用户名: 密码: 验证码:
硅基质核—壳结构分子印迹纳米材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作的主要内容是硅基质核-壳结构分子印迹纳米材料的制备及其在食品和环境安全及生物分离分析中的应用。论文内容包括如下六部分:
     第一部分:绪论。综述了分子印迹技术的分类及其面临的挑战;结合纳米材料和溶胶-凝胶技术的分子印迹技术。此外,还对本论文的选题意义、内容及创新性进行了简要的介绍。
     第二部分:磺胺类药物分子印迹纳米硅球的制备及应用。采用溶胶-凝胶技术合成了粒径约为80nm的硅球。通过硅烷化试剂3-氨丙基三乙氧基硅烷,使氨基接枝到硅球表面;再通过丙烯酰氯与氨基间的作用,使丙烯酰基接枝到硅球表面。以磺胺甲噁唑为模板分子,采用表面分子印迹技术,在功能单体、交联剂和引发剂的共同作用下,将印迹层包覆在接枝有丙烯酰基的硅球表面,制得磺胺甲噁唑分子印迹纳米硅球。与本体分子印迹技术制得的块状聚合物相比较,所得分子印迹纳米硅球的识别位点均位于硅纳米粒子表面,易于模板分子接近,具有更快的动力学速度,更高的吸附能力和选择性。将其作为吸附材料,实现了对牛奶和鸡蛋中磺胺嘧啶和磺胺甲噁唑选择性地富集和测定。建立了一种离线的分子印迹固相萃取与高效液相色谱联用的有效检测食品中磺胺类药物残留的新方法。
     第三部分:雌酮分子印迹碳纳米管的制备及应用。以包硅碳纳米管作为载体,雌酮作为模板分子,采用半共价印迹法,制得了雌酮的分子印迹碳纳米管。通过等温吸附和选择性吸附实验及Scatchard分析对所得分子印迹碳纳米管的吸附性能进行了考察。实验结果证明,其选择性吸附性能好,动力学吸附速度快,不同批次间的重现性良好。将其应用于环境水样中痕量雌酮的去除,去除效果令人满意。建立了一种价格低廉,合成方法简单,可大批量合成碳纳米管分子印迹聚合物的新方法。
     第四部分:三氯生分子印迹碳纳米管的制备及应用。以包硅碳纳米管作为载体,三氯生作为模板分子,采用溶胶-凝胶技术,制得了三氯生的分子印迹碳纳米管。通过一系列的吸附实验对所制备的分子印迹碳纳米管的吸附性能进行了考察。实验结果显示,制得的聚合物不仅选择性吸附性能好、动力学吸附速度快、不同批次间的重现性好,且可多次循环使用。将其作为吸附材料,实现了对环境水样中三氯生的选择性富集和测定。建立了一种可选择性检测环境水样中三氯生含量的新方法。
     第五部分:蛋白质磁性分子印迹纳米粒子的制备及应用。采用水热法合成了粒径均一,磁性能良好,粒径约200nm的磁性纳米粒子。结合表面分子印迹技术和溶胶-凝胶技术的优势,以所得磁性纳米粒子作为载体,以四种不同等电点的蛋白质(牛血清白蛋白,pI=4.9;牛血红蛋白,pI=6.9;核糖核酸酶A,pI=9.4;溶菌酶,pI=11.2)作为模板分子,采用固定模板蛋白的方法,制备了不同等电点蛋白质的磁性分子印迹纳米粒子。所得各种聚合物对相应的模板蛋白均表现出很好的选择吸附性能及极快的分离速度。其中,牛血红蛋白分子印迹磁性纳米粒子的吸附量最大,印迹效果最好。将其用于混合蛋白样品和牛血中牛血红蛋白的去除,去除效果良好,且可将去除的牛血红蛋白洗脱富集。建立了一种对不同等电点的蛋白质都适用的制备磁性分子印迹纳米粒子的通用方法。
     第六部分:蛋白质温敏磁性分子印迹纳米粒子的制备及应用。以表面接枝有双键的磁性纳米粒子作为载体,以廉价的牛血清白蛋白作为替代模板,以具有温敏响应的N-异丙基丙烯酰胺作为主要功能单体,采用表面分子印迹技术,制备了一种新型的磁性温敏牛血清白蛋白分子印迹纳米粒子,以实现对价格相对昂贵的人血清白蛋白的选择性富集。对聚合、吸附及洗脱条件进行了系统的考察。所得磁性温敏分子印迹纳米粒子可快速达到吸附平衡,实现快速磁性分离,对人血清白蛋白有良好的选择性吸附性能,对温度和盐度都有一定的智能响应,通过对温度的改变即可实现对人血清白蛋白的吸附和解吸。将其应用于牛血样中的牛血清白蛋白和人血样中的人血清白蛋白的选择性去除和富集,效果良好。建立了一种制备可通过温度的改变就实现对人血清白蛋白选择性去除和富集的廉价的磁性分子印迹纳米粒子的新方法。
This thesis is involved in the preparation and application of molecularlyimprinted polymers based on silica-coated nanomaterials. It consists of six chapters.
     In chapter one, the general introduction included the classification andchallenges of molecular imprinting technique (MIT), MIT combined with thecharacteristics of nanomaterials and sol-gel technique. Additionally, the aim,significance and innovation of this thesis were also briefly presented.
     In chapter two, silica-coated molecularly imprinted polymer nanospheres for theselective analysis of sulfonamides in food samples were prepared. Themonodispersed SiO_2nanoparticles of diameter80nm were amino-modified byreaction with3-aminopropyltriethoxylsilane. The acryloyl monolayer was thengrafted onto the amine-modified SiO_2nanoparticles. Finally, the molecular imprintingpolymers (MIPs) films were coated onto the surface of SiO_2nanoparticles by thecopolymerization of the vinyl end groups with functional monomer, cross-linkingagent, initiator, and template molecule (sulfamethoxazole, SMO) to obtain MIPsnanoparticles for SMO (SiO_2@SMO-MIPs). The resulted SiO_2@SMO-MIPs hadbetter site accessibility, faster binding kinetics, higher binding capacity and selectivitycompared with MIPs prepared by traditional bulk polymerization. The feasibility ofremoving SMO and sulfadiazine from food samples was proved by the use of spikedmilk and eggs. Using the SiO_2@SMO-MIPs materials as sorbents, a new off-linemolecular imprinting solid phase extraction-high performance liquid chromatographymethod was developed.
     In chapter three, carbon nanotubes (CNTs) functionalized with MIPs foradvanced removal of estrone were prepared. The obtained MIPs for estrone(CNTs@Est-MIPs) nanocomposites with a well-defined core-shell structure wereobtained using a semi-covalent imprinting strategy. The adsorption properties weredemonstrated by equilibrium rebinding experiments and Scatchard analysis. Theresults demonstrated that the CNTs@Est-MIPs possess favourable selectivity, highcapacity and fast kinetics for template molecule uptake. The synthetic process was quite simple, and the different batches of synthesized CNTs@Est-MIPsnanocomposites showed good reproducibility in template binding. The preparedCNTs@Est-MIPs nanocomposites exhibited high removal efficiency as a sorbent forestrone in water samples.
     In chapter four, molecularly imprinted polymers for triclosan on CNTs coatedwith silica (CNTs@TCS-MIPs) combining a surface molecular imprinting techniquewith a sol-gel process were prepared. The adsorption properties of the polymers weredemonstrated by a series of rebinding experiments. The prepared imprinted materialsexhibited fast kinetics, high capacity and favorable selectivity. Different batches ofCNTs@TCS-MIPs showed good reproducibility and the reusability of MIPs withoutany deterioration in capacity was demonstrated for at least six repeated cycles. TheMIPs developed could be used for the selective adsorption and determination oftriclosan from environmental matrices.
     In chapter five, molecularly imprinted polymers functionalized with magneticnanoparticles for the recognition and enrichment of protein were prepared. Themonodispersed Fe_3O_4nanoparticles of diameter200nm were prepared through amodified solvothermal reaction. Four proteins (bovine serum albumin (BSA, pI=4.9),bovine hemoglobin (BHb, pI=6.9), ribonuclease A (RNase A, pI=9.4) andlysozyme (Lyz, pI=11.2)) with different isoelectric points were chosen as thetemplates. The magnetic protein-MIPs were synthesized by combining surfaceimprinting with a sol-gel process based on covalent template immobilization on thesurface of Fe_3O_4. The adsorption ability of different magnetic protein-MIPs torelevant template proteins were all higher than for the other three proteins. Therefore,this general method studied in this paper was proven to be amenable to different kindsof proteins with different isoelectric points. The magnetic MIPs of BHb (Fe_3O_4@BHb-MIPs) showed the best imprinting effect and the highest adsorption capacity amongthe four proteins. The resulted Fe_3O_4@BHb-MIPs could not only selectively extract atarget protein from mixed proteins but also specifically capture the protein BHb froma real sample of bovine blood.
