用户名: 密码: 验证码:
华北平原小麦—玉米轮作中有机肥的氮素利用与去向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国北方地区小麦-玉米轮作上农民采用一次性施肥替代分次施肥的方式日益普遍。在东北和华北地区,有畜禽养殖或易于廉价获取畜禽粪便的农户,在小麦-玉米轮作上通常会一次性施用足量畜禽粪便作为底肥,不再施用化肥,也不追肥。小麦-玉米轮作一次性基施有机肥,可充分利用畜禽粪便养分,并节约劳动力,但在这一施肥方式下,有机肥氮素的利用状况、去向及其对环境的影响尚无相关研究。
     为阐明华北平原的冬小麦-夏玉米轮作中一次基施有机肥的氮素利用与去向,本研究于2007年~2008年在山东陵县试验站、蓟县杨辛庄、蓟县史家屯布置了4个田间定位试验,研究一次性基施有机肥的作物产量与氮肥利用率,在陵县试验点上利用15N示踪技术,采用小区套微区的方式,通过施用15N标记有机肥,重点研究有机肥氮素的吸收、转化及在土壤剖面中的分布。主要结论如下:
     1、蓟县杨辛庄东试验点地力较高(产量水平较高),在冬小麦-夏玉米轮作中施氮量为300 kg N·hm-2条件下,一次性基施有机肥与分5次施化肥产量无显著区别,两季作物总产分别为18034、18101 kg·hm-2。冬小麦、夏玉米收获之后,土壤0-20cm硝态氮均无显著区别,冬小麦收获后分别为13.2、11.3 mg·kg-1,夏玉米收获后分别为7.2、7.8 mg·kg-1。陵县试验点地力较低(产量水平较低),在冬小麦-夏玉米轮作中施氮量为300 kg N·hm-2条件下,分5次施用化肥的经济产量显著高于一次性基施有机肥的经济产量,两季作物总产分别为12503、10782 kg·hm-2。冬小麦收获之后,土壤0-20cm矿质氮无显著区别,夏玉米收获之后,分次施用化肥的土壤0-20cm硝态氮为7.2 mg·kg-1,显著高于一次性基施有机肥的处理(4.6 mg·kg-1)。
     2、15N示踪研究显示:在冬小麦-夏玉米一个轮作周期中,对一次性基施有机肥氮用量为450 kg N·hm-2和300 kg N·hm-2的两个处理而言,产量无显著差别,分别为11087、10782kg·hm-2。高氮用量Nlost-dff(源于肥料的氮损失量)为153 kg N?hm-2,低氮处理仅为55 kg N?hm-2,差异显著;一个轮作周期过后,高氮处理的NUE(有机肥氮素利用率)为13%,显著低于低氮处理(17%),其NSoil-dff(源于肥料的土壤存留氮量)为238 kg N?hm-2,显著高于低氮处理(172 kg N?hm-2),其Nmin-dff(源于肥料的土壤矿质氮存留量)为3.7 kg N?hm-2,与低氮处理(3.1 kg N?hm-2)无显著区别。以上结果表明,高氮比低氮用量处理多施的150 kg氮素,其中约2/3损失,约1/3以有机态存留于土壤中。一次性基施有机肥氮用量为300 kg N·hm-2时,冬小麦收获后Nuptake-dff(源于肥料的作物吸氮量)、NSoil-dff(源于肥料的土壤存留氮量)、Nlost-dff、Nmin-dff分别为26、219、55、2.4 kg N?hm-2;NUE(肥料氮素利用率)、Nlost-dff-coef(肥料氮素损失率)分别为9%和18%。夏玉米收获后Nuptake-dff、NSoil-dff、Nlost-dff、Nmin-dff分别为26、172、21、3.1 kg N?hm-2;NUE、Nlost-dff-coef分别为9%和7%。一次性基施有机肥氮用量为450 kg N·hm-2时,冬小麦收获后Nuptake-dff、NSoil-dff、Nlost-dff、Nmin-dff分别为30、307、113、3.7 kg N?hm-2;NUE、Nlost-dff-coef分别为7%和25%。夏玉米收获后Nuptake-dff、NSoil-dff、Nlost-dff、Nmin-dff分别为29、238、39、3.7kg N?hm-2;NUE、Nlost-dff-coef分别为7%和9%。
     3、15N示踪试验结果还显示:在土壤地力较低条件下,尽管分次施用化肥(施氮量为300 kg N?hm-2)产量水平高于一次性施用有机肥(施氮量为300 kg N?hm-2),一个轮作周期后,前者0-20与0-200cm土层中的Nmin-dff(源于肥料的土壤矿质氮存留量)为7.6、8.7 kg N?hm-2,显著高于后者(2.6、3.1 kg N?hm-2);而对于分次施用化肥施氮量为450 kg N?hm-2的处理而言, 0-20与0-200cm土层中的Nmin-dff分别为11.0、15.2 kg N?hm-2,显著高于一次性施用有机肥施氮量为450 kg N?hm-2的处理(3.0、3.7 kg N?hm-2)。
     4、不同有机肥品种的试验结果显示:冬小麦-夏玉米轮作中施用牛粪、猪粪、鸭粪3种有机肥,施氮量为300 kg N·hm-2,一次性基施条件下,经济产量无显著区别,两季总产分别为:14961、15459、15231 kg·hm-2;两季累计氮素利用率也无显著区别,分别为18%、18%、23%。小麦收获后,施用鸭粪处理土壤0-20cm硝态氮含量(19.1 mg·kg-1)显著高于牛粪(9.8 mg·kg-1)和猪粪(13.3mg·kg-1)处理,玉米收获后,施用鸭粪处理土壤0-20cm硝态氮含量(12.8 mg·kg-1)显著高于牛粪(6.8 mg·kg-1)和猪粪(7.5mg·kg-1)处理,表明:有机肥料品种不同,肥料氮素在土壤中的矿化有显著差别。
     本项研究结果初步显示,在华北平原高肥力土壤条件下,小麦-玉米轮作一次性基施有机肥与多次施用等氮量化肥比较,产量基本相同;而作物收获后土壤表层硝态氮存量显著更低,农田淋溶或径流风险较低,考虑一次性基施有机肥还可节约劳动力、充分利用畜禽粪便养分,这一方式在华北平原高肥力条件下是一种值得推荐的施肥方法。
In recent years, it has become increasingly widespread in the Northeast and North China that only base organic manure is applied in winter wheat-summer maize rotation without fertilizer topdressing. This fertilization measurement is usually used by farmers who raise livestock and poultry or could get cheap animal manure. In this fertilization system, worker costs for topdressing fertilization will be reduced. However, few studies were done on behavior and fate of nitrogen, especially on nitrogen efficiency and its impacts on environment by one base organic manure application in winter wheat-summer maize rotation.
