用户名: 密码: 验证码:
镉、镍在海洋浮游食物链上的传递及其生理生化效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染已成为一个全球性的环境问题,因此环境监测是修复和治理环境污染的一个必需手段,虽然常规的化学和物理等监测手段是环境监测必不可少的工具,然而由于该手段不能提供生物信息,继而不能满足当今环境监测的目标。由于可提供环境污染的生物信息,生物标志物(Biomarker)在现代化环境监测中占有非常重要地位,所以在环境监测中大规模应用生物标志物的问题有待于深入研究。本文选择桡足类为研究对象,进行重金属(镉或镍)对日本虎斑猛水蚤(Tigriopus japonicus)、双齿许水蚤(Schmackeria dubia)、中华哲水蚤(Calanussinicus)和婆罗异剑水蚤(Apocyclops borneoensis)急性毒性的测定;同时采用生化测定方法,研究为期12 d的不同浓度重金属(镉或镍)暴露对日本虎斑猛水蚤和双齿许水蚤体内多种生化指标{超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)、谷胱甘肽硫转移酶(GST)、乙酰胆碱酯酶(AChE)、还原型谷胱甘肽(GSH)、丙二醛(MDA)与还原型谷胱甘肽和氧化型谷胱甘肽的比值(GSH/GSSG)}的影响,以探讨镉或镍对桡足类的毒害效应以及动物的应激机制,同时筛选出重金属污染的生物标志物;本文也进行重金属(镉或镍)不同暴露时间(1、4、7和12 d)对日本虎斑猛水蚤体内金属硫蛋白(MT)水平的影响,以探讨该种桡足类体内MT在重金属胁迫下的诱导模式和应激机制;本文还选择重金属暴露12 d后的双齿许水蚤为研究对象,研究不同浓度重金属对该种桡足类肌肉组织和卵巢超微结构的影响,以探讨重金属对动物的毒性效应。同时,本文定量分析桡足类(日本虎斑猛水蚤、双齿许水蚤和婆罗异剑水蚤)生殖力在重金属胁迫下发生的变化,阐述重金属污染下桡足类种群变化的应对策略。最后,采用放射性同位素示踪法,研究不同氮水平和氮源对东海原甲藻(Prorocentrum donghaiense)吸收镍与该金属在藻类亚细胞和各生化组分中分布的影响,即探讨环境营养盐水平和来源对藻类吸收镍的影响机制;同时也研究氮或磷添加对镍在东海原甲藻和中肋骨条藻(Skeletonema costatum)胞内吸收和累积的影响;并将其分别投喂中华哲水蚤和真刺唇角水蚤(Labidocera euchaeta)后,探讨镍在桡足类体内的吸收和生理周转,即探讨不同营养盐浓度对镍在海洋食物链上传递的影响。主要研究结果如下:
     1.镉对桡足类的24和48 h半致死浓度均小于镍对应的半致死浓度,因此桡足类对镉的敏感性大于镍,即镉更具有毒性;在镍对各种桡足类24和48 h半致死浓度的比较中,日本虎斑猛水蚤最大,中华哲水蚤和双齿许水蚤最小(两者相差不大),而在镉对各种桡足类24和48 h半致死浓度的比较中,婆罗异剑水蚤最大,日本虎斑猛水蚤次之,中华哲水蚤最小,因此重金属对桡足类的毒性与金属类别和生物种类均相关。
     2.不同浓度的镉或镍均引起桡足类体内各种生化指标(SOD、GPx、GST、GSH和GSH/GSSG)的显著变化,该类指标的变化与重金属暴露剂量和时间均相关,因此提示该系列指标可作为重金属污染的生物标志物;特别是GSH.在12 d的重金属暴露过程中,GSH总是最先受到影响的,而且基本上处于抑制状态,因此该指标有望成为桡足类体内指示重金属污染的良好标志物。同时,镉和镍对桡足类均有神经毒性效应,因为不同浓度重金属均诱导桡足类体内AChE活性的显著变化,但重金属更多是通过AChE活性的提高而呈神经毒性。经过12 d的镉或镍暴露后,桡足类体内MDA含量更多地与该金属处理无相关性,因此该指标作为生物体氧化损伤程度的标志物时,需要慎重,应该辅以其它生物标志物才能更全面地反应生物体的氧化损伤水平。
     3.在12 d的暴露过程中,镉或镍既可诱导日本虎斑猛水蚤MT的合成,也可表现为抑制效应,即MT的变化与暴露剂量和时间均有相关性。本研究通过双齿许水蚤肌肉组织和卵巢超微结构的观察表明,在12 d的暴露过程中,镉和镍已对该种桡足类造成氧化损伤,因为肌纤维受到氧化损伤的迫害,同时生殖细胞发生凋亡。
     4.不同浓度镉或镍均可影响桡足类的生殖力,而且其影响与金属类别和生物种类均相关,特别是不同浓度镉或镍均显著抑制日本虎斑猛水蚤的生殖力,说明重金属可影响日本虎斑猛水蚤的种群繁衍。
     5.通过同位素示踪法研究表明,东海原甲藻培养在高浓度和低浓度镍下,不同氮水平和氮源均可显著影响其对镍的吸收,该吸收随着硝酸氮的升高而增加,同时以尿素为氮源时可显著促进藻类对该金属的吸收。当东海原甲藻吸收镍后,不同氮水平和氮源均可影响镍在藻类亚细胞中的分布,如细胞壁和可溶性物质中镍的百分含量随着硝酸氮浓度的升高而降低,细胞器中镍的百分含量随着硝酸氮浓度的升高而增加,而且尿素可提高镍在细胞壁中的分配率:同时,绝大部分镍(>70%)分布在细胞的可溶性物质中。不同氮水平和氮源也可影响镍在藻类各生化组分中的分布,如碳水化合物中镍的含量随着硝酸氮浓度的升高而显著降低,蛋白质中镍的含量却随着硝酸氮浓度的升高而显著增加,尿素可显著提高镍在蛋白质中的分布然却降低该金属在碳水化合物中的百分含量,脂类中镍的含量与不同氮水平和氮源均无显著相关;镍主要分布在蛋白质中(>50%)。
     6.经过24 h暴露后,氮或磷均显著影响东海原甲藻和中肋骨条藻对镍的吸收,且高浓度氮或磷均能促进镍在这两种藻类细胞内的吸收和累积。中华哲水蚤和真刺唇角水蚤对镍的吸收随着藻类培养液中营养盐(氮或磷)浓度的增加而显著升高;然而镍在中华哲水蚤或真刺唇角水蚤体内的生理周转率却不受氮或磷浓度的影响,似乎更受动物个体的生理状态的影响,如摄食不同磷浓度培养下的硅藻镍后,食物镍在中华哲水蚤体内的生理周转率均是真刺唇角水蚤的2倍左右。桡足类对镍的吸收率与藻类细胞内镍含量呈显著正相关,证明了“桡足类只吸收饵料细胞内‘水相'金属库中的金属”的假说。由此可见,近海富营养化可促进浮游植物对镍的吸收,进而影响该金属在浮游食物链上的传递。
Heavy metal pollution is a global environmental problem. Thus, environmental monitoring is essential to restore and resolve environmental pollution. Although chemical and physical methods are indispensable to environmental monitoring, they can not provide biological information, hence never satisfying the goal of modern environmental-monitoring. Due to being capable of exhibiting biological information, biomarker playes a very important role in modern environmental-monitoring. However, it is a further challenge to put it into the practice of monitoring cosmically. In the present study, using copepod as the object, we examined the acute toxicity of Cd or Ni to four species of copepods (Tigriopus japonicus, Schmackeria dubia, Calanus sinicus and Apocyclops borneoensis). Meanwhile, the response of the copepods (T. japonicus and S. dubia) to Cd or Ni additions was investigated under laboratory-controlled conditions in the 12 d exposure at the biochemical level (SOD, GPx, GST, AChE, GSH, MDA and GSH/GSSG), so as to discuss metal toxicity and the associated response of copepod, along with sieving out suitable biomarkers to metal pollution. We also investigated the response of MT levels in the copepod T. japonicus to different exposure duration (1, 4, 7 and 12 d) under different metal treatments (Cd or Ni), in order to expatiate the induction mode and mechanism of MT in the copepod under metal stress. Using S. dubia as the object, which had experienced the metal (Cd or Ni) exposure for 12 d, we also studied the influence of different metal treatments on the ultrastructure of muscle and ovary in the copepod, so as to reflect the metal toxicity. Additionally, the influence of metal additions on the reproductive ability of the copepods (T. japonicus, S. dubia and A. borneoensis) was quantified, in order to expound the response of copepod population to metal stress. Finally, We examined the influence of different nitrogen levels and sources on Ni uptake by Prorocentrum donghaiense and its distribution in cellular substructure and biochemical components of algae using iotope approach, to discuss the possible effect mechanism of the ambient nutrient level and source to Ni uptake by algae. Meanwhile, we also investigated the effect of macronutrient (nitrate or phosphate) additions to Ni uptake by phytoplankton (P. donghaiense and Skeletonema costatum) and its subsequent transfer to marine copepods (C. sinicus and Labidocera euchaeta), i.e., to discuss the influence of different nutrient levels on the transfer of Ni along the planktonic food-chain. The results of the present sturdy are described as follows:
     1. By contrast to Ni, the 24 and 48 h-LC_(50) values of Cd to the copepods are smaller, hence the copepods showing more susceptivity to Cd than Ni. In the comparison concerning the 24 and 48 h-LC_(50) values of Ni to different copepods, T. japonicus displayed the biggest value, and C. sinicus showed little difference from S. dubia, both of which showing a smaller value. However, in the Cd comparison, A. borneoensis held the biggest value, T. japonicus stayed at the second position, and C. sinicus had the smallest value. Therefore, the metal toxicity to copepod was correlated with metal classes and organism species.