     In chapter six, thermosensitive molecularly imprinted polymers functionalizedwith magnetic nanoparticles of BSA for the recognition and enrichment of human serum albumin (HSA) were prepared. The main monomer N-isopropylacrylamidewas introduced as a thermosensitive element. BSA was chosen as dummy templatefor HSA. The MIPs films were coated onto the surface of Fe_3O_4by thecopolymerization of the vinyl end groups with functional monomer, cross-linkingagent (N, N-methylenebisacrylamide), initiator (ammonium persulfate), and templatemolecule to obtain MIPs of BSA (Fe_3O_4@BSA-MIPs). The conditions ofpolymerization, adsorption and elution was systematically investigated. Fe_3O_4@BSA-MIPs possessed easy accessibility to the recognition sites and showed fastkinetics, high capacity and favorable selectivity. Fe_3O_4@BSA-MIPs could not onlyrespond to temperature and ionic strength, and achieve adsorption-desorption cyclesthrough changing the temperature, but also be successfully applicated in the selectiveenrichment of BSA or HSA from mixed proteins and bovine blood or human blood.
引文
[1] Pauling L J. A theory of the structure and process of formation of antibodies. J Am ChemSoc,1940,62:2643~2657.
    [2] Dichey F H. The preparation of specific adsorbents. J Proc Nat Acad Sci,1949,35:277~299.
    [3] Wulff G, Sahan A, Zabrocki K. Enzyme-analogue built polymers and their use for theresolution of racemates. Tetrahedron Lett,1973,14:4329~4332.
    [4] Vlatakis G, Andersson L I, Mosbach K, et al. Drug assay using antibody mimics made bymolecular imprinting. Nature,1993,361:645~647.
    [5] Wulff G, Heide B, Helfmeie G. Molecular recognition through the exact placement offunctional groups on rigid matrices via a template approach. J Am Chem Soc,1986,108:1089~1091.
    [6] Wulff G. Molecular imprinting in cross-linked materials with the aid of moleculartemplates-a way towards artificial antibodies. Angew Chem Int Ed,1995,34:1812~1832.
    [7] Mosbach K, Haupt K. Some new developments and challenges in non-covalent molecularimprinting technology. J Mol Recognit,1998,11:62~68.
    [8] Yu C, Mosbach K. Influence of mobile phase composition and cross-linking density on theenantiomeric recognition properties of molecularly imprinted polymers. J Chromatogr A,2000,888:63~72.
    [9] Deore B, Chen Z D, Nagaoka T. Potential-induced enantioselective uptake of amino acidinto molecularly imprinted overoxidized polypyrrole. Anal Chem,2000,72:3989~3994.
    [10] Jamil H, Man B, Philip O, et al. Use of an on-line imprinted polymer pre-column, for theliquid chromatographic-UV absorbance determination of carbaryl and its metabolite incomplex matrices. J Chromatogr A,2006,112:104~111.
    [11] Jiang X M, Jiang N, Zhang H X, et al. Small organic molecular imprinted materials: theirpreparation and application. Anal Bioanal Chem,2007,389:355~368.
    [12] Benito-Pe a E, Martins S, Orellana G, et al. Water-compatible molecularly imprintedpolymer for the selective recognition of fluoroquinolone antibiotics in biological samples.Anal Bioanal Chem,2008,393:235~245.
    [13] Hu X B, An Q, Li G T, et al. Imprinted photonic polymers for chiral recognition. AngewChem Int Ed,2006,45:8145~8148.
    [14] Reimhult K, Yoshimatsu K, Risveden K, et al. Characterization of QCM sensor surfacescoated with molecularly imprinted nanoparticles. Biosens Bioelectron,2008,23:1908~1914.
    [15] Lakshmi D, Bossi A, Whitcombe M J, et al. Electrochemical sensor for catechol anddopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybridrecognition element. Anal Chem,2009,81:3576~3584.
    [16] Valero-Nalero A, Salinsa-Castillo A, Fernández-Sánchez J F, et al. The development of aMIP-optosensor for the detection of monoamine naphthalenes in drinking water. BiosensBioelectron,2009,24:2305~2311.
    [17] Liang R N, Song D A, Zhang R M, et al. Potentiometric sensing of neutral species based ona uniform-sized molecularly imprinted polymer as a receptor. Angew Chem Int Ed,2010,49:2556~2559.
    [18] Alizadeh T, Zare M, Ganjali M R, et al. A new molecularly imprinted polymer (MIP)-basedelectrochemical sensor for monitoring2,4,6-trinitrotoluene (TNT) in natural waters andsoil samples. Biosens Bioelectron,2010,25:1166~1172.
    [19] Luo W, Zhu L H, Chen Y, et al. Synthesis of surface molecularly imprinted silicamicroparticles in aqueous solution and the usage for selective off-line solid-phaseextraction of2,4-dinitrophenol from water matrices. Anal Chim Acta,2008,618:147~156.
    [20] Lee M H, Tsai T C, Thomas J L, et al. Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcoho1) potentiostat sensors. Biosens Bioelectron,2009,24:2611~2617.
    [21] Guan P, Hu X L, Hao M Y. Preparation and properties of erythromycin-molecularlyimprinted membrane. Funct Mater,2010, S2:55~57.
    [22] Song X L, Li J H, Wang J T, et al. Quercetin molecularly imprinted polymers: preparation,recognition characteristics and properties as sorbent for solid-phase extraction. Talanta,2009,80:694~702.
    [23] Rezaei B, Mallakpour S, Majidi N. Solid-phase molecularly imprinted pre-concentrationand spectrophotometric determination of isoxicam in pharmaceuticals and human serum.Talanta,2009,78:418~423.
    [24] Jiang T H, Zhao L X, Chu B L, et al. Molecularly imprinted solid-phase extraction for theselective determination of17β-estradiol in fishery samples with high performance liquidchromatography. Talanta,2009,78:442~447.
    [25] Long C Y, Mai Z B, Yang Y F, et al. Determination of multi-residue for malachite green,gentian violet and their metabolites in aquatic products by high-performance liquidchromatography coupled with molecularly imprinted solid-phase extraction. J ChromatogrA,2009,1216:2275~2281.
    [26] Mosbach K. Molecular imprinting. Trends Biochem Sci,1994,19:9~14.
    [27] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction ofrecognition site functionality into polymers prepared by molecular imprinting: synthesisand characterization of polymeric receptors for cholesterol. J Am Chem Soc,1995,117:7105~7111.
    [28] Klein J U, Whitcombe M J, Mulholland F, et al. Template-mediated synthesis of apolymeric receptor specific to amino acid sequences. Angew Chem Int Ed,1999,38:2057~2060.
    [29] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires. Anal Chem,2006,78:317~320.
    [30] Zhang W, Qin L, He X W, et al. Novel surface modified molecularly imprinted polymerusing acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition oflysozyme in aqueous solution. J Chromatogr A,2009,1216:4560~4567.
    [31] Tai D F, Lin C Y, Wu T Z, et al. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem,2005,77:5140~5143.
    [32] Nishino H, Huang C S, Shea K J, et al. Selective protein capture by epitope imprinting.Angew Chem Int Ed,2006,45:2392~2396.
    [33] Bereli N, Andac M, Baydemir G, et al. Protein recognition via ion-coordinated mole-cularly imprinted supermacroporous cryogels. J Chromatogr A,2008,1190:18~26.
    [34] Qin L, He X W, Li W Y, et al. Macroporous thermosensitive imprinted hydrogel forrecognition of protein by metal coordinate interaction. Anal Chem,2009,81:7206~7216.
    [35] Hawkins D M, Stevenson D, Reddy S M. Investigation of protein imprinting inhydrogel-based molecularly imprinted polymers. Anal Chim Acta,2005,542:61~65.
    [36] Manesiotis P, Hall A J, Courtois J, et al. An artificial riboflavin receptor prepared by atemplate analogue imprinting strategy. Angew Chem Int Ed,2005,44:3902~3906.
    [37] Quaglia M, Chenon K, Hall A J, et al. Target analogue imprinted polymers with affinity forfolic acid and related compounds. J Am Chem Soc,2001,123:2146~2154.
    [38] Kawaguchi M, Hayatsu Y, Nakata H, et al. Molecularly imprinted solid phase extractionusing stable isotope labeled compounds as template and liquid chromatography-massspectrometry for trace analysis of bisphenol A in water sample. Anal Chim Acta,2005,539:83~89.
    [39] Nenoto K, Kubo T, Nomachi M, et al. Simple and effective3D recognition of domoic acidusing a molecularly imprinted polymer. J Am Chem Soc,2007,129:13626~13632.