     In order to elucidate nitrogen fate and efficiency of organic manure, four field experiments were carried out from September 2007 to October 2008, respectively in Lingxian (Shandong province), Yangxinzhuang and Shijiatun (Jixian County of Tjanjin City). These experiments were mainly used to research nitrogen use efficiency and crop yield. Besides this, experiment in Lingxian was used to research the uptake of manure nitrogen by crop, its transformation and distribution in soil environment. 15N tracer technique was adapted in this experiment, and some micro-plots and field plots were carried out too. 15N marked organic manure and chemical fertilizers were applied to these micro-plots. The main conclusions are as follows:
     1 ) The experimental site of east Yangxinzhuang is of higher fertility (higher yield). In the 300-N-treatments (applying 300 kg N·hm-2 nitrogen to wheat-maize rotation), there was no significant difference between crop yields of 1-OM (applying base organic manure in winter wheat-summer maize rotation without fertilizer topdressing) and 5-CF (applying chemical fertilizer for five times in winter wheat-summer maize rotation, and three times for winter wheat, twice for summer maize) fertilization measurement. Their yields (wheat plus maize) were respectively 18034 and 18101 kg·hm-2. After winter wheat and summer maize harvest, there was also no significant difference between the two kinds of fertilization measurements in 0-20cm soil NO3-N content. Their content were respectively 13.2 and 11.3 mg·kg-1 after winter wheat harvest, were respectively 7.2 and 7.8 mg·kg-1 after summer maize harvest. The experimental site of Lingxian (Shandong Province) is of lower fertility (lower yield). In the 300-N treatments, the total yield of 5- CF is significant high from that of 1-OM. Their yields (wheat plus maize) were respectively 12503 and 10782 kg·hm-2. After winter wheat harvest, the 0-20cm soil NO3-N content of 5-CF was not significantly different from that of 1-OM. After summer-maize harvest, the 0-20cm soil NO3-N content of 1-OM was 7.2 mg·kg-1, which was significant high from that of 5- CF (4.6 mg·kg-1).
     2)The 15N tracer studies have shown: In the periods of winter wheat– summer maize rotation, there was no significant yields difference between 450-N treatment (applying 450 kg N·hm-2 nitrogen to wheat-maize rotation) and 300-N treatment of 1-OM fertilization measurement. Their yields were respectively 11807 and 10782 kg·hm-2. The Nlost-dff (Nitrogen lost derived from fertilizer) of 450-N treatment was significantly increased to 153 kg N·hm-2, and the 300-N treatment was only of 55 kg N·hm-2. The NUE (Nitrogen use efficiency) of 450-N treatment was 13%, which was significantly lower than that of 300-N treatment (17%). The NSoil-dff (the soil nitrogen remaining derived from fertilizer) of 450-N treatment was 238 kg N·hm-2, which was significantly higher than that of 300-N treatment (172 kg N·hm-2). The Nmin-dff (the soil mineral nitrogen remaining derived from fertilizer) of 450-N treatment was 3.7 kg N·hm-2, which was no significantly difference from that of 300-N treatment (3.1 kg N·hm-2). These results have shown that 450-N treatment is application 150kg nitrogen fertilizer more than 300-N treatment, two third of them are lost, and one third of them remain in soil.
     In the 300-N treatment of 1-OM fertilization measurement, after winter wheat harvest, Nuptake (nitrogen absorption by the crop), NSoil-dff, Nlost-dff and Nmin-dff were respectively 26, 219, 55, 2.4 kg N·hm-2; NUE and Nlost-dff-coef (lost coefficient of Nitrogen derived from fertilizer) were respectively 9% and 18%. After summer maize harvest, Nuptake, NSoil-dff, Nlost-dff and Nmin-dff were respectively 26, 172, 21 and 3.1 kg N·hm-2; NUE and Nlost-dff-coef were respectively 9% and 7%.
     In the 450-N treatment of 1-OM fertilization measurement, after winter wheat harvest, Nuptake, NSoil-dff, Nlost-dff and Nmin-dff were respectively 30, 307, 113 and 3.7 kg N·hm-2; NUE and Nlost-dff-coef were respectively 7% and 25%. After summer maize harvest, Nuptake, NSoil-dff, Nlost-dff and Nmin-dff were respectively 29, 238, 39 and 3.7 kg N·hm-2; NUE and Nlost-dff-coef were respectively 7% and 9%.