     2. Different metal (Cd or Ni) treatments significantly influenced the variant biochemical indexes (SOD, GPx, GST, GSH, MDA and GSH/GSSG), with the change of these indexes showing a relation with metal concentration and duration, implying that these biochemical parameters could be biomarkers of metal pollution, especially for GSH. Regardless of different metal treatments and durations, GSH always firstly responsed, and almost suffered the inhibition-effect, suggesting that this parameter could be a good biomarker in copepod to metal pollution. Meanwhile, both Cd and Ni exhibited the neurotoxicity to copepod, because different metal additions markedly influenced the copepod AChE activity. However, the metals showed their neurotoxcity, more by enhancing the activity of AChE in copepod. Nevertheless, after 12 d exposure of Cd or Ni, at more extent, MDA level in copepods are little correlated with metal treatments. Therefore, it is cautious to choose this parameter as biomarker of oxidative injury, and other biomarkers should be involved, so as to reflect the extent of oxidative injury more comprehensively.
     3. During the 12 d exposure, heavy metal (Cd or Ni) not only induced the synthesis of MT in the copepod T. japonicus, but also displayed the inhibition-effect, i.e., the change of MT levels in the copepod was correlated with metal concentration and duration. According to the ultrastructure in the copepod S. dubia, heavy metal (Cd and Ni) had already brought the oxidative injury to the animal, due to the muscle being oxidatively injuried and the germ cell suffering from apoptosis.
     4. Different metal additions influenced the reproductive ability of the copepods, and the effect was associated with metal classes and animal species. Especially, different Cd or Ni significantly inhibited the reproductive capability of T. japonicus, illuminating that the metal effect had reflected at the population level of this copepod.
     5. Under both high- or low-Ni treatments, different nitrogen levels and sources both significantly influenced Ni uptake by P. donghaiense, with its uptake increasing with an increase of nitrate concentration and being enhanced markedly using urea as the nitrogen source. After being uptaken by P. donghaiens, Ni distribution in cellular substructure was also affected by different nitrogen levels and sources, e.g., Ni content in cell wall and soluble substance decreased, but the content in organelle increased, with an increase of nitrate level, and furthermore urea significantly facilitated the metal distribution in cell wall. Meanwhile, most of Ni distributed in soluble substance (> 70 %). Similarly, the nitrogen concentration and source also affected the Ni distribution in different biochemical components. Ni content in carbohydrate decreased, but the protein-Ni level increased, with an increase of nitrate level. Additionally, urea markedly promoted Ni distribution in proteins, but decreased its content in carbohydrate. However, the lipid-Ni content showed little correlation with different nitrogen levels and sources. Additionally, Ni mainly distributed in proteins (> 50 %).
     6. Ni uptake by phytoplankton after 24 h of exposure was markedly dependent on nutrient conditions, with a higher nutrient quota facilitating Ni accumulation in the algae. Trophic transfer was quantified by measurements of the Ni assimilation efficiency in C. sinicus and L. euchaeta, feeding on the algae under different nutrient treatments. Ni assimilation efficiency generally increased with an increase of nutrient concentration in the algae. However, ambient nutritional conditions had little effect on the physiological turnover rate constant of Ni by copepods, which was more affected by the physiological status of copepod. For example, feeding on the diatom-Ni under P treatments, in comparison to L. euchaeta, the physiological turnover rate constant of Ni in C. sinicus increased approximately 2 times. A significant positive correlation was found between the Ni assimilation efficiencies of the copepods and the % intracellular Ni in the algal cells, testifying the hypothesis "copepod only assimilates metal in the 'cytoplasmic' pool. Thus, nutrient-enrichment may lead to an increase in Ni uptake and transfer in the marine plankton.
引文
[1] Ayres R U. Toxic heavy metals: materials cycle optimization[J]. Proc Natl Acad Sci USA, 1992,89:815-820.
    [2] Kagi J H R, Schaffer A. Biochemistry of metallothioneins[J]. Biochemistry, 1988,27: 8509-8515.
    [3] Grotz N, Fox T, Connolly E, Park W, Guerinot M L, Eide D. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency[J]. Proc Natl Acad Sci USA, 1998,95: 7220-7224.
    [4] Clarkson T. Health effects of metals: a role for evolution[J]. Environ Health Perspect, 1995,103:9-12.
    [5] Paulsen L T, Saier M H. A novel family of ubiquitous heavy metal ion transport family[J]. J Membr Biol, 1997,156: 99-103.
    [6] Thomine S, Wang R, Ward J M, Crawford N M, Schroeder J I. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proc Natl Acad Sci USA, 2000,97: 4991-4996.
    [7] Rogers E E, Eide D J, Guerinot M L. Altered selectivity in an Arabidopsis metal transporter[J]. Proc Natl Acad Sci USA, 2000, 97: 12356-12360.
    [8] Nieboer E, Richardson D H S. The replacement of the non descript term "heavy metal" by biologically and chemically significant classification of metal ions[J].Environ Pollut, 1980,1: 3-8.
    [9] Fisher N S, Reinfelder J R. The trophic transfer of metals in marine systems[A]. In:Tessier A, Turner D R eds. Metal speciation and bioavailability in aquatic systems. New York, NY, USA: John Wiley and Sons, 1995. p363-406.
    [10]Hook S E, Fisher N S. Reproductive toxicity of metals in calanoid copepods[J].Mar Biol, 2001,138: 1131-1140.
    [11]Hook S E, Fisher N S. Sublethal effects of silver in zooplankton: importance of exposure pathways and implications for toxicity testing[J]. Environ Toxicol Chem,2001,20: 568-574.
    [12]Selck H, Forbes V E. The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp. I[J]. Mar Environ Res, 2004,57: 261-279.
    [13]Reinfelder J R, Fisher N S. Retention of elements absorbed by juvenile fish (Menidia menidia, Menidia beryllina) from zooplankton prey[J]. Limnol Oceanogr, 1994,39:1783-1789.
    [14]Ni I H, Wang W X, Tam Y K. Transfer of Cd, Cr and Zn from zooplankton prey to mudskipper Periophthamus cantonensis and glassy Ambassis urotaenia fishes[J]. Mar Ecol Prog Ser, 2000,194: 203-210.
    [15]Simkiss K. Ecotoxicants at the cell-membrane barrier[A]. In: Newman M C,Jagoe C H, eds. Ecotoxicology. A Hierarchical Treatment. Boca Raton: Lewis Publishers, 1996. p59-83.
    [16]White S L, Rainbow P S. Regulation of zinc concentration by Palaemon elegans (Crustacea: Decapoda): zinc flux and effects of temperature, zinc concentration and moulting[J]. Mar Ecol Prog Ser, 1984,16: 135-147.
    [17]Rainbow P S. Phylogeny of trace metal accumulation in crustaceans [A]. In:Langston W J, Bebianno M, eds. Metal Metabolism in Aquatic Environments.London: Chapman and Hall, 1998. p285-319.
    [18]Icely J D, Nott J A. Accumulation of copper within the 'hepatopancreatic' caeca of Corophium volutator[J]. Mar Biol, 1980, 57: 193-199.
    [19]Stumm W, Morgan J J. Aquatic Chemistry[M]. New York: John Wiley and Sons,1996. p1-34.
    [20]Butler A. Acquisition and utilization of transition metal ions by marine organisms[J]. Science, 1998, 281: 207-210.
    [21]Lane T D, Morel F M M. A biological function for cadmium in marine diatoms[J].Proc Natl Acad Sci USA, 2000, 97: 4627-4631.
    [22]Price N M, Morel F M M. Cadmium and cobalt substitution for zinc in a zincdeficient marine diatom[J]. Nature, 1990, 344: 658-660.
    [23]Lee J G, Roberts S B, Morel F M M. Cadmium: A nutrient for the marine diatom Thalassiosira weissflogii[J]. Limnol Oceanogr, 1995,40: 1056-1063.
    [24]Wang Y, Fang J, Leonard S S, Rao K M K. Cadmium inhibits the electron transfer chain and induces reactive oxygen species[J]. Free Radical Bio Med,2004,36:1434-1443.
    [25]Fang M Z, Mar W, Cho M H. Cadmium affects genes involved in growth regulation during two-stage transformation of Balb/3T3 cells[J]. Toxicology,2002,177:253-265.
    [26]Yang P M, Chiu S J, Lin K A, Lin L Y. Effect of cadmium on cell cycle progression in Chinese hamster ovary cells[J]. Chem Biol Interact, 2004, 149:125-136.
    [27]Dong S, Shen H M, Ong C N. Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes[J]. Mol Cell Biochem, 2001, 222: 11-20.
    [28]Oh S H, Lim S C. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation[J]. Toxicol Appl Pharmacol, 2006, 212: 212-223.
    [29]Xiang L X, Shao J Z. Role of intracellular Ca~(2+), reactive oxygen species,mitochondria transmembrane potential and antioxidant enzymes in heavy metal-induced apoptosis in fish cells[J]. Bull Environ Contam Toxicol, 2003, 71:114-122.
    [30]Wallace W G, Lee B G, Luoma S N. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM)[J]. Mar Ecol Prog Ser, 2003,249: 183-197.
    [31]Viarengo A, Nott JA. Mechanisms of heavy metal cation homeostasis in marine invertebrates[J]. Comp Biochem Physiol C, 1993,104: 355-372.
    [32]Nunez-Nogueira G, Mouneyrac C, Amiard J C, Rainbow P S. Subcellular distribution of zinc and cadmium in the hepatopancreas and gills of the decapod crustacean Penaeus indicus[J]. Mar Biol, 2006,150: 197-211.
    [33]Hopkin S P. Ecophysiology of metals in terrestrial invertebrates[M]. London:Elsevier Applied Science, 1989. p366.
    [34]Al-Mohanna S Y, Nott J A. The accumulation of metals in the hepatopancreas of the shrimp Penaeus semisulcatus de Haan (Crustacea: Decapoda) during the moult cycle[A]. In: Halwagy R, Clayton D, Behbehani M eds. Marine environment and pollution. Kuwait: University of Kuwait, 1985. p195-207.