    [40] Tominaga Y, Kuto T, Kaya K, et al. Effective recognition on the surface of a polymerprepared by molecular imprinting using ionic complex. Macromolecules,2009,42:2911~2915.
    [41] Feás X, Seijas J A, Vázquez-Tato M P, et al. Synthesis of molecularly imprinted polymers:molecular recognition of cyproheptadine using original print molecules and azatadine asdummy templates. Anal Chim Acta,2009,631:237~244.
    [42] Yang H H, Zhang S Q, Yang W, et al. Molecularly imprinted sol-gel nanotubes membranefor bioehecal separations. J Am Chem Soc,2004,126:4054~4055.
    [43] Yang H H, Zhang S Q, Yang W, et al. Surface molecularly imprinted nanowires forbioreognition. J Am Chem Soc,2005,127:1378~1379.
    [44]施利毅.纳米材料.上海:华东理工大学出版社,2007,1.
    [45] Gao D M, Zhang Z P, Wu M H, et a1. A surface functional monomer directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [46] Yuan L H, Ma J, Ding M J, et al. Preparation of estriol-molecularly imprinted silicananoparticles for determining oestrogens in milk tablets. Food Chemistry,2012,131:1063~1068.
    [47] Yin Y M, Chen Y P, Wang X F, et al. Dummy molecularly imprinted polymers on silicaparticles for selective solid-phase extraction of tetrabromobisphenol A from water samples.J Chromatogr A,2012,1220:7~13.
    [48] Xie C G, Liu B H, Wang Z Y, et al. Molecular imprinting at walls of silica nanotubes forTNT recognition. Anal Chem,2007,129:7859~7866.
    [49] Hu Y F, Zhang Z H, Li J X, et al. Electrochemical imprinted sensor for determination ofoleanic acid based on poly (sodium4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles. BiosensBioelectron,2012,31:190~196.
    [50] Zhang Z H, Yang X, Chen X, et al. Novel magnetic bovine serum albumin imprintedpolymers with a matrix of carbon nanotubes, and their application to protein separation.Anal Bioanal Chem,2011,401:2855~2863.
    [51] Chronakis I S, Milosevic B, Frenot A, et al. Generation of molecular recognition sites inelectrospun polymer nanofibers via molecular imprinting. Macromolecules,2006,39:357~361.
    [52] Zhang Y J, Wei Q, Zhang Q C, et al. Molecularly imprinted electrospinning polyether-sulfone nano-scale fibers for the binding and recognition of bisphenol A. Sep Sci Tech,2011,46:1615~1620.
    [53] Tan C J, Chua H G, Ker K H, et al. Preparation of bovine serum albumin surface-imprintedsubmicrometer particles with magnetic susceptibility through core-shell miniemulsionpolymerization. Anal Chem,2008,80:683~692.
    [54] Wang X, Wang L Y, Chen L X, et al. A molecularly imprinted polymer-coated nano-composite of magnetic nanoparticles for estrone recognition. Talanta,2009,78:327~332.
    [55] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [56] Jing T, Du H R, Dai Q, et al. Magnetic molecularly imprinted nanoparticles for recognitionof lysozyme. Biosens Bioelectron,2010,26:301~306.
    [57] Kan X W, Zhao Q, Shao D L, et al. Preparation and recognition properties of bovinehemoglobin magnetic molecularly imprinted polymers. J Phys Chem B,2010,114:3999~4004.
    [58] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymercoating superparamagnetic nanoparticles for protein recognition. J Mater Chem,2010,20:880~883.
    [59] Li Y, Ding M J, Wang S, et al. Preparation of imprinted polymers at surface of magneticnanoparticles for the selective extraction of tadalafil from medicines. Appl Mater Interfaces,2011,3:3308~3315.
    [60] Lee M H, Thomas J L, Chen Y C, et al. Hydrolysis of magnetic amylase-imprintedpoly(ethylene-co-vinyl alcohol) composite nanoparticles. Appl Mater Interfaces,2012,4:916~921.
    [61] Park H Y, Schad M, Wang L Y. Fabrication of magnetic core@shell Fe Oxide@Aunanoparticles for interfacial bioactivity and bioseparation. Langmuir,2007,23:9050~9056.
    [62] Tang X S, Zhang D, Zhou T S, et al. Fe3O4@Au sphere molecular imprinting withself-assembled monolayer for the recognition of parathionmethyl. Anal Methods,2011,3:2313~2321.
    [63] Pan J M, Yao H, Xu L C, et al. Selective recognition of2,4,6-trichlorophenol bymolecularly imprinted polymers based on magnetic halloysite nanotubes composites. JPhys Chem C,2011,115:5440~5449.
    [64] Zhang Z H, Yang X, Chen X, et al. Novel magnetic bovine serum albumin imprintedpolymers with a matrix of carbon nanotubes, and their application to protein separation.Anal Bioanal Chem,2011,401:2855~2863.
    [65] Li Y, Yin X F, Chen F R, et al. Synthesis of magnetic molecularly imprinted polymernanowires using a nanoporous alumina template. Macromolecules,2006,39:4497~4499.
    [66] Wang H J, Zhou W H, Yin X F, et al. Template synthesized molecularly imprinted polymernanotube membranes for chemical separations. J Am Chem Soc,2006,128:15954~15955.
    [67] Díaz-García M E, Laí o R B. Molecular imprinting in sol-gel materials: recent develop-ments and applications. Microchim Acta,2005,149:19~36.
    [68] Wen J, Wilkes G L. Organic/inorganic hybrid network materials by the sol-gel approach.Chem Mater,1996,8:1667~1681.
    [69] Gupta R, Mozumdar S, Chaudhury N K. Effect of ethanol variation on the internalenvironment of sol-gel bulk and thin films with aging. Biosens Bioelectron,2005,21:549~556.
    [70] Gupta R, Mozumdar S, Chaudhury N K. Fluorescence spectroscopic studies to characterizethe internal environment of tetraethyl-orthosilicate derived sol-gel bulk and thin films withaging. Biosens Bioelectron,2005,20:1358~1365.
    [71] Chaudhury N K, Gupta R, Gulia S. Sol-gel technology for sensor applications. Def Sci J,2007,57:241~253.
    [72] Marx S, Liron Z. Molecular imprinting in thin films of organic-inorganic hybrid sol-gel andacrylic polymers. Chem Mater,2001,13:3624~3630.
    [73] Dai S, Shin Y S, Barnes C E, et al. Enhancement of uranyl adsorption capacity andselectivity on silica sol-gel glasses via molecular imprinting. Chem Mater,1997,9:2521~2525.
    [74] Dai S, Burleigh M C, Shin Y, et al. Imprint coating: a novel synthesis of selective func-tionalized ordered mesoporous sorbents. Angew Chem Int Ed,1999,38:1235~1239.
    [75] Fang G Z, Tan J, Yan X P. An ion-imprinted functionalized silica gel sorbent prepared by asurface imprinting technique combined with a sol-gel process for selective solid-phaseextraction of cadmium(II). Anal Chem,2005,77:1734~1739.
    [76] Ichinose I, Senzu H, Kunitake T. Stepwise adsorption of metal alkoxides onhydrolyzed-surfaces: a surface sol-gel process. Chem Lett,1996,10:831~832.
    [77] Ichinose I, Senzu H, Kunitake T. A surface sol-gel process of TiO2and other metal oxidefilms with molecular precision. Chem Mater,1997,9:1296~1298.
    [78] Kunitake T, Lee S W. Molecular imprinting in ultrathin titania gel films via surface sol-gelprocess. Anal Chim Acta,2004,504:1~6.
    [79] Li F, Li J, Zhang S S. Molecularly imprinted polymer grafted on polysaccharide micro-sphere surface by the sol-gel process for protein recognition. Talanta,2008,74:1247~1255.
    [80] Lee S, Ichinose I, Kunitake T. Molecular imprinting of azobenzene carboxylic acid on aTiO2ultrathin film by the surface sol-gel process. Langmuir,1998,14:2857~2863.
    [81] Han D M, Fang G Z, Yan X P. Preparation and evaluation of a molecularly imprintedsol-gel material for on-line solid-phase extraction coupled with high performance liquidchromatography for the determination of trace pentachlorophenol in water samples. JChromatogr A,2005,1100:131~136.
    [82] Li F, Jiang H Q, Zhang S S. An ion-imprinted silica-supported organic-inorganic hybridsorbent prepared by a surface imprinting technique combined with a polysaccharideincorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.Talanta,2007,71:1487~1493.
    [83] Jiang X M, Tian W, Zhao C D, et al. A novel sol-gel-material prepared by a surfaceimprinting technique for the selective solid-phase extraction of bisphenol A. Talanta,2007,72:119~125.
    [84] Jin G Y, Tang Y W. Evaluation of a novel silica-supported sol-gel sorbent prepared by asurface molecular imprinting technique for the selective separation of estazolam fromhuman plasma. Microchim Acta,2009,165:143~149.
