272: 32547-32550.
    
    [193] Reinke, A., Chen, J. C., Aronova, S., et al. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 2006,281:31616-31626.
    
    [194] Makky, K., Tekiela, J., Mayer, A. N. Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Developmental Biology 2007, 303: 501-513.
    
    [195] Cardenas, M. E., Heitman, J. FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. EMBO J 1995, 14: 5892-5907.
    
    [196] Withers, D. J., Ouwens, D. M., Nave, B. T., et al. Expression, enzyme activity, and subcellular localization of mammalian target of rapamycin in insulin-responsive cells. Biochem Biophys Res Commun 1997,241: 704-709.
    
    [197] Drenan, R. M., Liu, X., Bertram, P. G., et al. FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 2004,279: 772-778.
    
    [198] Rosner, M., Hengstschlager, M. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum. Mol. Genet. 2008,17: 2934-2948.
    
    [199] Liu, X., Zheng, X. F. Endoplasmic reticulum and Golgi localization sequences for mammalian target of rapamycin. Mol Biol Cell 2007,18: 1073-1082.
    
    [200] Janus, A., Robak, T., Smolewski, P. The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell Mol Biol Lett 2005,10: 479-498.
    
    [201] Chamberlin, M. E., Glemet, H. C., Ballantyne, J. S. Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush). Am J Physiol 1991, 260: R159-166.
    