    [35]A1-Mohanna S Y, Nott J A. Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle[J]. Mar Biol,1989,101:535-544.
    [36]Correa-Junior J D, Allodi S, Amado-Filho G M, Farina M. Zinc accumulation in phosphate granules of Ucides cordatus hepatopancreas[J]. Braz J Med Biol Res,2000,33:217-221.
    [37]Nassiri Y, Rainbow P S, Amiard-Triquet C, Rainglet F, Smith B D. Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea:Amphipoda)[J]. Mar Biol, 2000,136: 477-484.
    [38]NRC: Committee on Biological Markers of the National Research Council.Biological markers in environmental health research[J]. Environ Health Perspect.1987, 74: 3-9.
    [39]Van Gestel C A M., Van Brummelen T C. Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms[J]. Ecotoxicology, 1996, 5:217-225.
    [40]Connell D W, Lam P K S, Richardson B J, Wu R S S. Introduction to Ecotoxicology[M]. London: Blackwell Science, 1999.
    [41]Lam P K S, Gray J S. Predicting effects of toxic chemicals in the marine environment[J]. Mar Pollut Bull, 2001,42: 169-173.
    [42]Cao Z, Tanguay R L, McKenzie D, Peterson R E, Aiken J M. Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish and rainbow trout[J]. Aquat Toxicol, 2003, 63: 271-282.
    [43]Higuchi E, Oridate N, Furuta Y, Suzuki S, Hatakeyama H, Sawa H,Sunayashiki-Kusuzaki K, Yamazaki K, Inuyama Y, Fukuda S. Differentially expressed genes associated with ClS-diamminedichloroplatinum (II) resistance in head and neck cancer using differential display and CDNA microarray[J]. Head Neck, 2003,25: 187-193.
    [44]Mong J A, Krebs C, Pfaff D W. Perspective: microarrays and differential display PCR-tools for studying transcript levels of genes in neuroendocrine systems[J].Endocrinology, 2002,143:2002-2006.
    [45]Hamadeh H K, Bushel P R, Paules R, Afshari C A. Discovery in toxicology:mediation by gene expression array technology[J]. J Biochem Mol Toxicol, 2001,15:231-242.
    [46]Fielden M R, Zacharewski T R. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology[J]. Toxciol Sci, 2001, 60:6-10.
    [47]Lutz W K. In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis[J]. Mut Res,1979,65:289-356.
    [48]Swenberg J A, Richardson F C, Boucheron J A, Dyroff M C. Relationship between DNA adduct formation and carcinogenesis[J]. Environ Health Persp,1985,62:177-188.
    [49]Ching E W K, Siu W H L, Lam P K S, Xu L, Zhang Y, Richardson B J, Wu R S S. DNA adduct formation and DNA strand breaks in green-lipped mussels (Perna viridis) exposed to benzo[a]pyrene: dose and time dependent relationships[J]. Mar Pollut Bull, 2001,42: 603-610.
    [50]Siu W H L, Cao J, Jack R W, Wu R S S, Richardson B J, Xu L, Lam P K S.Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green-lipped mussel (Perna viridis)[J]. Aquat Toxicol, 2004, 66: 381-392.
    [51]Goks(?)ya A, F(?)rlin L. The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring[J]. Aquat Toxicol, 1992, 22: 287- 312.
    [52]Amiard J C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow P S.Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers[J]. Aquat Toxicol, 2006, 76: 160-202.
    [53]Sanders B M. Stress proteins in aquatic organisms: an environmental perspective[J]. Crit Rev Toxicol, 1993,23: 49-75.
    [54]Gagnon M M, Holdway D A. EROD activity, serum SDH and PAH biliary metabolites in sandflathead (Platycephalus bassensis) collected in Port Phillip Bay Australia[J]. Mar Pollu Bull, 2002,44: 230-237.
    [55]Cheung C C C, Zheng G J, Li A M Y, Richardson BJ, Lam PKS. Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis[S]. Aquat Toxicol, 2001,52: 189-203.
    [56]Company R, Serafim A, Bebianno M J, Cosson R, Shillito B, Fiala-Medioni A. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus[J]. Mar Environ Res, 2004, 58: 377-381.
    [57]Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J M, Ait-Aissa S.Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels[J]. Environ Toxicol Pharmacol, 2005,19: 177-183.
    [58]Chandran R., Sivakumar A A, Mohandass S, Aruchami M. Effect of cadmium and zinc on antioxidant enzyme activiy in the gastropod, Achatina fulica[J]. Com Biochem Physiol C, 2005,140: 422-426.
    [59]Kundu R, Lakshmi R, Mansuri A P. The entry of mercury through the membrane:an enzymological study using a tolerant fish Boleophthalmus dentatus[J]. Proc Acad Environ Biol, 1992,1: 1-6.
    [60]McGeer J C, Wood C M. Protective effect of water Cl~- on physiological responses to waterborne silver in rainbow trout[J]. Can J Fish Aquat Sci, 1998,55: 2447-2454.
    [61]Pequex A, Bianchini A, Gilles R. Mercury and osmoregulation in the euryhaline crab, Eriocheir sinensis[J]. Comp Biochem Physiol C: Comp Pharmacol Toxicol,1996,113:149-155.
    [62]Lionetto M G, Maffia M, Cappello M S, Gioradano M E, Storelli C, Schettino T.Effect of cadmium on carbonic anhydrase and Na~+-K~+-ATPase in eel, Anguilla anguilla, intestine and gills[J]. Comp Biochem Physiol A, 1998, 120: 89-91.
    [63]Bianchini A, Wood C M. Mechanism of acute silver toxicity in Daphnia magna[J]. Environ Toxicol Chem, 2003,22:1361-1367.
    [64]Bianchini A, Martins S E G, Barcarolli IF. Mechanism of acute copper toxicity in the euryhaline crustaceans: implications for the biotic ligand model[J]. Int Congr Ser, 2004,1275:189-194.
    [65]Kille P, Kay J, Leaver M, George S. Induction of piscine metallothionein as a primary response to heavy metal pollutants: applicability of new sensitive molecular probes[J]. Aquati Toxicol, 1992,22: 279-286.
    [66]Cajaraville M P, Bebianno M J, Blasco J, Porte C, Sarasquete C, Viarengo A. The use of biomarkers to assess the impact of pollution in costal environments of the Iberian Peninsula: a practical approach[J]. Sci Total Environ, 2000, 247:295-311.
    [67]Soazing L, Marc L. Potential use of levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination[J]. Mar Pollut Bull, 2003,46: 1450-1455.
    [68]Syring R A, Hoexum-Brouwer T, Brouwer M. Cloning and sequencing of cDNAs coding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus[J]. Comp Biochem Physio] C: Comp Pharmacol Toxicol, 2000,125: 325-332.
    [69]Brouwer M, Syring R A, Hoexum-Brouwer T. Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin[J]. J Inorg Biochem,2002, 88: 228-239.
    [70]Lewis S, Handy R D. Cordi B, Billinghurst Z, Depledge MH. Stress proteins (HSP's): Methods of Detection and Their Use as an Environmental Biomarker[J].Ecotoxicology, 1999, 8: 351-368.
    [71]Moore M N. Cellular responses to pollutants[J]. Mar Pollut Bull, 1985, 16:134-139.
    [72]Page D S, Widdows J. Temporal and spatial variation in levels of alkyltins in mussel tissues: A toxicological interpretation of field data[J]. Mar Environ Res,1991,32:113-129.
    [73]Wo K T, Lam P K S, Wu R S S. A comparison of growth biomarkers for assessing sublethal effects of cadmium on a marine gastropod, Nassarius festivus[J]. Mar Pollut Bull, 1999,39: 165-173.
    [74]Mayer F L, Versteeg D J, McKee M J, Folmar L C, Graney R L, McCume D C,Rattner B A. Physiological and Nonspecific Biomarkers[A]. In: Huggett R J,Kimerle RA, Mehrle PM, Bergman JHL eds. BIOMARKERS: Biochemical,Physiological, and Histological Markers of Anthropogenic Stress. London: Lewis Publishers, 1989.p5-85.
    [75]Holsapple M P, Paustenbach D J, Charnley G, West L J, Luster M I, Dietert R R,Burns-Naas L A. Symposium summary: children's health risk - what's so special about the developing immune system?[J] Toxicol Appl Pharmacol, 2004, 199:61-70.
    [76]Lathers C M. Endocrine disruptors: a new scientific role for clinical pharmacologists? Impact on human health, wildlife, and the environment[J]. J Clin Pharmacol, 2004,42:7-23.
    [77]Ladics G S, Chapin R E, Hastings K L, Holsapple M P, Makris S L, Sheets L P,Woolhiser M R, Burns-Naas LA. Developmental toxicology evaluations - issues with including neurotoxicology and immunotoxicology assessments in reproductive toxicology studies[J]. Toxicol Sci, 2005, 88: 24-29.
    [78]Friedman E M, Lawrence D A. Environmental stress mediates changes in neuroimmunological interactions[J]. Toxicol Sci, 2002,67: 4-10.
    [79]Secombes C J. The nonspecific immune system: cellular defenses[A]. In: Iwama G K, Nakanishi T, eds. The Fish Immune System: Organism, Pathogen, and Environment. San Diego: Academic Press, 1996.
    [80]Neumann N F, Stafford J L, Barreda D, Ainsworth A J, Belosevic M.Antimicrobial mechanisms of fish phagocytes and their role in host defense[J].Dev Comp Immunol, 2001,25: 807-825.
    [81]Bols N, Brubacher J, Ganassin R, Lee L. Ecotoxicology and innate immunity in fish[J]. Dev Comp Immunol, 2001,25: 853-873.
    [82]Fournier M, Cyr D, Blakley B, Boermans H, Brousseau P. Phagocytosis as a biomarker of immunotoxicity in wildlife species exposed to environmental xenobiotics[J]. Am Zool, 2000,40:412-420.
    [83]Jin T, Lu J, Nordberg M. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein[J]. Neurotoxicology 1998, 19:529-535.