     3)The 15N tracer studies have also shown: In the lower fertility conditions, the crop yield of 5-CF was significantly higher than that of 1-OM. After a rotation period, in 300-N treatments, soil 0-20cm Nmin-dff and 0-200cm Nmin-dff of 5-CF were respectively 7.6 and 8.7 kg N·hm-2, which were significantly higher than those of 1-OM (2.6 and 3.1 kg N·hm-2). Also, in 450-N treatments, soil 0-20cm Nmin-dff and 0-200cm Nmin-dff of 5 -CF are respectively 11.0 and 15.2 kg N·hm-2, which were significantly higher than those of 1-OM (3.0 and 3.7 kg N·hm-2) too.
     4)Experimental results of different varieties of organic manure showed that: In winter wheat-summer maize rotation, crop yields of 300-N had no significant difference among the treatments of applying cow dung, pig manure and duck manure. Their total (wheat plus maize) yields of different manure treatments were respectively 14961, 15459 and 15231 kg·hm-2. Their NUE (wheat plus maize) were respectively 18%, 18% and 23%, also had no significant differences. After winter wheat harvest, 0-20cm soil NO3-N content of duck manure application treatment (19.1 mg·kg-1) was significantly higher than that of cow dung application treatment (9.8 mg·kg-1) and pig manure application treatment (13.3mg·kg-1). After summer maize harvest, 0-20cm soil NO3-N content of duck manure application treatment (12.8 mg·kg-1) was significantly higher than that of cow dung application treatment 6.8 mg·kg-1) and pig manure application treatment (7.5mg·kg-1) too. These results have shown that different varieties of organic fertilizers have significant differences in nitrogen mineralization in soil.
     These studies are preliminary show that in the North China Plain of high fertility soil, crop yields are basically the same between 1-OM and 5- CF fertilization measurement in winter wheat– summer maize rotation. After summer maize harvest, soil 0-20cm NO3-N content is significant low, and the risk of farmland leaching or run-off is low too. Considering worker costs for topdressing fertilization will be reduced, 1-OM fertilization measurement is worthy to be recommended in the North China Plain of high fertility soil.
引文
[1]北京农业大学.农业化学(土化专业用).北京:农业出版社,1980.
    [2]蔡贵信,朱兆良.稻田中化肥氮的气态损失.土壤学报,1995,32(增刊):128-135.
    [3]曹志洪.施肥与大气环境质量.土壤,2003,35(4):265-270.
    [4]崔哲,王圣瑞,金相灿,等.北京市两种沉积物和一种代表性土壤的氮素矿化特征及其预测.中国农学通报,2006,22(6):341-348.
    [5]戴明宏,陶洪斌,王利纳,等.华北平原春玉米种植体系中土壤无机氮的时空变化及盈亏.植物营养与肥料学报,2008,14(3):417-423.
    [6]党廷辉,蔡贵信,郭胜利,等.用15N标记肥料研究旱地冬小麦氮肥利用率与去向.核农学报,2003,17(4):280-285.
    [7]党廷辉,郭胜利,郝明德.早地冬小麦氮磷自然供给能力及其吸收氮磷来源的长期定位研究.植物营养与肥料学报,2001,7(2):166-171.
    [8]丁洪,蔡贵信,王跃思,等.玉米-小麦轮作系统中氮肥反硝化损失与N2O排放量.农业环境科学学报,2003,22(5):557-560.
    [9]董树亭,等.作物栽培学概论.北京:中国农业出版社,2007,215-216.
    [10]杜昌文,周健民,王火焰,等.载体缓控释尿素研制初探.土壤,2003,35(5):397-400.
    [11]杜会英.保护地蔬菜氮肥利用、土壤养分和盐分累积特征研究[博士学位论文].北京:中国农业科学院研究生院,2007.
    [12]杜连凤,张维理,武淑霞,等.15N标记有机肥的制备及其质量.中国土壤与肥料,2006,(3):64-65.
    [13]杜连凤.长江三角洲地区菜地系统氮肥利用与土壤质量变异研究[博士学位论文].北京:中国农业科学院研究生院,2005.
    [14]付会芳,李生秀.土壤氮素矿化与土壤供氮能力1.旱地土壤氮素矿化两种培养方法之比较.西北农业大学学报,1992,20:48-52.
    [15]高伟,金继运,何萍,等.我国北方不同地区玉米养分吸收及累积动态研究.植物营养与肥料学报,2008,14(4):623-629.
    [16]高祥照,马文奇,马常宝,等.中国作物秸秆资源利用现状分析.华中农业大学学报,2002,21(3):60-65.
    [17]谷夺魁,刘树庆,宁国辉.缓控释肥料研究进展及其环境安全研究.河北农业科学,2004,8(4):100-104.
    [18]贺发云,尹斌,蔡贵信,等.菜地和旱作粮地土壤氮素矿化和硝化作用的比较.土壤通报,2005,36(1):41-44.
    [19]黄绍敏,宝德俊,皇甫湘荣,等.长期定位施肥小麦的肥料利用率研究.麦类作物学报,2006,26(2):121-126.
    [20]黄绍敏,宝德俊,皇甫湘荣,等.长期施用有机和无机肥对潮土氮素平衡与去向的影响.植物营养与肥料学报,2006,12(4):479-484.