    [85] Wang L M, Zhou M H, Jing Z J, et al. Selective separation of lead from aqueous solutionwith a novel Pb(II) surface ion-imprinted sol-gel sorbent. Microchim Acta,2009,165:367~372.
    [86] Luo X B, Luo S L, Zhan Y C, et al. Novel Cu(II) magnetic ion imprinted materialsprepared by surface imprinted technique combined with a sol-gel process. J Hazard Mater,2011,192:949~955.
    [87] Duan Z J, Fan L P, Fang G Z, et al. Novel surface molecularly imprinted sol-gel polymerapplied to the online solid phase extraction of methyl-3-quinoxaline-2-carboxylic acid andquinoxaline-2-carboxylic acid from pork muscle. Anal Bioanal Chem,2011,401:2291~2299.
    [1] Wang X L, Li K, Bi D G, et al. Development of an immunochromatographic lateral-flowtest strip for rapid detection of sulfonamides in eggs and chicken muscles. J Agric FoodChem,2007,55:2072~2078.
    [2] Korpim ki T, Hagren V, Brockmann E C, et al. Generic lanthanide fluoroimmunoassay forthe simultaneous screening of18sulfonamides using an engineered antibody. Anal Chem,2004,76:3091~3098.
    [3] Furusawa N. Rapid high-performance liquid chromatographic determining technique ofsulfamonomethoxine, sulfadimethoxine, and sulfaquinoxaline in eggs without use oforganic solvents. Anal Chim Acta,2003,481:255~259.
    [4] Stoev G, Michailova A. Quantitative determination of sulfonamide residues in foods ofanimal origin by high-performance liquid chromatography with fluorescence detection. JChromatogr A,2000,871:37~42.
    [5] Preechaworapun A, Chuanuwatanakul S, Chailapakul O. Electroanalysis of sulfonamidesby flow injection system/high-performance liquid chromatography coupled withamperometric detection using boron-doped diamond electrode. Talanta,2006,68:1726~1731.
    [6] Chiavarino B, Crestoni M E, Marzio A D, et al. Determination of sulfonamide antibioticsby gas chromatography coupled with atomic emission detection. J Chromatogr B,1998,706:269~277.
    [7] Reeves V B. Confirmation of multiple sulfonamide residues in bovine milk by gaschromatography-positive chemical ionization mass spectrometry. J Chromatogr B,1999,723:127~137.
    [8] Bogialli S, Curini R, Corcia A D, et al. A liquid chromatography-mass spectrometry assayfor analyzing sulfonamide antibacterials in cattle and fish muscle tissues. Anal Chem,2003,75:1798~1804.
    [9] Hows M E P, Perrett D, Kay J. Optimisation of a simultaneous separation of sulpho-namides, dihydrofolate reductase inhibitors and β-lactam antibiotics by capillaryelectrophoresis. J Chromatogr A,1997,768:97~104.
    [10] Shao B, Dong D, Wu Y N, et al. Simultaneous determination of17sulfonamide residues inporcine meat, kidney and liver by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta,2005,546:174~181.
    [11] Ramstr m O, Skudar K, Brüggemann O, et al. Food analyses using molecularly imprintedpolymers. J Agric Food Chem,2001,49:2105~2114.
    [12] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [13] Ye L, Haupt K. Molecularly imprinted polymers as antibody and receptor mimics forassays, sensors and drug discovery. Anal Bioanal Chem,2004,378:1887~1897.
    [14] Turiel E, Martín-Esteban A. Molecularly imprinted polymers: towards highly selectivestationary phases in liquid chromatography and capillary electrophoresis. Anal BioanalChem,2004,378:1876~1886.
    [15] Tamayo F G, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phaseextraction and solid-phase microextraction: recent developments and future trends. JChromatogr A,2007,1152:32~40.
    [16] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [17] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1~27.
    [18] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495~2504.
    [19] Lanza F, Sellergren B. The application of molecular imprinting technology to solid phaseextraction. Chromatographia,2001,53:599~611.
    [20] Sun X L, He X W, Chen L X, et al. Determination of tetracyclines in food samples bymolecularly imprinted monolithic column coupling with high performance liquidchromatography. Talanta,2009,79:926~934.
    [21] Zheng N, Li Y Z, Chang W B, et al. Sulfonamide imprinted polymers using co-functionalmonomers. Anal Chim Acta,2002,452:277~283.
    [22] Zheng N, Li Y Z, Wen M J. Sulfamethoxazole-imprinted polymer for selectivedetermination of sulfamethoxazole in tablets. J Chromatogr A,2004,1033:179~182.
    [23] Liu X J, Ouyang C B, Zhao R, et al. Monolithic molecularly imprinted polymer forsulfamethoxazole and molecular recognition properties in aqueous mobile phase. AnalChim Acta,2006,571:235~241.
    [24] Valtchev M, Palm B S, Schiller M, et al. Development of sulfamethoxazole-imprintedpolymers for the selective extraction from waters. J Hazardous Mater,2009,170:722~728.
    [25] Chen Z Y, Zhao R, Shangguan D H, et al. Preparation and evaluation of uniform-sizedmolecularly imprinted polymer beads used for the separation of sulfamethazine. BiomedChromatogr,2005,19:533~538.
    [26] Davies M P, Biasi V D, Perrett D. Approaches to the rational design of molecularlyimprinted polymers. Anal Chim Acta,2004,504:7~14.
    [27] Guzmán-Vázquez de Prada A, Martínez-Ruiz P, Pingarrón J M, et al. Solid-phasemolecularly imprinted on-line preconcentration and voltammetric determination ofsulfamethazine in milk. Anal Chim Acta,2005,539:125~132.
    [28] He J X, Wang S, Fang G Z, et al. Molecularly imprinted polymer online solid-phaseextraction coupled with high-performance liquid chromatography-UV for the determinationof three sulfonamides in pork and chicken. J Agric Food Chem,2008,56:2919~2925.
    [29] Su S F, Zhang M, Dong X C, et al. HPLC determination of sulfamethazine in milk usingsurface-imprinted silica synthesized with iniferter technique. Talanta,2008,76:1141~1146.
    [30] Guo L Y, Jiang X M, Yang C L, et al. Analysis of sulfamerazine in pond water and severalfishes by high-performance liquid chromatography using molecularly imprintedsolid-phase extraction. Anal Bioanal Chem,2008,391:2291~2298.
    [31] Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates-a new approach inmolecular imprinting. Angew Chem Int Ed,2000,39:2115~2118.
    [32] Bossi A, Piletsky S A, Piletska E V, et al. Surface-grafted molecularly imprinted polymersfor protein recognition. Anal Chem,2001,73:5281~5286.
    [33] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires. Anal Chem,2006,78:317~320.
    [34] Barahona F, Turiel E, Cormack P A G, et al. Chromatographic performance of molecularlyimprinted polymers: core-shell microspheres by precipitation polymerization and graftedMIP films via iniferter-modified silica beads. J Polym Sci Part A: Polym Chem,2010,48:1058~1066.
    [35] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modifiedcarbon nanotube. Biosens Bioelectron,2009,25:587~591.
    [36] Sulitzky C, Rückert B, Sellergren B, et al. Grafting of molecularly imprinted polymer filmson silica supports containing surface-bound free radical initiators. Macromol,2002,35:79~91.
    [37] Titirici M M, Sellergren B. Thin molecularly imprinted polymer films via reversibleaddition-fragmentation chain transfer polymerization. Chem Mater,2006,18:1773~1779.
    [38] Sellergren B, Rückert B, Hall A J. Layer-by-layer grafting of molecularly imprintedpolymer via iniferter modified supports. Adv Mater,2002,14:1204~1208.
    [39] Rückert B, Hall A J, Sellergren B. Molecularly imprinted composite materials viainiferter-modified supports. J Mater Chem,2002,12:2275~2280.
    [40] Carter S R, Rimmer S. Surface molecularly imprinted polymer core-shell particles. AdvFunct Mater,2004,14:553~561.
    [41] Silvestri D, Borrelli C, Giusti P, et al. Polymeric devices containing imprinted nanospheres:a novel approach to improve recognition in water for clinical uses. Anal Chim Acta,2005,542:3~13.
    [42] Lu C H, Yang H H, Wang X R. Surface-imprinted core-shell nanoparticles for sorbentassays. Anal Chem,2007,79:5457~5461.
    [43] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [44] Wang X, He X W, Chen L X, et al. A molecularly imprinted polymer-coatednanocomposite of magnetic nanoparticles for estrone recognition. Talanta,2009,78:327~332.
    [45] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [46] Lu Q, Du S H, Zhang Z P, et al. Tuning of the vinyl groups’ spacing at surface of modifiedsilica in preparation of high density imprinted layer-coated silica nanoparticles: adispersive solid-phase extraction materials for chlorpyrifos. Talanta,2010,81:959~966.