    [84]Glaser U, Hochrainer D, Otto F J, Oldiges H. Carcinogenicity and toxicity of four cadmium compounds inhaled by rats[J]. Toxicol Environ Chem, 1990, 27:153-162.
    [85] Takenaka S, Oldiges H, Konig H, Hochrainer D, Oberdorster G. Carcinogenicity of cadmium chloride aerosols in W. rats[J]. J Natl Cancer Inst, 1983: 70:367-373.
    [86] Waalkes M P. Cadmium carcinogenesis in review[J]. J Inorg Biochem, 2000, 79:241-244.
    [87] International Agency for Research on Cancer. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry[A]. In: International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC Scientific Publications, 1993, 58: 119-237.
    [88] Hartwig A, Schwerdtle T. Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications[J]. Toxicol Lett, 2002, 127:47-54.
    [89] Lee J, Morel F M. Replacement of zinc by cadmium in marine phytoplankton[J].Mar Ecol Prog Ser, 1995,127: 305-309.
    [90]Thaker J, Chhaya J, Nuzhat S, Mittal R, Mansuri A P, Kundu R. Effects of chromium(V1) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus dipes[J]. Toxicology, 1996, 112: 237-244.
    [91]Waisberg M, Joseph P, Hale B, Beyersmann D. Melocular and cellular mechanisms of cadmium carcinogenesis[J]. Toxicology, 2003, 192: 95-117.
    [92]Asmuss M, Mullenders LH, Eker A, Hartwig A. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair[J]. Carcinogenesis, 2000, 21: 2097-2104.
    [93]Kopera E, Schwerdtle T, Hartwig A, Bal W. Co(II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity[J]. Chem Res Toxicol, 2004, 17:1452-1458.
    [94]Pruski A M, Dixon D R. Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L[J]. Aquat Toxicol, 2002, 57:127-137.
    [95]Hook S E, Lee R F. Interactive effects of UV, benzo[alpha] pyrene, and cadmium on DNA damage and repair in embryos of the grass shrimp Paleomomtes pugio[J]. Mar Environ Res, 2004, 58: 735-739.
    [96] O'Brien P, Salacinski H J. Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals[J]. Arch Toxicol,1998,72:690-700.
    [97]Galan A, Garcia-Bermejo L, Troyano A, Vilaboa NE, Fernandez C, de Bias E,Aller P. The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium,heat, X-rays)[J]. Eur J Cell Biol, 2001, 80: 312-320.
    [98]Stohs S J, Bagchi D, Hassoun E, Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions[J]. J Environ Pathol Toxicol Oncol, 2001, 20:77-88.
    [99] El-Maraghy S A, Gad M Z, Fahim A T, Hamdy M A. Effect of cadmium and aluminum intake on the antioxidant status and lipid peroxidation in rat tissues[J].J Biochem Mol Toxicol, 2001,15: 207-214.
    [100]Price DJ, Joshi JG. Ferritin. Binding of beryllium and other divalent metalions[J]. J Biol Chem, 1983, 258: 10873-10880.
    [101]Casalino E, Sblano C, Landriscina C. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation[J].Arch Biochem Biophys, 1997, 346:171-179.
    [102]Watjen W, Beyersmann D. Cadmium-induced apoptosis in C6 glioma cells:influence of oxidative stress[J]. Biometals, 2004,17: 65-78.
    [103]Muyssen B T A, Brix K V, DeForest D K, Janssen C R. Nickel essentiality and homeostasis in aquatic organisms[J]. Environ Rev, 2004,12:113-131.
    [104]Jenkins D W. Nickel accumulation in aquatic biota[A]. In: Nriagu JO, eds.Nickel in the environment. New York, NY: John Wiley and Sons, 1980.p283-337.
    [105]Moore J W, Ramamoorthy S. Heavy metals in natural waters[M]. New York,NY: Springer Verlag, 1984.
    [106] Stokes P M, Hutchinson T C, Krauter K. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario[J]. Can J Bot, 1973, 51:2155-2168.
    [107]Di Toro D M, Mahony J D, Krichgraber P R, O'Byrne A L, Pasquale L R. Effect of nonreversibility, particle concentration and ionic strength on heavy metal sorption[J]. Environ Sci Technol, 1986,20: 55-61.
    [108]Phipps T, Tank SL, Wirtz J, Brewer L, Coyner A, Ortego LS, Fairbrother A.Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms[J]. Environ Rev, 2002,10: 209-261.
    [109]WHO. Nickel[S]. Environmental Health Criteria 108. World Health Organisation, Geneva, Switzerland, 1991.
    [110]Anke M, Angelow L, Glei M, M(?)ller M, Illing H. The biological importance of nickel in the food chain[J]. Fresenius' J Anal Chem, 1995, 352: 92-96.
    [111]Nielsen FH. How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential[J]? J Nutr, 1996, 126 (suppl.9):2377S-2385S.
    [112]Gordon W R, Schwemmer S S, Hillman WS. Nickel and metabolism of urea by Lemna paucicostata Hegelm. 6746[J]. Planta, 1978,140: 265-268.
    [113]Eskew D L, Welch R M, Cary E E. Nickel, an essential element for legumes and possibly all higher plants[J]. Science (Washington), 1983, 222: 621-623.
    [114]Pederson D M, Daday A, Smith G D. The use of nickel to probe the role of hydrogen metabolism in cyanobacterial nitrogen fixation[J]. Biochimie (Paris),1986,68:113-120.
    [115]Ragsdale S W. Nickel biochemistry[J]. Curr Opin Chem Biol, 1998,2:208-215.
    [116]Goyer R A, Clarkson T W. Toxic effects of metals[A]. In: Klaassen C D, eds.Casarett and Doull's toxicology: The basic science of poisons, sixth edition. New York, NY: McGraw-Hill Medical Publishing Division, 2001. p811-867.
    [117]Friedrich A R, Filice F P. Uptake and accumulation of the nickel ion by Mytilus edulis[J]. Bull Environ Contam Toxicol, 1976,16: 750-755.
    [118]Hall T M. Free ionic nickel accumulation and localization in the freshwater zooplankter, Daphnia magna[J]. Limnol Oceanogr 1982,27:718-727.
    [119]Watling H R. Accumulation of seven metals by Crassostrea gigas, Crassostrea margaritacea, Perna perna, and Chrommytilus meridionalis[J]. Bull Environ Contam Toxicol, 1983,30: 317-322.
    [120]Zaroogian G E, Johnson M. Nickel uptake and loss in the bivalves Crassostrea virginica and Mytilus edulis[J]. Arch Environ Contam Toxicol, 1984, 13:411-418.
    [121]Alikhan M A, Zia S. Nickel uptake and regulation in a copper-tolerant decapod,Cambarus bartoni (Fabricus) (Decapoda, Crustacea)[J]. Bull Environ Contam Toxicol, 1989,42:94-102.
    [122]Ray D, Banerjee S K, Chatterjee M. Bioaccumulation of nickel and vanadium in tissues of the catfish Clarias batrachus[J]. J Inorg Biochem, 1990, 38: 169-173.
    [123]Rayner-Canham G W, Van Roode M, Burke J. Nickel and cobalt concentrations in the tunicate Halocynthia pyriformis: evidence for essentiality of the two metals[J]. Inorg Chim Acta, 1985,106: L37-L38.
    [124]Foulkes E C, McMullen D M. On the mechanism of nickel absorption in the rat jejunum[J]. Toxicology, 1986,38(1): 35-42.
    [125]Refvik T, Andreassen T. Surface binding and uptake of nickel(II) in human epithelial kidney cells: modulation by ionomycin, nicardipine and metals[J].Carcinogenesis, 1995,16: 1107-1112.
    [126]Zaroogian G, Yevich P, Anderson S. Effect of selected inhibitors on cadmium,nickel, and benzo[α]pyrene uptake into brown cells of Mercenaria mercenaria[J].Mar Environ Res, 1993, 35: 41-45.
    [127]Heck J D, Costa M. Surface reduction of amorphous NiS particles potentiates their phagocytosis and subsequent induction of morphological transformation in Syrian hamster embryo cells[J]. Cancer Lett, 1982,15:19-26.
    [128]Costa M, Abbracchio M P, Simmons-Hansen J. Factors influencing the phagocytosis, neoplastic transformation, and cytotoxicity of particulate nickel compounds in tissue culture systems[J]. Toxicol Appl Pharmacol, 1981, 60:313-323.
    [129]Fletcher G G, Rosetto F E, Turnbull J D, Nieboer E. Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds[J]. Environ Health Perspect, 1994,102(Suppl.3): 69-79
    [130]Costa M, Sutherland J E, Peng W, Salnikow K, Broday L, Kluz T. Molecular biology of nickel carcinogenesis[J]. Mol Cell Biol, 2001,222: 205-211.
    [131]Denkhaus E, Salnikow K. Nickel essentiality, toxicity and carcinogenicity[J].Crit Rev Oncol/Hematol, 2002,42: 35-56.
    [132]M'Bemba-Meka P, Lemieux N, Chakrabarti S K. Role of oxidative stress,mitochondrial membrane potential, and calcium homestasis in human lymphocyte death induced by nickel carbonate hydroxide in vitro[J]. Arch Toxicol, 2006, 80:405-420.
    [133]Chen C Y, Wang Y F, Lin Y H, Yen S F. Nickel-induced oxidative stress and effect of antioxidants in human lymphocytes[J]. Arch Toxicol, 2003, 77:123-130.
    [134]Stinson T J, Jaw S, Jeffery E H, Plewa M. The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver[J]. Toxicol Appl Pharmacol, 1992,117: 98-103.
    [135]Valko M, Izakovic M, Mazur M, Rhodes C J, Telser J. Role of oxygen radicals in DNA damage and cancer incidence[J]. Mol Cell Biochem, 2004, 266: 37-56.
    [136]Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K.Mitochondrial generation of reactive oxygen species and its role in aerobic life[J].Curr Med Chem, 2003,10: 2495-2505.