    [21]吉野喬.水田土壤の窒素无机化と供给力推定法.日农业及园芸,1978,53:299-302.
    [22]金继运,刘荣乐等译.土壤肥力与肥料.北京:中国农业科学出版社,1998.
    [23]金相灿,崔哲,王圣瑞.连续淹水培养条件下沉积物和土壤的氮素矿化过程,土壤通报,2006,37(5):909-915.
    [24]巨晓棠,李生秀.土壤氮素矿化的温度水分效应.植物营养与肥料学报,1998,4(1):37-42
    [25]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测.应用生态学报,2003,14(12):2241-2245.
    [26]巨晓棠,潘家荣,刘学军等.高肥力土壤冬小麦生长季肥料氮的去向研究.核农学报,2002,16(6):397-402.
    [27]李辉信,胡锋,蔡贵信,等.红壤氮素的矿化和硝化作用特征.土壤,2000,4:194-157.
    [28]李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响.植物营养与肥料学报,2005,11(1):51-56.
    [29]李俊良,陈新平,李晓林,等.大白菜氮肥施用的产量效应、品质效应和环境效应.土壤通报,2003,40(2):261-265.
    [30]李俊良,崔德杰,孟祥霞,等.山东寿光蔬菜保护地蔬菜施肥现状及问题的研究.土壤通报,2002,33(2):126-128.
    [31]李俊良,韩琅丰,江荣丰,等.C.N比对有机肥料氮素释放和植物吸氮的影响.中国农业大学学报,1996,1(5):57-61.
    [32]李生秀.关于土壤供氮指标的研究:Ⅰ对几种测定土壤供氮能力方法的评价.土壤学报,1990,27(3):233-240.
    [33]李世清,李生秀.有机物料在维持土壤微生物体氮库中的作用.生态学报,2001,21(1):136-142.
    [34]廖中建,黎理.土壤氮素矿化研究进展.湖南农业科学,2007,(1):56-59.
    [35]刘宏斌.施肥对北京市农田土壤硝态氮累积与地下水污染的影响[博士学位论文].北京:中国农业科学院研究生院,2002.
    [36]刘强,葛旦之,苏国栋.湖南省红黄泥土壤氮矿化特性的研究.湖南农学院学报,1989,15(4):24-3.
    [37]刘晓利,许俊香,王方浩,等.我国畜禽粪便中氮素养分资源及其分布状况.河北农业大学学报,2005,28(5):27-32.
    [38]刘巽浩,陈阜.对氮肥利用效率若干传统观念的质疑.耕作与栽培,1991,(1):33-40,60.
    [39]刘育红,吕军.稻田土壤氮素矿化的几种方法比较.土壤通报,2005,36(5):675-678.
    [40]鲁彩艳,陈欣.不同施肥处理土壤及不同C/N比有机物料中有机N的矿化进程.土壤通报,2003,34(4):267-270.
    [41]鲁如坤,等.土壤-植物营养学原理和施肥.北京:化学工业出版社,1998,112-146
    [42]孟琳,王强,黄启为,等.猪粪推肥与化肥配施对水稻产量和氮效率的影响.生态与农村环境学报,2008,24(1):68-71,76.
    [43]沈其荣,沈振国,史瑞和.有机肥氮素的矿化特征及与其化学组成的关系.南京农业大学学报,1992,15(1):59-64.
    [44]沈其荣,史瑞和,裴探义,等.有机肥氮素的矿化特征及其对水稻生长发育的影响.江苏农业科学,1990,6:34-39.
    [45]沈善敏.中国土壤肥力.北京:中国农业出版社,1998,57-80.
    [46]宋勇生,范晓晖.稻田氨挥发研究进展.生态环境,2003,12(2):240-244.
    [47]孙传范,曹卫星,戴廷波.土壤—作物系统中氮肥利用率的研究进展.土壤,2001,2:64-69
    [48]孙文涛.保护地蔬菜栽培土壤水分-氮素联合调控理论与技术研究[硕士学位论文].北京:中国农业大学,2006.
    [49]王巧兰,吴礼树,赵竹青.15N示踪技术在植物N素营养研究中的应用及进展.华中农业大学学报,2007,26(1):127-132
    [50]王涛.滇池流域施用有机肥农田氮磷流失模拟研究[硕士学位论文].北京:中国农业科学院研究生院,2007.
    [51]王艳杰,邹国元,付桦,等.土壤氮素矿化研究进展.中国农学通报,2005,21(10):203-208
    [52]武俊喜,陈新平,贾良良,等.冬小麦/夏玉米轮作中高肥力土壤的持续供氮能力.植物营养与肥料学报,2004,10(1):1-5.
    [53]袁新民,同延安,等.有机肥对土壤NO3-N累积的影响.土壤与环境,2000,9(3):197-200.
    [54]张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694.
    [55]张福锁,马文奇,陈新平等.养分资源综合管理理论与技术概论.北京:中国农业大学出版社,2006,38-47.
    [56]赵荣芳.冬小麦夏玉米轮作中水氮资源的优化管理及可其可持续性评价[博士学位论文].北京:中国农业大学,2006.
    [57]中国农村统计年鉴.北京:中国统计出版社,2008.
    [58]朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992,228-229.
    [59]朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    [60]庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡.土壤,1997,29(2):80-83.