    [47] St ber W, Fink A, Bohn E J. Controlled growth of monodisperse silica spheres in themicron size range. J Colloid Interface Sci,1968,26:62~69.
    [48] Philipse A P, Vrij A J. Preparation and properties of nonaqueous model dispersions ofchemically modified, charged silica spheres. J Colloid Interface Sci,1989,128:121~136.
    [49] Lanza F, Hall A J, Sellergren B, et al. Development of a semiautomated procedure for thesynthesis and evaluation of molecularly imprinted polymers applied to the search forfunctional monomers for phenytoin and nifedipine. Anal Chim Acta,2001,435:91~106.
    [50] Aerts M M L, Beek W M J. Monitoring of veterinary drug residues by a combination ofcontinuous flow techniques and column-switching high-performance liquid chromato-graphy: sulphonamides in egg, meat and milk using post-column derivatization withdimethylaminobenzaldehyde. J Chromatogr A,1998,435:97~112.
    [1] Larsson D G J, Adolfsson-Erici M, Parkkonen J, et al. Ethinyloestradiol-an undesired fishcontraceptive? Aquat Toxicol,1999,45:91~97.
    [2] Ternes T A, Kreckel P, Mueller J. Behaviour and occurrence of estrogens in municipalsewage treatment plants-II. Aerobic batch experiments with activated sludge. Sci TotalEnviron,1999,225:91~99.
    [3] Belfroid A C, Horst A V, Vethaak A D, et al. Analysis and occurrence of estrogenichormones and their glucuronides in surface water and waste water in the Netherlands. SciTotal Environ,1999,225:101~108.
    [4] Salste L, Leskinen P, Kronberg L, et al. Determination of estrogens and estrogenic activityin wastewater effluent by chemical analysis and the bioluminescent yeast assay. Sci TotalEnviron,2007,378:343~351.
    [5] Tremblay M R, Lin S X, Poirier D. Chemical synthesis of16β-propylaminoacyl derivativesof estradiol and their inhibitory potency on typel17β-hydroxysteroid dehydrogenase andbinding affinity on steroid receptors. Steroids,2001,66:821~831.
    [6] Pasqualini J R, Cortes-Prieto J, Chetrite G, et al. Concentrations of estrone, estradiol andtheir sulfates, and evaluation of sulfatase and aromatase activities in patients with breastfibroadenoma. Int J Cancer,1997,70:639~643.
    [7] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [8] Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selectivedetermination of environmental pollutants-a review. Anal Chim Acta,2008,622:48~61.
    [9] Rodriguez-Mozaz S, Alda M J L, Barceló D. Advantages and limitations of on-line solidphase extraction coupled to liquid chromatography-mass spectrometry technologies versusbiosensors for monitoring of emerging contaminants in water. J Chromatogr A,2007,1152:97~115.
    [10] Tamayo F G, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phaseextraction and solid-phase microextraction: recent developments and future trends. JChromatogr A,2007,1152:32~40.
    [11] Sellergren B. Molecularly imprinted polymers. Man-made mimics of antibodies and theirapplication in analytical chemistry. New York, Elsevier,2001.
    [12] Zhang H Q, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on itsapplication in separation and drug development. J Mol Recognit,2006,19:248~259.
    [13] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1~27.
    [14] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495~2504.
    [15] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [16] Li L, He X W, Chen L X, et al. Preparation of novel bovine hemoglobin surface-imprintedpolystyrene nanoparticles with magnetic susceptibility. Sci China Ser B-Chem,2009,52:1402~1411.
    [17] Lu C H, Wang Y, Yang H H, et al. Bifunctional superparamagnetic surface molecularlyimprinted polymer core-shell nanoparticles. J Mater Chem,2009,19:1077~1079.
    [18] Wang X, He X W, Chen L X, et al. A molecularly imprinted polymer-coatednanocomposite of magnetic nanoparticles for estrone recognition. Talanta,2009,78:327~332.
    [19] Lee E, Park D W, Kim S B, et al. Molecularly imprinted polymers immobilized on carbonnanotube. Colloid Surf A Physicochem Eng Aspects,2008,313-314:202~206.
    [20] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modifiedcarbon nanotube. Biosens Bioelectron,2009,25:587~591.
    [21] Kan X W, Wang Z L, Zhu J J, et al. Composites of multiwalled carbon nanotubes andmolecularly imprinted polymers for dopamine recognition. J Phys Chem C,2008,112:4849~4854.
    [22] Yu J C C, Lai E P C. Molecularly imprinted polypyrrole modified carbon nanotubes onstainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. ReactFunct Polym,2006,66:702~711.
    [23] Choong C L, Bendall J S, Milne W I. Carbon nanotube array: a new MIP platform. BiosensBioelectron,2009,25:652~656.
    [24] Kanungo M, Isaacs H S, Wong S S. Quantitative control over electrodeposition of silicafilms onto single-walled carbon nanotube surfaces. J Phys Chem C,2007,111:17730~17742.
    [25] Colorado R, Barron A R. Silica-coated single-walled nanotubes: nanostructure formation.Chem Mater,2004,16:2691~2693.
    [26] Olek M, Kempa K, Giersig M, et al. Nanomechanical properties of silica-coated multiwallcarbon nanotubes-poly(methyl methacrylate) composites. Langmuir,2005,21:3146~3152.
    [27] Pender M J, Sowards L A, Naik R R, et al. Peptide-mediated formation of single-wallcarbon nanotube composites. Nano Lett,2006,6:40~44.
    [28] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction ofrecognition site functionality into polymers prepared by molecular imprinting: synthesisand characterization of polymeric receptors for cholesterol. J Am Chem Soc,1995,117:7105~7111.
    [29] Kirsch N, Whitcombe M J, Ramstr m O, et al. Molecularly imprinted materials scienceand technology. Marcel Dekker,2005.
    [30] Ki C D, Oh C, Oh S G, et al. The use of a thermally reversible bond for molecularimprinting of silica spheres. J Am Chem Soc,2002,124:14838~14839.
    [31] He C Y, Long Y Y, Liu F, et al. A method for coating colloidal particles with molecularlyimprinted silica films. J Mater Chem,2008,18:2849~2854.
    [32] He C Y, Long Y Y, Liu F, et al. Molecularly imprinted silica prepared with immiscible ionicliquid as solvent and porogen for selective recognition of testosterone. Talanta,2008,74:1126~1131.
    [33] Zhang M, He X W, Chen L X, et al. Fabrication of mesoporous silica-coated CNTs andapplication in size-selective protein separation. J Mater Chem,2010,20:5835~5842.
    [34] Zhang M, He X W, Chen L X, et al. A facile method to coat mesoporous silica layer oncarbon nanotubes by anionic surfactant. Mater Lett,2010,64:1383~1386.
    [35] Zhu Y, Pan Y B, Xu H, et al. A simple route to coat multiwalled carbon nanotubes withsilica. Chem Lett,2007,36:1098~1099.
    [36] Han D M, Fang G Z, Yan X P. Preparation and evaluation of a molecularly imprintedsol-gel material for on-line solid-phase extraction coupled with high performance liquidchromatography for the determination of trace pentachlorophenol in water samples. JChromatogr A,2005,1100:131~136.
    [37] Gao R X, He X W, Chen L X, et al. Selective extraction of sulfonamides from food by useof silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem,2010,398:451~461.
    [38] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [39] Zhang Z B, Hu J Y. Selective removal of estrogenic compounds by molecular imprintedpolymer (MIP). Water Res,2008,42:4101~4108.
    [40] Wang S, Xu Z X, Fang G Z, et al. Separation and determination of estrone inenvironmental and drinking water using molecularly imprinted solid phase extractioncoupled with HPLC. J Sep Sci,2008,31:1181~1188.
    [41] Wang S, Xu Z X, Fang G Z, et al. Development of a biomimetic enzyme-linkedimmunosorbent assay method for the determination of estrone in environmental waterusing novel molecularly imprinted films of controlled thickness as artificial antibodies. JAgric Food Chem,2009,57:4528~4534.
    [42] Xu Z X, Wang S, Fang G Z, et al. Study on an on-line molecularly imprinted solid-phaseextraction coupled to high-performance liquid chromatography for separation anddetermination of trace estrone in environment. Anal Bioanal Chem,2009,393:1273~1279.
    [43] Zhang Z B, Hu J Y. Effect of environmental factors on estrogenic compounds adsorption byMIP. Water Air Soil Pollut,2010,210:255~264.
    [1] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquaticenvironment: a review of recent research data. Toxicol Lett,2002,131:5~17.
    [2] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organicwastewater contaminants in U.S. streams,1999-2000: a national reconnaissance. EnvironSci Technol,2002,36:1202~1211.