    [137]Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide[J]. Biochem J, 1973,134:707-716.
    [138]Han D, Williams E, Cadenas E. Mitochondrial respiratory chaindependent generation of superoxide anion and its release into the intermembrane space[J].BiochemJ, 2001,353:411-416.
    [139]Loschen G, Flohe B. Chance respiratory chain linked H_2O_2 production in pigeon heart mitochondria[J]. FEBS Lett, 1971, 18: 261-263.
    [140]Li C Y, Jackson R M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury[J]. Am J Physiol-Cell Physiol, 2002, 282:C227-C241.
    [141]Conner E M, Grisham M B. Inflammation, free radicals, and antioxidants[J].Nutrition, 1996,12: 274-277.
    [142]Mc Cord J M, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein)[J]. J Biol Chem, 1969,244: 60409-60455.
    [143]Mates J M, Perez-Gomez C, De Castro I N. Antioxidant enzymes and human diseases[J]. Clin Biochem, 1999,32: 595-603.
    [144]Youn H D, Kim E J, Roe J H, Hah Y C, Kang S O. A novel nickel-containing superoxide dismutase from Streptomyces spp[J]. Biochem J, 1996, 318: 889-896.
    [145]Youn H D, Youn H, Lee J W, Yim Y I, Lee J K, Hah Y C, Kang S O. Unique isoenzymes of superoxide dismutase in Streptomyces griseus[J]. Arch Biochem Biophys, 1996, 334: 341-348.
    [146]Choudhury S B, Lee J W, Davidson G, Yim Y I, Bose K, Sharma M L, Kang S O, Cabelli D E, Maroney M J. Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase[J].Biochemistry, 1999, 38: 3744-3752.
    [147]Mills G C. Hemoglobin catabolism . I . Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown[J]. J Biol Chem,1957,229:189-197
    [148]Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G. Selenium: biochemical role as a component of glutathione peroxidases[J].Science, 1973,179: 588-590.
    [149]Flohe L, Gunzler W A, Schock H H. Glutathione peroxidase: a selenoenzyme[J].FEBS Lett, 1973,32:132-134.
    [150]Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidase[J]. Free Rad Biol Med, 1999,27(9/10): 951-965.
    [151]Epp 0, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2 nm resolution[J]. Eur J Biochem, 1983,133: 51-69.
    [152]Maiorino M, Thomas J P, Girotti A W, Ursini F. Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides[J]. Free Rad Res, 1991,12: 131-135.
    [153]Hayes J D, Pulford D J. The glutathione S - transferase super-gene family:regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance[J] . Crit Rev Biochem Mol Biol, 1995,30(6): 445-600.
    [154]Oakley A J, Lo Bello M, Nuccetelli M, Mazzetti A P, Parker M W. The ligandin (non- substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H site) [J ]. J Mol Biol, 1999,291(4): 913-926.
    [155]Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions, 2006, 160: 1-40.
    [156]Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes[J]. J Nutr Biochem, 2005, 16:577-586.
    [157]Tate S S, Meister A. γ-Glutamyl transpeptidase: catalytic, structural and functional aspects[J]. Mol Cell Biochem, 1981, 39: 357-368.
    [158]Ji Y B, Akerboom T P M, Sies H, Thomas J A. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione[J]. Arch Biochem Biophys, 1999, 362: 67-78.
    [159]Karoui H, Hogg N, Frejaville C, Tordo P, Kalyanaraman B. Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite—ESR-SPIN trapping and oxygen uptake studies[J]. J Biol Chem, 1996,271: 6000-6009.
    [160]Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress[J]. Curr Med Chem, 2005,12: 1161-1208.
    [161]Liochev S I, Fridovich I. The role of O_2~-· in the production of OH· — in-vitro and in-vivo[J]. Free Rad Biol Med, 1994,16: 29-33.
    [162]Hwang C, Sinskey A J, Lodish H F. Oxidized redox state of glutathione in the endoplasmic-reticulum[J]. Science, 1992, 57: 1496-1502.
    [163]Borg D C, Schaich K M. Cytotoxicity from coupled redox cycling of autooxidizing xenobiotics and metals[J]. Israel J Chem, 1984, 24: 38-53.
    [164]Venugopal N B R K, Ramesh T V D D, Reddy D S, Reddy S L N. Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in a freshwater field crab, Barytelphusa guerini[J]. Bull Environ Contam Toxicol, 1997, 59:132-138.
    [165]Pan L Q, Zhang H X. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica[J].Com Biochem Physiol C, 2006,144: 67-75.
    [166]Gajewska E, Sklodowska M. Effect of nickel on ROS content and antioxidant enzyme activities in wheat leaves[J]. BioMetals, 2007,20: 27-36.
    [167]Geret F, Serafim A, Bebianno M J. Antioxidant enzyme activities,metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus][J]? Ecotoxicology, 2003, 12: 417-426.
    [168]Hamed R, Maharem T, Guindi R. Glutathione and its related enzymes in the Nile fish[J]. Fish Physiol Biochem, 2004, 30: 189-199.
    [169]Bocquene G, Galgani F. Acetylcholinesterase activity in the common prawn (Palaemon serratus) contaminated by carbaryl and phosalone choice of a method for detection of effects[J]. Ecotoxicol Environ Saf, 1991,22: 337-344.
    [170] Galgani F, Bocquene G. In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates[J]. Bull Environ Contam Toxicol, 1990,45:243-249.
    [171]Ozmen M,Sener S,Mete A,Kukucbay H.In vitro and in vivo aeetylcholinesterase-inhibiting effect of new classes of organophosphorus compounds[J].Environ Toxicol Chem,1998,18:241-246.
    [172]Elumalai M,Antunes C,Guilhermino L.Single metals and their mixttures on selected enzymes of Carcinus maenas[J].Water Air Soil Pollut,2002,141:273-280.
    [173]Forget J,Beliaeff B,Bocquene G.Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River esturay,France,as a biomarker of neurotoxic contaminants[J].Aquat Toxicol,2003,62:195-204.
    [174]Lionetto M G,Caricato R,Giordano M E,Pascariello M F,Marinosci L,Schettino T.Integrated use of biomarkers(acetylcholinesterase and antioxidant enzymes acitivities) in Mytilus galloprovincialis and Mullus barbatus in an Italian costal marine area[J].Mar Pollut Bull,2003,324-330.
    [175]Nonnotte L,Boitel F,Truchot J P.Waterborne copper causes gill damage and haemolymph hypoxia in the shore crab Carcinus maenas[J].Can J Zool,1993,71:1569-1576.
    [176]Lawson S L,Jones M B,Moate R M.Effect of copper on the ultrastructure of the gill epithelium of Carcinus maenas(Decapoda:Brachyura)[J].Mar Pollut Bull,1995,31:63-72.
    [177]刘欣酶,项黎新,邵健忠,周庆军.重金属诱导细胞凋亡的分子机制[J].细胞生物学杂志,2004,26(3):235-240.
    [178]Roesijadi G,Fowler B A.Purification of Invertebrate Metallothioneins[A].In:Riordan JF,Vallee BL,eds,Methods in Enzymology,Vol.205,Metallobiochemistry,Part B,Metallothionein and Related Molecules.London:Acadernic Press,Inc,1991.p263-273.
    [179]FowIer B A,Hildebrand C E,KojimaY,Webb M.Nomenclature of metaLllothjoneins[A].In:Kagi J H R,Kojima Y,eds.Metallothionein Ⅱ.Basel:Birhauser Verlag,1987.p19-22.
    [180]Palmiter R D.Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitiVe inhibitor that interacts with a constitutively active transcription factor,MTF-1[J].Proc Natl Acad Sci USA,1994,91:1219-1223.
    [181]Vasak M.Metal removal and substitution in vertebrate and invertebrate metallothioneins[A].In:Riodan J F,Vallee B L eds.Methods in Enzymology Metallochemistry B,1991.p452-458.
    [182]Roesijadi G.Metallothionein and its role in toxic metal regulation[J].Comp Biochem Physiol C,1996,113(2):117-123.
    [183]Klaverkamp J F,Duncan D A.Acclimation to cadmium toxicity by white suckers:cadmium binding capacity and metal distribution in gill and liver cytosol[J].Environ Toxicol Chem,1987,6:275-289.
    [184]Roesijadi G,Fellingham G W.Influence of Cu,Cd,and Zn preexposure on Hg toxicity in the mussel Mytilus edulis[J].Can J Fish Aquat Sci,1987,44:680-684.
    [185]Roesijadi G.Metallothioneins in metal regulation and toxicity in aquatic animals[J].Aquat Toxicol,1992,22:81- 114.
    [186]Engel D W,Brouwer M.Metallothionein and metallothionein-like proteins:physiological importance[J].Adv Comp Environ Phys,1989,5:53-75.
    [187]Vulpe C D,Packman S.Cellular copper transport[J].Annu Rev Nutr,1995,15:293-322.
    [188]Roesijadi G,Robinson W E.Metal regulation in aquatic animals:mechanisms of uptake,accumulation,and release[M].In:Malins D C,Ostrander G K,eds.Aquat Toxicol.Molecular,biochemical,and cellular perspectives.Lewis Publishers,Boca Raton,Fla,1994.p387-420.
    [189]Engel D W,Brouwer M.Metal regulation and molting in the blue crab,Callinectes sapidus:metallothionein function in metal metabolism[J].Biol Bull,1987,173:239-251.
    [190]Hogstrand C,Haux C.Naturally high levels of zinc and metallothionein in liver of several species of the squirrelfish family from Queensland,Australia[J].Marine Biol,1996,125:23-31.
    [191]李兆萍,唐朝枢,程时.金属硫蛋白抑制脂质体脂质过氧化[J].北京医科大学学报,1989,21(2):116
    [192]Sanders J G,Cibik S J,D'Elia C F,Boynton W R.Nutrient enrichment studies in a coastal plain estuary. Changes in phytoplankton species composition[J]. Can J Fish Aquat Sci, 1987,44:83-90.