    [61] Abdallahi, M.M., and A. N’Dayegamiye. Effects of green manure on soil physical and biological properties and on wheat (Triticum aestivum) yield and N uptake. Can. J. Soil Sci., 2000, 80:81-90.
    [62] Aber, J.D., and J.D. Melillo. Litter decomposition: Measuring relative contributions of organic matter and nitrogen to forest soils. Can. J. Bot., 1980, 58:416-421.
    [63] Adel Ghoneim, H. Ueno, A. Ebid et al. Analysis of nitrogen dynamics and fertilizer use efficiency in rice using the nitrogen-15 isotope dilution method following the application of biogas slurry or chemical fertilizer. International Journal of Soil Science, 2008, 3(1):11-19.
    [64] Andre′n, O., T. Lindberg, U.-L. Bostro¨m, M. Clarholm, et al.. Organic carbon and nitrogen flows, 1990, 85-126. In O. Andre′n et al. (ed.) Ecology of arable land—Organisms, carbon and nitrogen cycling. Ecology Bulletin 40. Munksgaard International, Copenhagen.
    [65] Antonopoulos, A.Z. Comparison of different models to simulate soil temperature andmoisture—Effects on nitrogen mineralization in the soil. J. Plant Nutr. Soil Sci., 1999, 162:667-675.
    [66] Asagi, N., Ueno and A. Ebid. Effects of sewage sludge application on rice growth, soil properties and N fate in low fertile soil. Int. J. Soil Sci., 2007, 2:171-181.
    [67] Bahman Eghball, James F. Power. Composted and noncomposted manure application to conventional and no-tillage systems. Agronomy Journal, 1999,91 (5):819~825.
    [68] Bahman Eghball. Nitrogen mineralization from land2applied beef cattle feedlot manure or compost . Soil Science Society of America Journal,2000,64 (6):2024~2030.
    [69] Bending, D.G., and M.K. Turner. Interaction of biochemical quality and particle size of crop residues and its effects on the microbial biomass and nitrogen dynamics following incorporation into soil. Biol. Fertil. Soils, 1999, 29:319-327.
    [70] Bernal, M.P., A.F. Navarro, M.A. Sanchez-Monedero, A. Roig, and J. Cegarra. Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biol. Biochem, 1998, 30:305-313.
    [71] BREMER E, KUIKMAN P. Influence of Competition for Nitrogen in Soil on Net Mineralization of Nititrogen.Plant and Soil,1997, 190:119-126.
    [72] Broadbent, F.F. Plant use of soil nitrogen. 1984,171-182. In R.D. Haulk (ed.) Nitrogen in crop production. ASA, CSSA, and SSSA, Madison WI.
    [73] Cabrera ML and Kissel DE. Evaluation of a method to predict nitrogen mineralized from soil organic matter under field conditions.Soil Sci Am J, 1988, 52:1027-1031.
    [74] Calderon JF,Louise EJ,Scow KM,et al. Microbial response to simulated tillage in cultivated and uncultivated soils.Soil Biol Biochem, 2000, 32:1547-1559.
    [75] Calderón, F.J., G.W. McCarty, and J.B. Reeves. Analysis of manure and soil nitrogen mineralization during incubation. Biol. Fertil. Soils, 2005, 41:328-336.
    [76] Cameron, K.C., F.M. Kelliher, R.R. Sherlock, E.A. Forbes, and C.A.M. de Klein. Nitrous oxide inventory and mitigation. A National Science Strategy Research Programme for New Zealand- Report for MAF-Policy Wellington. 2000, 146.
    [77] Canh, T.T., A.J.A. Aarnink, J.B. Schutte, A. Sutton, D.J. Langhout,and M.W.A. Verstegen. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs. Livest. Prod. Sci., 1998, 56:181-191.
    [78] Carey, P.L., A.W. Rate, and K.C. Cameron. Fate of nitrogen in pig slurry applied to a New Zealand pasture soil. Aust. J. Soil Res., 1997, 35:941-959.
    [79] Chadwick, D.R., F. John, B.F. Pain, B.J. Chambers, and J. Williams. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: A laboratory experiment. J. Agric. Sci., 2000, 134:159-168.
    [80] Chadwick, D.R., T. van der Weerden, J. Martinez, and B.F. Pain. Nitrogen transformations and losses following pig slurry applications to a natural soil filter system (Solepur Process) in Brittany, France. J. Agric. Eng. Res., 1998, 69:85-93.
    [81] Choi Woo-Jung. Ro Hee-Myong, Chang Scott X. Recovery of fertilizer-derived inorganic-15N in a vegetable field soil as affected by application of an organic amendment. Plant and Soil, 2004,263:191-201.
    [82] Christian P. Giardina, Michael G. Ryan, Robert M. Hubbard, and Dan Binkley. Tree Species and Soil Textural Controls on Carbon and Nitrogen Mineralization.Soil Sci. Soc. Am. J., 2001, 65:1272-1279.
    [83] Dalal, R.C., W. Wang, P.G. Robertson, and W.J. Parton. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Aust. J. Soil Res., 2003, 41:165-195.
    [84] de Klein, C.A.M., R.R. Sherlock, K.C. Cameron, and T.J. van der Weerden. Nitrous oxide emissions from agricultural soils in New Zealand- A review of current knowledge and directions for future research. J. R. Soc. N. Z., 2001, 31:543-574.
    [85] Ebid,A., H.Ueno,A. Ghoneim and N. Asagi, Uptake of carbon and nitrogen through rice root from 13C and 15N dual-labeled maize residue compost. Int.J.Biol.Chem., 2007, 1:75-83.