    [3] Bhargava H N, Patricia A, Leonard B S. Triclosan: applications and safety. Am J InfectControl,2004,24:209~218.
    [4] Ying G G, Kookana R S. Triclosan in wastewaters and biosolids from Australianwastewater treatment plants. Environ Int,2007,33:199~205.
    [5] Orvos D R, Versteeg D J, Inauen J, et al. Aquatic toxicity of triclosan. Environ ToxicolChem,2002,21:1338~1349.
    [6] McMurry L M, Oethinger M, Levy S B. Triclosan targets lipid synthesis. Nature,1998,394:531~532.
    [7] Levy C W, Roujeinikova A, Sedelnikova S, et al. Molecular basis of triclosan activity.Nature,1999,398:383~384.
    [8] Geens T, Neels H, Covaci A. Sensitive and selective method for the determination ofbisphenol-A and triclosan in serum and urine as pentafluorobenzoate-derivatives using GC-ECNI/MS. J Chromatogr B,2009,877:4042~4046.
    [9] González-Mari o I, Quintana J B, Rodríguez I, et al. Simultaneous determination ofparabens, triclosan and triclocarban in water by liquid chromatography/electrosprayionisation tandem mass spectrometry. Rapid Commun Mass Spectrom,2009,23:1756~1766.
    [10] Agüera A, Fernández-Alba A R, Piedra L, et al. Evaluation of triclosan and biphenylol inmarine sediments and urban wastewaters by pressurized liquid extraction and solid phaseextraction followed by gas chromatography mass spectrometry and liquid chromatographymass spectrometry. Anal Chim Acta,2003,480:193~205.
    [11] Regueiro J, Becerril E, Garcia-Jares C, et al. Trace analysis of parabens, triclosan andrelated chlorophenols in water by headspace solid-phase microextraction with in situderivatization and gas chromatography-tandem mass spectrometry. J Chromatogr A,2009,1216:4693~4702.
    [12] Yang J Q, Wang P, Zhang X J, et al. Electrochemical sensor for rapid detection of triclosanusing a multiwall carbon nanotube film. J Agric Food Chem,2009,57:9403~9407.
    [13] Montes R, Rodríguez I, Rubí E, et al. Dispersive liquid-liquid microextraction applied tothe simultaneous derivatization and concentration of triclosan and methyltriclosan in watersamples. J Chromatogr A,2009,1216:205~210.
    [14] Dirtu A C, Roosens L, Geens T, et al. Simultaneous determination of bisphenol A, triclosan,and tetrabromobisphenol A in human serum using solid-phase extraction and gaschromatography-electron capture negative-ionization mass spectrometry. Anal BioanalChem,2008,391:1175~1181.
    [15] Ramstr m O, Skudar K, Haines J, et al. Food analyses using molecularly imprintedpolymers. J Agric Food Chem,2001,49:2105~2114.
    [16] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [17] Ge Y, Turner A P T. Molecularly imprinted sorbent assays: recent developments andapplications. Chem Eur J,2009,15:8100~8107.
    [18] Han D M, Fang G Z, Yan X P. Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquidchromatography for the determination of trace pentachlorophenol in water samples. JChromatogr A,2005,1100:131~136.
    [19] Zhang H Q, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on itsapplication in separation and drug developmenty. J Mol Recognit,2006,19:248~259.
    [20] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1~27.
    [21] Meng Z H, Chen W, Mulchandani A. Removal of estrogenic pollutants from contaminatedwater using molecularly imprinted polymers. Environ Sci Technol,2005,49:8958~8962.
    [22] Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective deter-mination of environmental pollutants-a review. Anal Chim Acta,2008,622:48~61.
    [23] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495~2504.
    [24] Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbentassays. Anal Chem,2007,79:5457~5461.
    [25] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [26] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [27] Wang X, He X W, Chen L X, et al. A molecularly imprinted polymer-coated nanocom-posite of magnetic nanoparticles for estrone recognition. Talanta,2009,278:327~332.
    [28] Fireman-Shoresh S, Avnir D, Marx S. General method for chiral imprinting of sol-gel thinfilms exhibiting enantioselectivity. Chem Mater,2003,15:3607~3613.
    [29] Ye L, Cormack P A G, Mosbach K. Molecularly imprinted monodisperse microspheres forcompetitive radioassay. Anal Commun,1999,36:35~38.
    [1] Taussig M J, Stoevesandt O, Borrebaeck C A K, et al. ProteomeBinders: planning aEuropean resource of affinity reagents for analysis of the human proteome. Nat Methods,2007,4:13~17.
    [2] álvarez-Sánchez B, Priego-Capote F, Castro M D L. Metabolomics analysis II. preparationof biological samples prior to detection. TrAC Trends Anal Chem,2010,29:120~127.
    [3] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles forbiomedical applications. Biomaterials,2005,26:3995~4021.
    [4] Horák D, Babi M, Macková H, et al. Preparation and properties of magnetic nano-andmicrosized particles for biological and environmental separations. J Sep Sci,2007,30:1751~1772.
    [5] Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles: design, synthesis andbiomedical applications. Acc Chem Res,2009,42:1097~1107.
    [6] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabiliza-tion, vectorization, physicochemical characterizations and biological applications. ChemRev,2008,108:2064~2110.
    [7] Gu H W, Xu K M, Xu C J, et al. Biofunctional magnetic nanoparticles for proteinseparation and pathogen detection. Chem Commun,2006,941~949.
    [8] Zhou W, Yao N, Yao G P, et al. Facile synthesis of aminophenylboronic acid-functionalizedmagnetic nanoparticles for selective separation of glycopeptides and glycoproteins. ChemCommun,2008,5577~5579.
    [9] Chen H M, Qi D W, Deng C H, et al. Preparation of C60-functionalized magnetic silicamicrospheres for the enrichment of low-concentration peptides and proteins forMALDI-TOF MS analysis. Proteomics,2009,9:380~387.
    [10] Chen H M, Deng C H, Zhang X M. Synthesis of Fe3O4@SiO2@PMMA core-shell-shellmagnetic microspheres for highly efficient enrichment of peptides and proteins forMALDI-TOF MS analysis. Angew Chem Int Ed,2010,49:607~611.
    [11] Xu C, Xu K, Guo H, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as ageneral agent to bind histidine-tagged proteins. J Am Chem Soc,2004,126:3392~3393.
    [12] Xu C, Xu K, Guo H, et al. Dopamine as a robust anchor to immobilize functionalmolecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc,2004,126:9938~9939.
    [13] Shieh D B, Su C H, Chang F Y, et al. Aqueous nickel-nitrilotriacetate modifiedFe3O4-NH3+nanoparticles for protein purification and cell targeting. Nanotechnology,2006,17:4174~4182.
    [14] Lee K B, Park S, Mirkin C A. Multicomponent magnetic nanorods for biomolecularseparations. Angew Chem Int Ed,2004,43:3048~3050.
    [15] Li Y C, Lin Y S, Tsai P J, et al. Nitrilotriacetic acid-coated magnetic nanoparticles asaffinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides.Anal Chem,2007,79:7519~7525.
    [16] Zhang M, He X W, Chen L X, et al. Magnetic silica-coated submicrospheres withimmobilized metal ions for the selective removal of bovine hemoglobin from bovine blood.Chem Asian J,2010,5:1332~1340.
    [17] Zhang M, He X W, Chen L X, et al. Preparation of IDA-Cu functionalized core-satelliteFe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion ofabundant protein in bovine blood. J Mater Chem,2010,20:10696~10704.
    [18] Zhang M, He X W, Chen L X, et al. Preparation and characterization of iminodiaceticacid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin.Nanotechnology,2011,22,065705.
    [19] Chen H, Deng C, Zhang X, et al. A facile synthesis approach to C8-functionalized magneticcarbonaceous polysaccharide microspheres for the highly efficient and rapid enrichment ofpeptides and direct MALDI-TOF-MS analysis. Adv Mater,2009,21:2200~2205.
    [20] Chen H M, Xu X, Yao N, et al. Facile synthesis of C8-functionalized magnetic silicamicrospheres for enrichment of low-concentration peptides for direct MALDI-TOF-MSanalysis. Proteomics,2008,8:2778~2784.
    [21] Zhang L, Qiao S Z, Jin Y H, et al. Fabrication and size-selective bioseparation of magneticsilica nanospheres with highly ordered periodic mesostructure. Adv Funct Mater,2008,18:3203~3212.
    [22] He X X, Chen Y J, Wang K M, et al. Selective separation of proteins with pH-dependentmagnetic nanoadsorbents. Nanotechnology,2007,18,365604.
    [23] Nematollahzdeh A, Sun W, Aureliano C S A, et al. High-capacity hierarchically imprintedpolymer beads for protein recognition and capture. Angew Chem Int Ed,2011,50:495~498.