    [193]Vitousek P M, Mooney H A, Lubchenko J, Melillo J M. Human domination of Earth's ecosystems[J]. Science, 1997,277: 233-239.
    [194]Smith V H, Tilman G D, Nekola J C. Eutrophication: Impacts of excess nutrient inputs of freshwater, marine, and terrestrial ecosystems[J]. Environ Pollut, 1999,100: 179-196.
    [195]Morel F M M, Hudson R J M, Price N M. Limitation of productivity by trace metals in the sea[J]. Limnol Oceanogr, 1991, 36: 1742-1755.
    [196]Hudson R J M. Which aqueous species controls the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects[J]. Sci Total Environ, 1998,219: 95-115.
    [197]Sunda W G, Huntsman S A. Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems[J]. Sci Total Environ, 1998,219: 165-181.
    [198]Nugegoda D, Rainbow P S. Effects of salinity changes on zinc uptake and regulation by the decapod crustaceans Palaemon elegans and Palaemonetes varians[J]. Mar Ecol Prog Ser, 1989, 51: 57-75.
    [199]O'Brien P, Rainbow P S, Nugegoda D. The effect of the chelating agent EDTA on the rate of uptake of zinc by Palaemon elegans (Crustacea: Decapoda) [J].Mar Environ Res, 1990, 30: 155-159.
    [200]Rainbow P S, Black W H. Effects of changes in salinity and osmolality on the rate of uptake of zinc by three crabs of different ecologies[J]. Mar Ecol Prog Ser,2002,244:205-217.
    [201]Wang W X, Fisher N S. Delineating metal accumulation pathways for marine invertebrates[J]. Sci Total Environ, 1999,237/238: 463-464.
    [202]Wang W X, Fisher N S. Accumulation of trace elements in marine copepods[J].Limnol Oceanogr, 1998,43: 273-278.
    [203]Wang W X, Reinfelder J R, Lee B G, Fisher N S. Assimilation and regeneration of trace elements by marine copepods[J]. Limnol Oceanogr, 1996,41: 70-81.
    [204]Wang W X, Dei R C H. Biological uptake and assimilation of iron by marine plankton: influences of macronutrients[J]. Mar Chem, 2001, 74: 213-226.
    [205]Wang W X, Dei R C H, Xu Y. Responses of Zn assimilation by coastal plankton to macronutrients[J]. Limnol Oceanogr, 2001,46: 1524-1534.
    [206]Sokolova I M, Ringwood A H, Johnson C. Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae)[J]. Aquat Toxicol, 2005, 74: 218-228.
    [207]Redeker E S, van Campenhout K, Bervoets L, Reijnders H, Blust R. Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity[J]. Environ Pollut, 2007, 148: 166-175.
    [208]Smyj R P. A conformational analysis study of a nickel (II) enzyme: urease[J]. J Mol Struct, 1997, 391:207-208.
    [209]Campbell P M, Smith G D. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica[J]. Arch Biochem Biophys, 1986, 244:471-472.
    [210] Wong J P K, Wong Y S, Tarn N F Y. Nickel biosorption by two Chlorella species,C. vulgaris (a commercial species) and C. miniata (a local isolate)[J]. Bioresour Technol,2000, 73: 133-137.
    [211]Tam N F Y, Wong J P K, Wong Y S. Repeated use of two Chlorella species, C.vulgaris and WW1 for cyclic nickel biosorption[J]. Environ Pollut, 2001, 114:85-92.
    [212]Barka S, Pavilion J F, Amiard J C. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis[J].Comp Biochem Physiol C, 2001,128: 479-493.
    [213]Seo J S, Lee K W, Rhee J S, Hwang D S, Lee Y M, Park H G, Ahn I Y, Lee J S.Environmental stressors (salinity, heavy metal, H_2O_2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus[J]. Aquat Toxicol, 2006, 80: 281-289.
    [214]Hagopian-Schlekat T, Chandler G T, Shaw T J. Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpactoid copepod[J].Mar Envrion Res,2001,51:247-264.
    [215]Green A S,Chandler G T,Blood E R.Aquaeous,porewater and sediment phase cadmiu:toxicity relations for a meiobenthic copepod[J].Environ Toxicol Chem,1993,12:1497-1506.
    [216]Cripe G M,Cripe C R.Comparative Acute Sensitivity of Selected Estuarine and Marine Crustaceans to toxic Substances,EPA 600/X-90/358.U.S[S].Environmental Protection Agency,Gulf Breeze,FL,1990.
    [217]Hutchinson T H,Williams T D,Eales G J.Toxicity of cadmium,hexavalent chromium and copper to marine fish larvae(Cyprinodon variegatus) and copepods(Tisbe battagliai)[J].Mar Environ Res,1994,38:275-290.
    [218]Madoni P.The acute toxicity of nickel to freshwater ciliates[J].Environl Pollut,2000,109:53-59.Seo J S,Lee Y M,Park H G,Lee J S.The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene(Hsp20) enhances thermotolerance of tranformed escherichia coli[J].Biochem Biophys Res Commun,2006b,340:901-908.
    [219]Bengtsson B E.Use of a harpacticoid copepod in toxicity testing[J].Mar Pollut Bull,1978,9:238-241.
    [220]US Environmental Protection Agency.Ambient water quality criteria for nickel[S].Springfield,VA:Office of Water Regulation and Standards,National Technical Information Services,1983.
    [221]Davenport J,Barnett P R O,McAllen R J.Environmental tolerances of three species of the harpacticoid copepod genus Tigriopus[J].J Mar Biol Ass UK,1997,77:3-16.
    [222]Kwok K W H,Leung K M Y.Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus(Crustacea,Copepoda):effects of temperature and salinity[J].Mar Pollut Bull,2005,51:830-837.
    [223]汤建林,周世文,徐传福.分光光度法测定小鼠组织中谷胱甘肽过氧化物酶活力[J].第二军医大学学报,1996,18(6):551-552.
    [224]毛德寿,同宗灿,王志远,等.环境生化毒理学[M]辽宁:辽宁大学出版社,1986,151-152.
    [225]张迺哲,赵会军,付宏杰,等.组织中氧化型和还原型谷胱甘肽荧光测定法[J].生物化学与生物物理进展,1993,20(2):136-138.
    [226]张秀明,严丽娟,柴建开,等.改良硫代巴比妥酸荧光法测定血清过氧化脂质[J].生物化学与生物物理进展,1996,23(2):175-178.
    [227]Bradford M.A rapid and sensitive assay of protein utilizing the principle of dye binding[J].Analyt Biochem,1976,772:248-264.
    [228]Scheuhammer A M,Cherian M G.Quantification of metallothioneins by a silver-saturation method[J].Toxicol Appl Parmacol,1986,417-425.
    [229]Stohs S T,Bagchi D.Oxidative mechanisms in the toxicity of metals[J].Free Radic Biol Med,1995,18:321-326.
    [230]Novelli E L B,Vieir E P,Rodrigues N L,Ribas B O.Risk assessment of cadmium toxicity on hepatic and renal tissues of rats[J].Environ Res,1998,79:102-105.
    [231]Silva A M M,Novelli E L B,Fascineli M L,Almeida J A.Impact of an environmentally realistic intake of water contaminants and superoxide formation on tissues of rats[J].Environ Pollut,1999,105:243-249.
    [232]Omaye S T,Tappel A L.Effect of cadmium chloride on the rat testicular soluble seleno-enzyme glutathione peroxidase[J].Res Commun Chem Pathol Pharmacol,1975,12:695-711.
    [233]Bem E M,Mailer K,Elson C M.Influence of mercury(Ⅱ),cadmium(Ⅱ),methylmercury(Ⅱ),and phenylmercury on the kinetic properties of rat liver glutathione peroxidase[J].Can J Biochem Cell Biol,1985,63:1212-1216.
    [234]Splittgerber A G,Tapple A L.Inhibition of glutathione peroxidase by cadmium and other metals[J].Arch Biochem Biophys,1979,197:534-542.
    [235]Sies H.Glutathione and its role in cellular functions[J].Free Radic Biol Med,1999,27:916-921.
    [236]Schlenk D,Rice C D.Effects of zinc and cadmium treatment on hydrogen peroxide-induced mortality and expression of glutathione and metallothionien in a teleost hepatoma cell line[J].Aquat Toxicol,1998,43:121-129.
    [237]Thomas P,Wofford W.Effects of metals and organic compounds on hepaticglutathione, cysteine and acid soluble thiol-levels in mullet (Mugil cephaius)[J]. Toxicol Appl Pharmacol, 1984,76:172-182.
    [238]Schafer F Q, Buettner G R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple[J]. Free Rad Biol Med,2001,30:1191-1212.
    [239]Filomeni G, Rotilio G, Ciriolo M R. Cell signalling and the glutathione redox system[J]. Biochem Pharmacol, 2002,64:1057-1064.
    [240]Arrigo A P. Gene expression and the thiol redox state[J]. Free Rad Biol Med,1999,27:936-944.
    [241]Moran L K, Guteridge J M C, Quinlan G J. Thiols in cellular redox signalling and control[J]. Curr Med Chem, 2001, 8: 763-772.
    [242] Almeida J A, Diniz Y S, Marques S F G, Faine L A, Ribas B O, Burneiko R C,Novelli E L B. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination[J].Environ Int, 2002, 27: 673-679.
    [243]Company R, Serafim A, Bebianno M J, Cosson R, Shillito B, Fiala-Medioni A.Effect of cadmium, copper and mercury on antioxidant enzyme activites and lipid peroxidation in the gills of the hydrothermal vent mussels Bathymodiolus azoricus[J]. Mar Environ Res, 2004, 58: 337-381.
    [244]Bodar C M W, Kluytmans J H, Van Montfort J C P, Voogt P A, Zandee D I.Cadmium resistance and the synthesis of metallothionein-like proteins in Daphnia magna[R]. Proceedings of the 3rd International Conference of Environmental Contamination, CEP, Edinburgh, 1998, 79-81.