    [86] Environment Agency. Water Pollution Incidents in England and Wales 1996. HMSO, London. 1997.
    [87] Errebhi, M., C.J. Rosen, S.C. Gupta, and D.E. Birong. Potato yield response and nitrate leaching as infl uenced by nitrogen management. Agron. J., 1998, 90:10-15.
    [88] Ferguson R B, Hergert G W, Schepers J S, et al. Site-specific nitrogen management of irrigated maize: Yield and soil residual nitrate effects. Soil Sci Soc Am J, 2002, 66:544-553.
    [89] Franzluebbers, A.J. Microbial activity in response to waterfilled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol., 1999, 11:91-101.
    [90] Garand, M.J. Management of nitrogen from underseeded clover and manures in spring wheat. Ph.D. thesis. MacDonald College, McGill Univ., Montreal, QC, Canada, 1999.
    [91] Gavi, F., W.R. Raun, N.T. Basta, and G.V. Johnson. Effect of sewage biosolids and ammonium nitrate on wheat yield and soil profile inorganic nitrogen accumulation. J. Plant Nutr. 1997, 20:203-218.
    [92] Gerard L. Velthof, Jaap A. Nelemans, Oene Oenema, and Peter J. Kuikman. Gaseous Nitrogen and Carbon Losses from Pig Manure Derived from Different Diets. J. Environ. Qual., 2005, 34:698-706.
    [93] Griffin, T.S., and C.W. Honeycutt. Using growing degree days to predict nitrogen availability from livestock manures. Soil Sci. Soc. Am. J., 2000, 64:1876-1882.
    [94] H. L. Kristensen, G. W. McCarty, and J. J. Meisinger. Effects of Soil Structure Disturbance on Mineralization of Organic Soil Nitrogen. SOIL SCI. SOC. AM. J., 2000, 64:371-378.
    [95] Hadas A,Poigenbaum S,Feigin A,et al. Nitrogen mineralization in field at various soil depth.JSoil Sci, 1989, 40:131-137.
    [96] Hadas, A., L. Kautsky, M. Goek, and E.E. Kara. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem., 2004, 36:255-266.
    [97] Harmsen, G.W., and G.J. Kolenbrander. Soil inorganic nitrogen. 1965, 43-92. In W.V. Bartholomew and F.E. Clark (ed.) Soil nitrogen.Agron. Monogr. 10. ASA, Madison, WI.
    [98] Hartz, T.K., J.P. Mitchell, and C. Giannini. Nitrogen and carbon mineralization dynamics of manures and composts. HortScience, 2000, 35:209-212.
    [99] Hassink J, Bouwman LA, Zwart KB. Relationships between Soil Texture, Physical Protection of Organic Matter,Soil Biota, and C and N Mineralization in Grassland Slil. Geoderrna, 1993, 57: 105-128.
    [100] Hood R.. Evaluation of a new approach to the nitrogen-15 isotope dilution technique, to estimate crop N uptake from organic residues in the field. Biol Fertil Soils. 2001,34:156-161.
    [101] Hubbard R K., Thomas D L., Leonard R A., Butler J L.. Surface run-off.and shallow ground water quality as affected by centre pivot applied dairy cattle wastes. Transactions ASAE. 1987,30 (2), 430-437.
    [102] Ingrid K. Thomsen. Nitrogen Use Efficiency of 15N-labeled Poultry Manure. Soil Sci. Soc. Am. J. 2004, 68:538-544.
    [103] J. Mark Powell, Zhiguo Wu, Keith Kelling, Paul Cusick, and Gabriela Mu?oz. Differential Nitrogen-15 Labeling of Dairy Manure Components for Nitrogen Cycling Studies. Agron. J. 2004, 96:433-441.
    [104] Jackson L.E.. Fates and losses of nitrogen from a nitrogen-15-labeled cover crop in an intensively managed vegetable system. Soil Sci. Soc. Am. J. 2000,64:1404-1412.
    [105] Jesper Luxh?i, Sander Bruun, Bo Stenberg, Tor A. Breland, and Lars S. Jensen.Prediction of Gross and Net Nitrogen Mineralization-Immobilization-Turnover from Respiration. Soil Sci. Soc. Am. J. 2006, 70:1121-1128.
    [106] Ka¨tterer, T., M. Reichstein, O. Andre′n, and A. Lomander. Temperature dependence of organic matter decomposition: A critical review using literature data analysed with different models. Biol. Fertil. Soils, 1998, 27:258-262.
    [107] Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem., 1995, 27:753-760.
    [108] Kristofor R. Brye, John M. Norman, Erik V. Nordheim, S. Thompson Gower, and Larry G. Bundy.Refinements to an In-Situ Soil Core Technique for Measuring Net Nitrogen Mineralization in Moist, Fertilized Agricultural Soil. Agron. J. 2002, 94: 864-869.
    [109] L. E. Jackson. Fates and Losses of Nitrogen from a Nitrogen-15-Labeled Cover Crop in an Intensively Managed Vegetable System. Soil Sci. Soc. Am. J. 2000, 64:1404-1412.
    [110] L. M. Arregui and M. Quemada. Strategies to Improve Nitrogen Use Effi ciency in Winter Cereal Crops under Rainfed Conditions. Agronomy Journal, 2008, 2(100):277-284.
    [111] Li Shiqing, Li Shengxiu. Estimation of nitrogen fertilizer use efficiency in dryland agroecosystem. Chinese Agricultural Science, 2001, (1):89-96.