    [24] Helling S, Shinde S, Brosseron F, et al. Ultratrace enrichment of tyrosine phosphorylatedpeptides on an imprinted polymer. Anal Chem,2011,83:1862~1865.
    [25] Ye L, Mosbach K. Molecular imprinting: synthetic materials as substitutes for biologicalantibodies and receptors. Chem Mater,2008,20:859~868.
    [26] Whitcombe M J, Chianella I, Larcombe L, et al. The rational development of molecularlyimprinted polymer-based sensors for protein detection. Chem Soc Rev,2011,40:1547~1571.
    [27] Bossi A, Bonini F, Turner A P F, et al. Molecularly imprinted polymers for the recognitionof proteins: the state of the art. Biosens Bioelectron,2007,27:1131~1137.
    [28] Zhou X, Li W Y, He X W, et al. Recent advances in the study of protein imprinting. SepPurif Rev,2007,36:257~283.
    [29] Kempe M, Glad M, Mosbach K. An approach towards surface imprinting using the enzymeribonuclease A. J Mol Recognit,1995,8:35~39.
    [30] Shi H Q, Tsai W B, Garrison M D, et al. Template-imprinted nanostructured surfaces forprotein recognition. Nature,1999,398:593~597.
    [31] Shiomi T, Matsui M, Mizukami F, et al. A method for the molecular imprinting ofhemoglobin on silica surfaces using silanes. Biomaterials,2005,26:5564~5571.
    [32] Fu G Q, He H Y, Chai Z H, et al. Enhanced lysozyme imprinting over nanoparticlesfunctionalized with carboxyl groups for noncovalent template sorption. Anal Chem,2011,83:1431~1436.
    [33] Liu J X, Yang K G, Deng Q L, et al. Preparation of a new type of affinity materialscombining metal coordination with molecular imprinting. Chem Commun,2011,47:3969~3971.
    [34] Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbentassays. Anal Chem,2007,79:5457~5461.
    [35] Linares A V, Vandevelde F, Pantigny J, et al. Polymer films composed of surface-boundnanofilaments with a high aspect ratio, molecularly imprinted with small molecules andproteins. Adv Funct Mater,2009,19:1299~1303.
    [36] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [37] Kan X W, Zhao Q, Shao D L, et al. Preparation and recognition properties of bovinehemoglobin magnetic molecularly imprinted polymers. J Phys Chem B,2010,114:3999~4004.
    [38] Gai Q Q, Qu F, Liu Z J, et al. Superparamagnetic lysozyme surface-imprinted polymerprepared by atom transfer radical polymerization and its application for protein separation.J Chromatogr A,2010,1217:5035~5042.
    [39] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymercoating superparamagnetic nanoparticles for protein recognition. J Mater Chem,2010,20:880~883.
    [40] Ansell R J, Mosbach K. Magnetic molecularly imprinted polymer beads for drug radio-ligand binding assay. Analyst,1998,123:1611~1616.
    [41] Tan C J, Chua H G, Ker K H, et al. Preparation of bovine serum albumin surface-imprintedsubmicrometer particles with magnetic susceptibility through core-shell miniemulsionpolymerization. Anal Chem,2008,80:683~692.
    [42] Xuan S H, Xiang Y, Wang J, et al. Tuning the grain size and particle size of super-paramagnetic Fe3O4microparticles. Chem Mater,2009,21:5079~5087.
    [43] Shirahama H Y, Suzuki K, Suzawa T J. Bovine hemoglobin adsorption onto polymer latices.Colloid Interface Sci,1989,129:483~490.
    [44] Ye L, Cormack P A G, Mosbach K. Molecularly imprinted monodisperse microspheres forcompetitive radioassay. Anal Commun,1999,36:35~38.
    [1] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires. Anal Chem,2006,78:317~320.
    [2] Zhang W, Qin L, He X W, et al. Novel surface modified molecularly imprinted polymerusing acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition oflysozyme in aqueous solution. J Chromatogr A,2009,1216:4560~4567.
    [3] Tai D F, Lin C Y, Wu T Z, et al. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem,2005,77:5140~5143.
    [4] Nishino H, Huang C S, Shea K J, et al. Selective protein capture by epitope imprinting.Angew Chem Int Ed,2006,45:2392~2396.
    [5] Bereli N, Andac M, Baydemir G, et al. Protein recognition via ion-coordinated mole-cularly imprinted supermacroporous cryogels. J Chromatogr A,2008,1190:18~26.
    [6] Qin L, He X W, Li W Y, et al. Macroporous thermosensitive imprinted hydrogel forrecognition of protein by metal coordinate interaction. Anal Chem,2009,81:7206~7216.
    [7] Alvarez-Lorenzo C, Guney O, Oya T, et al. Reversible adsorption of calcium ions byimprinted temperature sensitive gels. J Chem Phys,2001,114:2812~2816.
    [8] Alvarez-Lorenzo C, Hiratani H, Tanaka K, et al. Simultaneous multiple-point adsorption ofaluminum ions and charged molecules by a polyampholyte thermosensitive gel: controllingfrustrations in a heteropolymer gel. Langmuir,2001,17:3616~3622.
    [9] Hiratani H, Alvarez-Lorenzo C, Chuang J, et al. Effect of reversible cross-linker, N,N'-bis(acryloyl) cystamine, on calcium ion adsorption by imprinted gels. Langmuir,2001,17:4431~4436.
    [10] Prabaharan M, Mano J F. Stimuli-responsive hydrogels based on polysaccharidesincorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci,2006,6:991~1008.
    [11] Dimitrov I, Trzebicka B, Muller A H E, et al. Thermosensitive water-soluble copolymerswith doubly responsive reversibly interacting entities. Progr Pol Sci,2007,32:1275~1343.
    [12] Peppas N A, Kim B. Stimuli-sensitive protein delivery systems. J Drug Del Sci Tech,2006,16:11~18.
    [13] Qin L, He X W, Li W Y, et al. Molecularly imprinted beads with double thermosensitivegates for selective recognition of proteins. Anal Bioanal Chem,2011,399:3375~3385.
    [14] Li S J, Ge Y, Turner A P F. A catalytic and positively thermosensitive molecularly imprintedpolymer. Adv Funct Mater,2011,21:1194~1200.
    [15] Karab rk M, zkütük E B, Ers z A. Selective preconcentration of Fe3+using ion-imprintedthermosensitive particles. Hacettepe J Biol Chem,2010,38:27~39.
    [16] Hua Z D, Chen Z Y, Li Y Z. Thermosensitive and salt-sensitive molecularly imprintedhydrogel for bovine serum albumin. Langmuir,2008,24:5773~5780.
    [17] Tokuyama H, Naohara S, Fujioka M. Preparation of molecular imprinted thermosensitivegels grafted onto polypropylene by plasma-initiated graft polymerization. Adv Funct Mater,2008,68:182~188.
    [18] Ko D Y, Lee H J, Jeong B. Surface-imprinted, thermosensitive, core-shell nanosphere formolecular recognition. Macromol Rapid Commun,2006,27:1367~1372.
    [19] Tokuyama H, Fujioka M, Sakohara S. Development and performance of a novel molecularimprinted thermosensitive gel with a cross-linked chelating group for the temperatureswing adsorption of a target metal. J Chem Eng Jpn,2005,38:633~640.
    [20] Kanazawa R, Yoshida T, Gotoh T, et al. Preparation of molecular imprinted thermosensitivegel adsorbents and adsorption/desorption of heavy metal ions by temperature swing. JChem Eng Jpn,2004,37:59~66.
    [21] Liu X Y, Guan Y, Ding X B, et al. Design of temperature sensitive imprinted polymerhydrogels based on multiple-point hydrogen bonding. Macromol Biosci,2004,4:680~684.
    [22] Iemma F, Spizzirri U G, Puoci F, et al. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci,2009,287:779~787.
    [23] Matsui J, Okada M, Tsuruoka M, et al. Solid-phase extraction of a triazine herbicide usinga molecularly imprinted synthetic receptor. Anal Commun,1997,34:85~87.
    [24] Feás X, Ye L, Regal P, et al. Application of dummy molecularly imprinted solid-phaseextraction in the analysis of cyproheptadine in bovine urine. J Sep Sci,2009,32: l740~1747.
    [25] Liu X J, Liu J Z, Huang Y Y, et al. Determination of methotrexate in human serum byhigh-performance liquid chromatography combined with pseudo template molecularlyimprinted polymer. J Chromatogr A,2009,1216:7533~7538.
    [26] Yin J F, Meng Z H, Du M J, et al. Pseudo-template molecularly imprinted polymer forselective screening of trace β-lactam antibiotics in river and tap water. J Chromatogr A,2010,1217:5420~5426.
    [27] Sun H W, Wang F C, Ai L F. Simultaneous determination of seven nitroimidazole residuesin meat by using HPLC-UV detection with solid-phase extraction. J Chromatogr B,2007,857:296~300.