    [245]Hanas J S, Gunn C G. Inhibition of transcription, factor IIIA-DNA interactions by xenobiotic metal ions[J]. Nucleic Acids Res, 1996,24: 924-930.
    [246]George S G, Burgess D, Leaver M, Frerichs N. Metallothionein induction in cultured fibroblast and liver of a marine flatfish, the turbot Scopthalmus maximus[J]. Fish Physiol Biochem, 1992,10: 43-54.
    [247]Mouneyrac C, Amiard J C, Amiard-Triquet C, Cottier A, Rainbow P S, Smith B D. Partitioning of accumulated trace metals in the talitrid amphipod crustacean Orchestia gammarellus: a cautionary tale on the use of metaollothiionein-like proteins as biomarkers[J]. Aquat Toxicol, 2002, 57: 225-242.
    
    [248]Roesijadi G, Brubader L L, Unger M E, Anderson R S.MetallothioneinmRNAinduction and generation of reactive oxygen species in molluscan hemocytes exposed to cadmium in vitro[J]. Comp Biochem Physiol C,1997,118:171-176.
    
    [249]Brown D A, Parsons T R. Relationship between cytoplasmic distribution of mercury and toxic effects to zooplankton and chum salmon (Oncorhynchus keta) exposed to mercury in a controlled ecosystem[J]. J Fish Res Bd Can, 1978, 35:800-884.
    
    [250]Martinez M, Del Ramo J, Torreblanca A, Diaz-Mayans J. Cadmium toxicity,accumulation and metallothionein induction in Echinogammarus echinosetosus[J]. J Environ Sci Health A, 1996, 31 (7): 1605-1617.
    
    [251] Couillard Y, Campbell P G C, Tessier A, Pellerinmassicotte J, Auclair A. Field transplantation of a fresh-water bivalve Pyganodon grandis, across a metal contamination gradient. Temporal changes in metallothionein and metal (Cd, Cu and Zn) concentrations in soft tissues[J]. Can J Fish Aquat Sci, 1995,52:690-702.
    
    [252]George S G, Olsson P E. Metallothioneins as indicators of trace metal pollution[A]. In: Kramer KJM, eds. Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, Florida, 1994, p151-171.
    
    [253] Roesijadi G, Klerks P. A kinetic analysis of Cd-binding to metallothionein and other intracellular ligands in oyster gills[J]. J Exp Zool, 1989, 251: 1-12.
    
    [254] Roesijadi G, Vestling M M, Murphy C M, Klerks P L, Fenselau C. Structure and time-dependent behavior of acetylated and non-acetylated forms of a molluscan metallothionein[J]. Biochim Biophys Acta, 1991, 1074: 230-236.
    
    [255]Roesijadi G. Metallothionein induction as a measure of response to metal exposure in aquatic animals[J]. Environ Health Perspect, 1994,102: 91-95.
    
    [256]Feldman S L, Squibb K S, Cousins R J. Degradation of cadmium-thionein in rat liver and kidney[J]. J Toxicol Environ Health, 1978,4: 805-813.
    [257]Andersen H R, Andersen 0. Effect of nickel chloride on hepatic lipid peroxidation and glutathione concentration in mice[J]. Biol Trace Elem Res 1989,21:255-261.
    [258]Costa M, Zhuang Z, Huang X, Cosentino S, Klein C B, Salnikow K. Molecular mechanisms of nickel carcinogenesis[J]. Sci Total Environ, 1994,148: 191-199.
    [259]Huang X, Frenkel K, Klein C B, Costa M. Nickel increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence[J].Toxicol Appl Pharmacol, 1993,120: 29-36.
    [260]Sidhu P, Garg M L, Dhawan D K. Protective role of zinc in nickel induced .hepatotoxicity in rats]J]. Chemico-Biological Interations, 2004,150: 199-209.
    [261]Das K K, Gupta A D, Dhundasi S A, Patil A M, Das S N, Ambekar J G.Protective role of L-ascorbic acid on antioxidant defense system in erythrocytes of albino rats exposed to nickel sulfate[J]. Biometals, 2007,20: 177-184.
    [262]Hussain T, Shukla G., Chandra S V. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies[J]. Pharm Toxicol, 1987, 60: 355-359.
    [263]Strubelt O, Kremer J, Tilse A, Keogh J, Peutz R, Younes M. Comparative studies on the toxicity of mercury, cadmium and copper toward the isolated perfused rat liver[J]. J Toxicol Environ Health, 1996,47: 267-283.
    [264]Manca D, Richard A C, Tra H V, Chevalier G. Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium[J]. Arch Toxicol, 1994,68:364-369.
    [265]Nigam D, Shukla G S, Agarwal A K. Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney[J]. Toxicol Lett, 1999,106: 151-157.
    [266]Najimi S, Bouhaimi A, Daubeze M, Zekhini A, Pellerin J, Narbonne J F,Moukrim A. Use of Acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (South of Morocco)[J]. Bull Environ Contain Toxicol, 1997,58: 901-908.
    [267]Amiard-Triquet C, Altmann S, Amiard J C, Ballan-Dufrancais C, Baumard P, Budzinski H, Crouzet C, Garrigues P, His E, Jeantet A Y, Menasria R, Mora P,Mouneyrac C, Narbonne J F, Pavilion J F. Fate and effects of micropollutants in the Gironde estuary, France: a multidisciplinary approach[J]. Hydrobiologia,1998,373/374:259-279.
    [268]Dellali M, Gnassia Barelli M, Romeo M, Aissa P. The use of acetylcholinesterase activity in Ruditapes decussates and Mytilus galloprovincialis in the biomonitoring of Bizerta lagoon[J]. Comp Biochem Physiol Part C, 2001,130: 227-235.
    [269]Sunderman F W Jr, Fraser C B. Effects of nickel chloride and diethyldithiocarbamate on metallothionein in rat liver and kidney[J]. Ann Clin LabSci, 1983,13:489-495.
    [270]Khandelwal S, Kachru D N, Tandon S K. Influence of diethyldithiocarbamate on nickel-induced hepatic metallothionein in rats[J]. Toxicol Ind Health, 1989, 5(3):405-413
    [271]Fleet J C, Golemboski K A, Dietert R R, Andrews G K, McCormick C C.Induction of hepatic metallothionein by intraperitoneal metal injection: an associated inflammatory response, Am[J]. J Physiol Soc, 1990, 258: G926-G933.
    [272]Nation J R, Hare M F, Baker D M, Clark D E, Bourgeois A E. Dietary administration of nickel: effects on behavior and metallothionein levels[J].Physiol Behav, 1985, 34: 349-353.
    [273]Srivastava R C, Husain M M, Srivastava S K, Husan S K, Lal A. Effect of pre-exposure to cadmium and silver on nickel induced toxic manifestations in mice: possible role of ceruloplasmin and metallothionein[J]. Bull Environ Contam Toxicol, 1995, 54: 751-759.
    [274]Eriksen K D H, Andersen T, Stenersen J. Iso-metallothioneins in cod induced by cadmium, zinc and nickel[R]. In: Proceedings of the 12th Annual Conference on Physiological and Biochemical Approaches to the Toxicological Assessment of Environmental Pollution, 1990.
    [275]Cavaletto M, Ghezzi A, Burlando B, Evangelisti V, Cerratto N, Viarengo A.Effect of hydrogen peroxide on antioxidant enzymes and metallothionein level in the digestive gland of Mytilus galloprovincialis[J]. Comp Biochem Physiol C,2002,131:447-455.
    [276]Rodriguez-Ortega M J, Alhama J, Funes V, Romero-Ruiz A, Rodriguez-Ariza A,Lopez-Barea J. Biochemical biomarkers of pollution in the clam Chamaclea gallina fromsouth-Spanish littoral[J]. Environ Toxicol Chem, 2002,21: 542-549.
    [277]Olafson R W, Kearns A, Sim R G. Heavy metal induction of metallothionein in the hepatopancreas of the crab Scylla serrata[J]. Comp Biochem Physiol B, 1979,62: 417-424.
    [278]Giguere A, Couillard Y, Campbell P G C, Perceval O, Hare L, Pinel-Alloul B,Pellerin J. Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient[J]. Aquat Toxicol, 2003, 64:85-200.
    [279]Casalino E, Calzaretti G, Sblano C, Landriscina C. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium[J].Toxicology, 2002,179: 37-50.
    [280]Canesi L, Viarengo A, Leonzio C, Filippelli M, Gallo G. Heavy metals and glutathione metabolism in mussel tissues[J]. Aquat Toxicol, 1999,46: 67-76.
    [281]Canesi L, Ciacci C, Piccoli G, Stocchi V, Viarengo A, Gallo G. In vitro and in vivo effects of heavy metals on mussel digestive gland hexokinase activity: the role of glutathione[J]. Com Biochem Physio C, 1998,120: 261-268.
    [282]Singhal R K, Anderson M, Meister A. Glutathione, a first line of defense against cadmium toxicity. FASEB J, 1987,1: 220-223.
    [283]Shen Y, Sangiah S. Na~+, K~+-ATPase, glutathione, and hydroxyl free radicals in cadmium chloride-induced testicular toxicity in mice[J]. Arch Environ Contain Toxicol, 1995,29: 174-179.
    [284]de Almeida E A, Migyamoto S, Bainy A C D, de Medeiros M H G, Mascio P D.Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals[J].Mar Pollut Bull, 2004,49: 386-392.
    [285]Cumming J R, Tomsett A B. Metal tolerance in plants: signal transduction and accumulation mechanisms[A].In:Adriano DD,eds.Biogeochemistry of trace metals.Boca Raton:Lewis Publishers,1992.p329 -364.
    [286]贾秀英,陈志伟.铜、镉对鲫组织超氧化物歧化酶活性的影响[J].水生生物学报,2003,27(3):323-325.
    [287]Varanka Z,Rojik I,Varanka I,Nemcsrk J,Abraham M.Biochemical and morphological changes in carp(Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid[J].Com Biochem Physio C,2001,128:467-478.