    [202] Livak, K. ABI Prism 7700 sequence detection system user bulletin 2. PE Applied Biosystems, Foster City, Calif 1997.
    [203]Curry,E.The histology of the digestive tube of the carp(Cyprinus carpio communis).Journal of Morphology 1939,65:53-78.
    [204]Kapoor,B.G.,Smit,H.,Verighina,I.A.,et al.The Alimentary Canal and Digestion in Teleosts,Advances in Marine Biology.Academic Press,1976,pp.109-239.
    [205]史建全,刘建虎,陈大庆,等.青海湖裸鲤肠道组织学研究.淡水渔业2004,34:16-19.
    [206]Labow,B.I.,Souba,W.W.,Abcouwer,S.F.Mechanisms governing the expression of the enzymes of glutamine metabolism--glutaminase and glutamine synthetase.J Nutr 2001,131:2467S-2474S;discussion 2486S-2467S.
    [207]Mommsen,T.P.,Busby,E.R.,von Schalburg,K.R.,et al.Glutamine synthetase in tilapia gastrointestinal tract:zonation,cDNA and induction by cortisol.J Comp Physiol[B]2003,173:419-427.
    [208]Sarantos,P.,Abouhamze,A.,Souba,W.W.Glucocorticoids regulate intestinal glutaminase expression.Surgery 1992,112:278-283.
    [209]Makrakis,M C.,Nakatani,K.,Bialetzki,A.,et al.Ontogenetic shifts in digestive tract morphology and diet of fish larvae of the Itaipu Reservoir,Brazil.Environ B iol Fish 2005,72:99-107.
    [210]Zabielski,R.,Gregory,P.,Westram,B.Biology of the intestine in growing animals.Elsevier Health Sciences 2002.
    [211]Goldspink,D.F.,Lewis,S.E.,Kelly,F.J.Protein synthesis during the developmental growth of the small and large intestine of the rat.Biochem J 1984,217:527-534.
    [212]Tengjaroenkul,B.,Smith,B.J.,Caeeci,T.,et al.Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia,Oreochromis niloticus L.Aquaculture 2000,182:317-327.
    [213]Liu,Y.,Hidayat,S.,Su,W.H.,et al.Expression and activity of mTOR and its substrates in different cell cycle phases and in oral squamous cell carcinomas of different malignant grade.Cell Biochem Funct 2007,25:45-53.
    [214]Carter,C.G.,Houlihan,D.F.Protein synthesis,in:Wright,P.,Anderson,P.(eds.),Fish physiology.Academic Press,2001,pp.31-75.
    [215]Buddington,R.K.Intestinal absorption of nutrients during early development of vertebrates:patterns of appearance and change.Biology of the intestine in growing animals.Amsterdam:Elsevier.2002,pp.539-578.
    [216]Muramatsu,T.,Takasu,O.,Furuse,M.,et al.Effect of diet type on enhanced intestinal protein synthesis by the gut microflora in the chick.J Nutr 1988,118:1068-1074.
    [217]Southom,B.G.,Kelly,J.M.,McBride,B.W.Phenylalanine flooding dose procedure is effective in measuring intestinal and liver protein synthesis in sheep.J Nutr 1992,122:2398-2407.
    [218]von Allmen,D.,Hasselgren,P.O.,Higashiguchi,T.,et al.Increased intestinal protein synthesis during sepsis and following the administration of tumour necrosis factor alpha or interleukin-1 alpha.Biochem J 1992,286(Pt 2):585-589.
    [219]Stoll,B.,Chang,X.,Fan,M.Z.,et al.Enteral nutrient intake level determines intestinal protein synthesis and accretion rates in neonatal pigs.Am J Physiol Gastrointest Liver Physiol 2000,279:G288-294.
    [220]Nakshabendi,I.M.,McKee,R.,Downie,S.,et al.Rates of small intestinal mueosal protein synthesis in human jejunum and ileum.Am.J Physiol 1999,277:E1028-1031.
    [221]Le Bacquer,O.,Laboisse,C.,Darmaun,D.Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to "luminal fasting".American Journal of Physiology-Gastrointestinal and Liver Physiology 2003,285:G128-G136.
    [222]Smith,R.W.,Houlihan,D.F.Protein synthesis and oxygen consumption in fish cells.Journal of Comparative Physiology B:Biochemical,Systemic,and Environmental Physiology 1995,165:93-101.
    [223]Dabrowski,K.Protein digestion and amino acid absorption along the intestine of the common carp(Cyprinus carpio L.),a stomachless fish:an in vivo study.Reprod Nutr Dev 1986,26:755-766.
    [224]沈维华,林可椒,钱雪桥.鲤氨基酸吸收部位的研究.华中农业大学学报1993,12:364-368.
    [225]Windmueller,H.G,Spaeth,A.E.Uptake and metabolism of plasma glutamine by the small intestine.J Biol Chem 1974,249:5070-5079.
    [226]Windmueller,H.G,Spaeth,A.E.Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine.J Biol Chem 1978,253:69-76.
    [227]Windmueller,H.G.,Spaeth,A.E.Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats.Quantitative importance of glutamine,glutamate,and aspartate.J Biol Chem 1980,255:107-112.
    [228]Magasantk,B.Regulation of nitrogen utilization,in:Jones,E.W.,Pringle,J.R.,Broach,J.R.(eds.),The molecular and cellular biology of the yeast Saccharomyces.Cold Spring Harbor,NY,Cold Spring Harbor Laboratory Press.,1992,pp.283-317.
    [229]Shapiro,R.A.,Clark,V.M.,Curthoys,N.P.Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine.Evidence for interaction at the glutamine binding site.J Biol Chem 1979,254:2835-2838.
    [230]Wischmeyer,P.E.,Musch,M.W.,Madonna,M.B.,et al.Glutamine protects intestinal epithelial cells:role of inducible HSP70.Am J Physiol 1997,272:G879-884.
    [231]Lindemann,G,Grohs,M.,Stange,E.F.,et al.Limited heat-shock protein 72 induction in Caco-2 cells by L-glutamine.Digestion 2001,64:81-86.
    [232]Wang,Y.N.,Bai,Y.L.,Qin,L.F.,et al.Interferon-gamma induces human vascular smooth muscle cell proliferation and intimal expansion by phosphatidylinositol 3-kinase-dependent mammalian target of rapamycin raptor complex 1 activation.Circ Res 2007,101:560-569.
    [233]Fumarola,C.,La Monica,S.,Guidotti,G G Amino acid signaling through the mammalian target of rapamycin(mTOR) pathway:Role of glutamine and of cell shrinkage.J Cell Physiol 2005,204:155-165.
    [234]Ropelle,E R.,Pauli,J.R.,Femandes,M.F.A.,et al.A Central Role for Neuronal AMP-Activated Protein Kinase(AMPK) and Mammalian Target of Rapamycin(mTOR) in High-Protein Diet-Induced Weight Loss.Diabetes 2008,57:594-605.
    [235]Wang,L.,Lawrence,J.C.,Sturgill,T.W.,et al.Mammalian target of rapamycin complex 1(mTORC1) activity is associated with phosphorylation of raptor by mTOR.J Biol Chem 2009.
    [236]Hou,G,Xue,L.,Lu,Z.,et al.An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR.Cancer Lett 2007,253:236-248
    [237]Seidel,E R.,Ragan,V.L.Inhibition by rapamycin of omithine deearboxylase and epithelial cell proliferation in intestinal IEC-6 cells in culture.Br J Pharmaeol 1997,120:571-574.
    [238]谢建新,顾岩,刘银坤,等.联合应用GH和Gln对短肠大鼠小肠粘膜上皮细胞谷氨酰胺酶和鸟氨酸脱羧酶活性的影响.解剖学杂志2002,25:336-339.
    [239]Carey,M.,Smale,S.Transcriptional regulation in eukaryotes:concepts,strategies,and techniques.Cold Spring Harbor Laboratory Press 2000.
    [240]Wilson,T.,Treisman,R.Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences.Nature 1988,336:396-399.
    [241]Hansen,W.R.,Barsic-Tress,N.,Taylor,L.,et al.The 3'-nontranslated region of rat renal glutaminase mRNA contains a pH-responsive stability element.Am J Physiol 1996,271: F126-131.
    [242]Nakajo,T.,Yamatsuji,T.,Ban,H.,et al.Glutamine is a key regulator for amino acid-controlled cell growth through the mTOR signaling pathway in rat intestinal epithelial cells.Biochem Biophys Res Commun 2005,326:174-180.
    [243]贺道远,曾凡星,翟昕元.跑台运动对大鼠骨骼肌mTOR mRNA和蛋白表达的影响.天津体育学院学报2008,23:386-389.
    [244]Xia,Y,Wen,H.Y,Young,M.E.,et al.Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine.J Biol Chem 2003,278:13143-13150.
    [245]Morrison,C.D.,Xi,X.,White,C.L.,et al.Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism.Am J Physiol Endocrinol Metab 2007,293:E165-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700