    [112] Lomander, A., T. Ka¨tterer, and O. Andre′n. Carbon dioxide evolution from top- and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol. Biochem. 1998,30:2017-2022.
    [113] Lord E I., Pilot nitrogen sensitive areas scheme. Results from the first four years. In: Petchey A M., D'Arcy B J D., Frost C A. (Eds.), Di.use Pollution and Agriculture. The Scottish Agricultural Colleges (SAC) Edinburgh, 1996: 64-72.
    [114] M. L. Cabrera, D. E. Kissel, and M. F. Vigil. Nitrogen Mineralization from Organic Residues: Research Opportunities. J. Environ. Qual. 2005, 34:75-79.
    [115] M.J. Glendining, P.R. Poulton, D.S. Powlson & D.S. Jenkinson. Fate of 15N-labelled fertilizer applied to spring barley grown on soils of contrasting nutrient status. Plant and Soil, 1997, 195: 83-98.
    [116] Maag, M., and F.P. Vinther. Effect of temperature and water on gaseous emissions from soils treated with animal manure. Soil Sci. Soc.Am. J. 1999, 63:858-865.
    [117] Marek K. Jarecki, Timothy B. Parkin, Alvarus S. K. Chan et al. Greenhouse Gas Emissions from Two Soils Receiving Nitrogen Fertilizer and Swine Manure Slurry. J. Environ. Qual. 2008, 37:1432-1438.
    [118] Mark Shepherd, anne Bhogal. Regular application of poultry litter to a sandy arable soil: effects on nitrate leaching and nitrogen balance. J Sci Food Agric, 1998, 78,19-29.
    [119] Martin H. Chantigny, Denis A. Angers, Thierry Morvan, and Candido Pomar. Dynamics of Pig Slurry Nitrogen in Soil and Plant as Determined with 15N. Soil Sci. Soc. Am. J. 2004, 68:637-643.
    [120] Miller, P.L., and A.F. MacKenzie. Effects of manures, ammonium nitrate and S-coated urea on yield and uptake of N by corn and on subsequent inorganic N levels in soils in Southern Quebec. Can. J. Soil Sci. 1978, 58:153-158.
    [121] Misselbrook, T.H., D.R. Chadwick, B.F. Pain, and D.M. Headon. Dietary manipulation as a means of decreasing N losses and methane emissions and improving herbage N uptake following application of pig slurry to grassland. J. Agric. Sci. 1998, 130:183-191.
    [122] Morvan, T., P. Leterme, G.G. Arse`ne, and B. Mary. Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using 15N -labelled ammonium. Eur. J. Agron. 1997, 7:181-188.
    [123] Motavalli,P.P.,C.A. Palm,E.. Elliott,S.D. Frey,and P.C.Smithson. Nitrogen mineralization in humid tropical fores soils: Mineralogy,texture,and measured nitrogen fractions. Soil Sci.Soc.Am.J. 1995,59:1168-1175.
    [124] Nadelhoffer KJ, Giblin AE, Shaverr GR. Effects of Temperature and Substrate Quality on Element Mineralization in Six Arctic Soilis. Ecology, 1996, 72: 242-253.
    [125] Nicolardot, B., S. Recous, and B. Mary. Simulation of C and N mineralization during crop residue decomposition:Asimple dynamic model based on the C: N ratio of the residues. Plant Soil, 2001, 228:83-103.
    [126] Paul, J.W., E.G. Beauchamp, and X. Zhang. Nitrous and nitric oxide emissions during nitrifi cation and denitrifi cation from manure-amended soil in the laboratory. Can. J. Soil Sci.1993,73:539-553.
    [127] Paul, J.W., N.E. Dinn, T. Kannangara, and L.J. Fisher. Protein content in dairy cattle diets affects ammonia losses and fertiliser nitrogen value. J. Environ. Qual. 1998, 27:528-534.
    [128] Peter S?rensen and Ingrid K. Production of Nitrogen-15-Labeled Pig Manure for Nitrogen Cycling Studies.Thomsen Soil Sci. Soc. Am. J. 2005, 69:1639-1643.
    [129] Puri G, Ashman MR. Relationship between soil microbial biomass and gross N mineralization.Soil Biol Biochem, 1998,30(2):251-256.
    [130] R. L. Haney, A. J. Franzluebbers, E. B. Porter, F. M. Hons, and D. A. Zuberer. Soil Carbon and Nitrogen Mineralization: Influence of Drying Temperature. Soil Sci. Soc. Am. J. 2004, 68:489-492.
    [131] Ranells, N.N., and M.G. Wagger. Nitrogen-15 recovery and release by rye and crimson clover cover crops. Soil Sci. Soc. Am. J. 1997, 61:943-948.
    [132] Rice, C.W., and J.L. Havlin. Integrating mineralizable nitrogen indices into fertilizer nitrogen recommendations. 1994,1-13. In J.L. Havlin et al (ed.) Soil testing: Prospects for improving nutrient recommendation. SSSA Spec. Publ. No. 40. SSSA. Madison, WI.
    [133] Rochette, P., M.H. Chantigny, D.A. Angers, N. Bertrand, and D. C?té. Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues. Can. J. Soil Sci. 2001,81:515-523.
    [134] S. Agehara and D. D. Warncke. Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources. Soil Sci. Soc. Am. J. 2005, 69:1844-1455.