    [288]Ptashynski M D,Pedlar R M,Evans R E,Baron C L,Klaverkamp J F.Toxicology of dietary nickel in lake whitefish(Coregonus clupeaformis)[J].Aquat Toxicol,2002,58:229-247.
    [289]Pornrat S,Sumate T,Rommanee S,Sumolaya K,Kerr W L.Changes in the ultrastructure and texture of prawn muscle(Macrobrachuim rosenbergii) during cold strorage[J].LWT.(待发表)
    [290]项黎新,邵健忠,孟真.六种重金属离子胁迫诱导鱼类细胞凋亡的研究[J].生物化学与生物物理进展,2001,28(6):866-869.
    [291]Peter M E,Heufelder A E,Hengartner M O.Advances in apoptosis research[J].Proc Natl Acad Sci USA,1997,94:12736-12737.
    [292]Susin S A,Lorenzo H K,Zamzami N,Marzo I,Snow B E,Brothers G M,Mangion J.Molecular characterization of mitochondria apoptosis-inducing factor[J].Nature,1999,397:441-446.
    [293]Watjen W,Beyersmann D.Cadmium-induced apoptosis in C6 glioma cells:Influence of oxidative stress[J].Biometals,2004,17:65-78.
    [294]Zamponi G W,Bourinet E,Snutch T P.Nickel block of a family of neuronal calcium channels:subtype- and subunit-dependent action at multiple sites[J].J Membrane Biol,1996,151:77-90.
    [295]Hook S E,Fisher N S.Relating the reproductive toxicity of five ingested metals in calanoid copepods with sulfur affinity[J].Marine Environmental Research,2002,53:161-174.
    [296]Lee R F,Noone T.Effect of reproductive toxicants on lipovitellin in female blue crabs,Callinectes sapidus[J].Mar Environ Res,1995,39:151-154.
    [297]De Schamphelaere K A C,Canli M,Van Lierde V,Forrez I,Vanhaecke F,Janssen C R.Reproductive toxicity of dietay zinc to Daphnia magna[J].Aquat Toxicol,2004,70:233-244.
    [298]周卫,汪洪,林保.镉斜坡下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响[J].植物营养与肥料学报,1999,5(4):335-340.
    [299]Bligh E C,Dyer W J.A rapid method of total lipid extraction and purification[J].Can J Biochem Physiol,1959,37:911-917.
    [300]Kochet G.Quantitation of the macromolecular compounds of microalgae[A].In:Hellebust J A,Craigie J S,eds.Handbook of Phycological Methods:Physiological and Biochemical Methods.Cambridge:Cambridge University Press,1978,p189-195.
    [301]袁有宪,曲克明.海水中痕量金属元素对海洋生物作用研究的进展[J].水产学报,1995,19(3):250-257.
    [302]David F S.Effect of Nickel on seven species of freshwater algae[J].Environ Pollut SerA,1981,25(4):241-247.
    [303]Wang W X,Dei R C H.Effects of major nutrient additions on metal uptake in phytoplankton[J].Environ Pollut,2001,111:233-240.
    [304]Wang W X,Dei R C H.Metal uptake in a coastal diatom influenced by major nutrients(N,P and Si)[J].Water Res,2001,35:315-321.
    [305]Yu R Q,Wang W X.Biokinetics of cadmium,selenium and zinc in the freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna[J].Environ Pollut,2004,129:443-456.
    [306]Lee W L,Wang W X.Metal accumulation in the green macroalga Ulva fasciata:effect of nitrate,ammonium and phosphate[J].Sci Total Environt,2001,278:11-12.
    [307]Verma S K,Singh S P,Singh R K.Nutritional control of copper uptake in the cyanobacterium Nostoc calcicola Breb[J].BioMetals(Historical Archive),1991,4:192-196.
    [308]Gerendas J,Sattelmacher B.Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L.grown with NH_4NO_3 or urea as N source[J].Ann Bot,1999,83:65-71.
    [309]Zenk M H.Heavy metal detoxification in high plants[J].Gene,1996,179:21-30.
    [310]Hall J L.Cellular mechanisms for heavy metal detoxification and tolerance[J].J Exp Bot,2002,53(366):1-11.
    [311]Neumann D,zur Nieden U,Liehtenberger O,Leopold I.How does Arrneria maritima tolerate high heavy metal concentration[J]? J Plant Physiol,1995,146:704-717.
    [312]Kotrba P,Macek T,Rural T.Heavy metal-binding peptides and proteins in plants:a review[J].Collect Czech Chem Commun,1999,64:1057-1086.
    [313]Cobbett C S.Phytochelatins and their roles in heavy metal detoxification[J].Plant Physiol,2000,123:825-832.
    [314]Mendoza-Cozatl D,Loza-Tavera H,Hernandez-Navarro A,Moreno-Sanchez R.Sulfur assimilation and glutathione metabolism under cadmium stress in yeast,protists and plants[J].FEMS Microbiol Rev,2005,29:653-671.
    [315]任育红,杨加华,吴江涛,刘玉鹏,茹炳根.5种藻类金属硫蛋白的初步研究[J].生物技术,2001,11(6):9-11.
    [316]陈慈美,陈子望.海水分析的化学和生物学方法[M].厦门:厦门大学出版社,1991,23-27.
    [317]Wang W X,Fisher N S.Assimilation efficiency of chemical contaminants in aquatic invertebrates:a synthesis[J].Environ Toxicol Chem,1999,18:2038-2039.
    [318]Skaar H,Rystad B,Jensen A.The Uptake of ~(63)Ni by the Diatom Phaeodactylum tricornuturn[J].Physiol Plant,1974,32:353-358.
    [319]Fuhrmann G F,Rothstein A.The transport of Zn~(2+),Co~(2+) and Ni~(2+) into yeast cells[J].Biochim Biophys Acta,1968,163:325-330.
    [320]Rijstenbil J W,Dehairs F,Ehrlich R,Wijnholds J A.Effect of the nitrogen status on copper accumulation and pools of metal-peptides in the planktonic diatom Thalassiosira pseudonana[J].Aquat Toxicol,1998,42:187-209.
    [321]Sunda W G, Huntsman S A. Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom[J]. Limnol Oceanogr, 1996, 41:373-387.
    [322]Simkiss K, Taylor M G Transport of metals across membranes[A]. In: Tessier A,Turner D R, eds. Metal Speciation and bioavailability in Aquatic Systems.Chichester: John Willey and Sons Ltd, 1995. p1-44.
    [323]Tessier A, Buffle J, Campbell P G C. Uptake of trace metals by aquatic organisms[A]. In: Buffle J, De Vitre R R, eds. Chemical and Biological Regulations of Aquatic Systems. Boca Raton: Lewis Publishers, 1994.p197-230.
    [324]Campbell P G C, Errecalde O, Fortin C, Hiriart-Baer V P, Vigneault B. Metal bioavailability to phytoplankton-applicability of the biotic ligand model[J].Comp Biochem Physiol C, 2002,133: 189-206.
    [325]Errecalde O, Campbell P G C. Cadmium and zinc bioavailability to Selenustrum capricornutum (Chlorophyceae): accidental metal uptake and toxicity in the presence of citrate[J]. J Phycol, 2000, 36: 473-483.
    [326]Fortin C, Campbell P G C. Thiosulphate enhances silver uptake by a green alga: role of anion transporters in metal uptake[J]. Environ Sci Technol, 2001, 35:2214-2218.
    [327] Warner J B, Lolkema J S. Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg~(2+)-citrate transporter CitM[J]. Microbiology, 2002, 148:3405-3412.
    [328]Krom B P, Huttinga H, Warner J B, Lolkema J S. Impact of the Mg~(2+)-citrate transporter CitM on heavy metal toxicity in Bacillus subtilis[J]. Arch Microbiol,2002,178:370-375.
    [329]Reinfelder J R, Fisher N S. The assimilation of elements ingested by marine copepods[J]. Science, 1991,215: 794-796.
    [330]Hutchins D A, Wang W X, Fisher N S. Copepod grazing and the biogeochemical fate of diatom iron[J]. Limnol Oceanogr, 1995,40: 989-994.
    [331]Hegarty S G, Villareal T A. Effects of light level and N:P supply ratio on the competition between Phaeocystis cf. pouchetii (Hariot) Lagerheim (Prymnesiophyceae) and five diatom species[J]. J Exp Mar Biol Ecol, 1998,226: 241-258.
    [332]Vuorio K, Lagus A, Lehtimaki J M, Suomela J, Helminen H. Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorus ratios in the northern Baltic Sea[J]. J Exp Mar Biol Ecol, 2005, 322:39-52.
    [333]Hutchins D A, Bruland K W. Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey[J]. Mar Ecol Prog Ser, 1994,110: 259-269.
    [334]Baer K N, Thomas P. Influence of capture stress, salinity and reproductive status on zinc associated with metallothionein-like-proteins in the liver of three teleost species[J]. Mar Environ Res, 1990,29: 277-287.
    [335]Templeton D M, Cherian M G. Toxicological significance of metallothionein[J].MethEnzymol, 1991,205: 11-24.
    [336]English T E, Storey K B. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorea[J]. J Exp Biol, 2003,206: 2517-2524.
    [337]Mosleh Y Y, Paris-Palacios S, Arnoult F, Couderchet M, Biagianti-Risbourg S, Vernet G. Metallothionein induction in aquatic oligochaete Tubifex tubifex exposed to herbicide isoproturon[J]. Environ Toxicol, 2004,19: 88-93.
    [338]Serafim A, Company R M, Bebianno M J, Langston W J. Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium[J]. Mar Environ Res, 2002, 54: 361-365.
    [339]Leung K M Y, Svavarsson J, Crane M, Morritt D. Influence of static and fluctuating salinity on cadmium uptake and metallothionein expression by the dogwhelk Nucella lapillus (L.)[J]. J Exp Mar Biol Ecol, 2002,274: 175-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700