    [135] Satish Gupta, Emmanuel Munyankusi, John Moncrief, Francis Zvomuya, and Matt Hanewall. Tillage and Manure Application Effects on Mineral Nitrogen Leaching from Seasonally Frozen Soils. J. Environ. Qual. 2004, 33:1238-1246.
    [136] Schmidt, I.K., S. Jonasson, and A. Michelsen. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl. Soil Ecol. 1999, 11:147-160.
    [137] Sherwood M.., Fanning A.. Nutrient content of surface run-off water from land treated with animal wastes. In: Brogan J C. (Ed.), Nitrogen Losses and Surface Runoff. from Land Spreading of Manures. Martinus Nijho./W. Junk, The Hague, 1981,5-17.
    [138] Sikora, L.J., and R.A.K. Szmidt. Nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts, 2001,287-305. In P.J. Stoffella and B.A. Kahn (ed.) Compost utilization in horticultural cropping systems. Lewis Publ., New York.
    [139] Sim J L , Wells J P ,Tackett D J. Predicting nitrogen availability to riceⅠ. Comparison of methods for determining available nitrogen to rice form field and reservoir soils. Soil Sci Soc Am Proc,1967,31:672-680.
    [140] Smith K A., Chambers B J., Muck: from waste to resource. Utilisation: the impacts and implications. Agricultural Engineer 1995, 50:33-38.
    [141] Smith, K.A., and B.J. Chambers. Improved utilisation of slurry nitrogen for arable cropping.Aspects Appl. Biol. 1992, 30:127-134.
    [142] Sollins P, Specher G, Glassmen CA. Net Nitrogen Mineralization from Light-and Heavy-Fraction Forest Soil Organic Matter.Soil. Biol. Biochem, 1984, 16: 31-57.
    [143] Sommer, S.G., and N.J. Hutchings. Ammonia emission from field applied manure and its reduction. Eur. J. Agron. 2001, 15:1-15.
    [144] S?rensen, P., and E.S. Jensen. Mineralization-immobilization and plant uptake of nitrogen as infl uenced by the spatial distribution of cattle slurry in soils of different texture. Plant Soil, 1995, 173:283-291.
    [145] S?rensen, P., and J.A. Fernandez. Dietary effects on the compoemission of pig slurry and on the plant utilization of pig slurry nitrogen. J. Agric. Sci. 2003, 140:343-355.
    [146] S?rensen, P., and M. Amato. Remineralisation and residual effects of N after application of pig slurry to soil. Eur. J. Agron. 2002, 16:81-95.
    [147] S?renson, L.H. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biol. Biochem. 1981, 13:313-321.
    [148] Stanford G J, O Legg, S J Smith. Soil nitrogen availability evaluations based on nitrogen mineralization potentials of soils and uptake of labeled and unlabeled nitrogen by plants . Plant and Soi,l 1973, 39: 113-124.
    [149] Stanford G, Epstein E. Nitrogen Mineralization-Water Relations in Soils. Soil Sci. Soc. Amer. Proc, 1974, 38:103-107.
    [150] Stevenson F J.Nitrogen-organic forms.In:Page A L. Methods of Soil Analysis,Part 2.Madison,Wisconsin:American Society Agronomy,1982,9:625-641.
    [151] Stevenson,F.J. Organic forms of soil nitrogen. In F.J.Stevenson(ed.), Nitrogen in agricultural soils, 67-122. Am.Soc.of Agron.Inc,Madison,Wis.USA. 1982.
    [152] Tamara C. Flavel and Daniel V. Murphy. Carbon and Nitrogen Mineralization Rates after Application of Organic Amendments to Soil. J. Environ. Qual. 2006, 35:183-193.
    [153] Travis A. Hanselman, Donald A. Graetz, and Thomas A. Obreza. A Comparison of In Situ Methods for Measuring Net Nitrogen Mineralization Rates of Organic Soil Amendments. J. Environ. Qual. 2004, 33: 1098-1105.
    [154] Van Kessel, J.S., J.B. Reeves, and J.J. Meisinger. Nitrogen and carbon mineralization of potential manure components. J. Environ. Qual. 2000, 29:1669-1677.
    [155] Velthof, G.L., P.J. Kuikman, and O. Oenema. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils, 2003, 37:221-230.
    [156] W. B. Stevens, R. G. Hoeft, and R. L. Mulvaney. Fate of Nitrogen-15 in a Long-Term Nitrogen Rate Study: II. Nitrogen Uptake Efficiency. Agronomy Journal, 2005, 97:1046-1053.
    [157] Warning S A, Bremner JM . Ammonium production in soil under waterlogged conditions as an index ofnitrogen availability. Nature, 1964, 201: 951-952.
    [158] Wilson, J.M., and D.M. Griffin. Water potential and the respiration of microorganisms in the soil. Soil Biol. Biochem. 1975, 7:199-204.
    [159] Y. Gan,S. S. Malhi, S. Brandt, F. Katepa-Mupondwa, and C. Stevenson. Nitrogen Use Efficiency and Nitrogen Uptake of juncea Canola under Diverse Environments. Agronomy Journal, 2008, 2(100):285-295.
    [160] Yamulki, S., and S.C. Jarvis. Short-term eff ects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane, and carbon dioxide fluxes from grassland. Biol. Fertil. Soils, 2002, 36:224-231.
    [161] YoungR A, J I Ozbun, A Bauer, E H Vasey. Yield response of springwheat and barley to nitrogen fertilizer in relation to soil and climate factors . SoilSc.i Soc.Am. Proc., 1967, 31: 407-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700