    [28] Manesiotis P, Hall A J, Courtois J. An artificial riboflavin receptor prepared by a templateanalogue imprinting strategy. Angew Chem Int Ed,2005,44:3902~3906.
    [29] Kubo T, Hosoya K, Watabe Y, et al. On-column concentration of bisphenol A with one-stepremoval of humic acids in water. J Chromatogr A,2003,987:389~394.
    [30] álvarez-Sánchez B, Priego-Capote F, Castro M D L. Metabolomics analysis II. preparationof biological samples prior to detection. TrAC Trends Anal Chem,2010,29:120~127.
    [31] Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, andbiomedical applications. Acc Chem Res,2009,42:1097~1107.
    [32] Chen H M, Qi D W, Deng C H, et al. Preparation of C60-functionalized magnetic silicamicrospheres for the enrichment of low-concentration peptides and proteins forMALDI-TOF MS analysis. Proteomics,2009,9:380~387.
    [33] Chen H M, Deng C H, Zhang X M. Synthesis of Fe3O4@SiO2@PMMA core-shell-shellmagnetic microspheres for highly efficient enrichment of peptides and proteins forMALDI-TOF MS analysis. Angew Chem Int Ed,2010,49:607~611.
    [34] Xu C, Xu K, Guo H, et al. Dopamine as a robust anchor to immobilize functionalmolecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc,2004,126:9938~9939.
    [35] Zhang M, He X W, Chen L X, et al. Preparation of IDA-Cu functionalized core-satelliteFe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion ofabundant protein in bovine blood. J Mater Chem,2010,20:10696~10704.
    [36] Zhang M, He X W, Chen L X, et al. Preparation and characterization of iminodiaceticacid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin.Nanotechnology,2011,22,065705.
    [37] Kan X W, Zhao Q, Shao D L, et al. Preparation and recognition properties of bovinehemoglobin magnetic molecularly imprinted polymers. J Phys Chem B,2010,114:3999~4004.
    [38] Gai Q Q, Qu F, Liu Z J, et al. Superparamagnetic lysozyme surface-imprinted polymerprepared by atom transfer radical polymerization and its application for protein separation.J Chromatogr A,2010,1217:5035~5042.
    [39] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymercoating superparamagnetic nanoparticles for protein recognition. J Mater Chem,2010,20:880~883.
    [40] Demirel G, zcetin G, Turan E, et al. pH/Temperature-sensitive imprinted ionicpoly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serumalbumin. Macromol Biosci,2005,5:1032~1037.
    [41] Hirayama K, Akashi S, Furuya M, et al. Rapid confirmation and revision of the primarystructure of bovine serum albumin by ESIMS and FRIT-FAB LC/MS. Biochem BiophysRes Commun,1990,173:639~646.
    [1] Pauling L J. A theory of the structure and process of formation of antibodies. J Am ChemSoc,1940,62:2643~2657.
    [2] Dichey F H. The preparation of specific adsorbents. J Proc Nat Acad Sci,1949,35:277~299.
    [3] Wulff G, Sahan A, Zabrocki K. Enzyme-analogue built polymers and their use for theresolution of racemates. Tetrahedron Lett,1973,14:4329~4332.
    [4] Vlatakis G, Andersson L I, Mosbach K, et al. Drug assay using antibody mimics made bymolecular imprinting. Nature,1993,361:645~647.
    [5] Wulff G, Heide B, Helfmeie G. Molecular recognition through the exact placement offunctional groups on rigid matrices via a template approach. J Am Chem Soc,1986,108:1089~1091.
    [6] Wulff G. Molecular imprinting in cross-linked materials with the aid of moleculartemplates-a way towards artificial antibodies. Angew Chem Int Ed,1995,34:1812~1832.
    [7] Mosbach K, Haupt K. Some new developments and challenges in non-covalent molecularimprinting technology. J Mol Recognit,1998,11:62~68.
    [8] Yu C, Mosbach K. Influence of mobile phase composition and cross-linking density on theenantiomeric recognition properties of molecularly imprinted polymers. J Chromatogr A,2000,888:63~72.
    [9] Deore B, Chen Z D, Nagaoka T. Potential-induced enantioselective uptake of amino acidinto molecularly imprinted overoxidized polypyrrole. Anal Chem,2000,72:3989~3994.
    [10] Jamil H, Man B, Philip O, et al. Use of an on-line imprinted polymer pre-column, for theliquid chromatographic-UV absorbance determination of carbaryl and its metabolite incomplex matrices. J Chromatogr A,2006,112:104~111.
    [11] Jiang X M, Jiang N, Zhang H X, et al. Small organic molecular imprinted materials: theirpreparation and application. Anal Bioanal Chem,2007,389:355~368.
    [12] Benito-Pe a E, Martins S, Orellana G, et al. Water-compatible molecularly imprintedpolymer for the selective recognition of fluoroquinolone antibiotics in biological samples.Anal Bioanal Chem,2008,393:235~245.
    [13] Hu X B, An Q, Li G T, et al. Imprinted photonic polymers for chiral recognition. AngewChem Int Ed,2006,45:8145~8148.
    [14] Reimhult K, Yoshimatsu K, Risveden K, et al. Characterization of QCM sensor surfacescoated with molecularly imprinted nanoparticles. Biosens Bioelectron,2008,23:1908~1914.
    [15] Lakshmi D, Bossi A, Whitcombe M J, et al. Electrochemical sensor for catechol anddopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybridrecognition element. Anal Chem,2009,81:3576~3584.
    [16] Valero-Nalero A, Salinsa-Castillo A, Fernández-Sánchez J F, et al. The development of aMIP-optosensor for the detection of monoamine naphthalenes in drinking water. BiosensBioelectron,2009,24:2305~2311.
    [17] Liang R N, Song D A, Zhang R M, et al. Potentiometric sensing of neutral species based ona uniform-sized molecularly imprinted polymer as a receptor. Angew Chem Int Ed,2010,49:2556~2559.
    [18] Alizadeh T, Zare M, Ganjali M R, et al. A new molecularly imprinted polymer (MIP)-basedelectrochemical sensor for monitoring2,4,6-trinitrotoluene (TNT) in natural waters andsoil samples. Biosens Bioelectron,2010,25:1166~1172.
    [19] Luo W, Zhu L H, Chen Y, et al. Synthesis of surface molecularly imprinted silicamicroparticles in aqueous solution and the usage for selective off-line solid-phaseextraction of2,4-dinitrophenol from water matrices. Anal Chim Acta,2008,618:147~156.
    [20] Lee M H, Tsai T C, Thomas J L, et al. Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcoho1) potentiostat sensors. Biosens Bioelectron,2009,24:2611~2617.
    [21] Guan P, Hu X L, Hao M Y. Preparation and properties of erythromycin-molecularlyimprinted membrane. Funct Mater,2010, S2:55~57.
    [22] Song X L, Li J H, Wang J T, et al. Quercetin molecularly imprinted polymers: preparation,recognition characteristics and properties as sorbent for solid-phase extraction. Talanta,2009,80:694~702.
    [23] Rezaei B, Mallakpour S, Majidi N. Solid-phase molecularly imprinted pre-concentrationand spectrophotometric determination of isoxicam in pharmaceuticals and human serum.Talanta,2009,78:418~423.
    [24] Jiang T H, Zhao L X, Chu B L, et al. Molecularly imprinted solid-phase extraction for theselective determination of17β-estradiol in fishery samples with high performance liquidchromatography. Talanta,2009,78:442~447.
    [25] Long C Y, Mai Z B, Yang Y F, et al. Determination of multi-residue for malachite green,gentian violet and their metabolites in aquatic products by high-performance liquidchromatography coupled with molecularly imprinted solid-phase extraction. J ChromatogrA,2009,1216:2275~2281.
    [26] Mosbach K. Molecular imprinting. Trends Biochem Sci,1994,19:9~14.
    [27] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction ofrecognition site functionality into polymers prepared by molecular imprinting: synthesisand characterization of polymeric receptors for cholesterol. J Am Chem Soc,1995,117:7105~7111.
    [28] Klein J U, Whitcombe M J, Mulholland F, et al. Template-mediated synthesis of apolymeric receptor specific to amino acid sequences. Angew Chem Int Ed,1999,38:2057~2060.
    [29] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires. Anal Chem,2006,78:317~320.
    [30] Zhang W, Qin L, He X W, et al. Novel surface modified molecularly imprinted polymerusing acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition oflysozyme in aqueous solution. J Chromatogr A,2009,1216:4560~4567.
    [31] Tai D F, Lin C Y, Wu T Z, et al. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem,2005,77:5140~5143.
    [32] Nishino H, Huang C S, Shea K J, et al. Selective protein capture by epitope imprinting.Angew Chem Int Ed,2006,45:2392~2396.
    [33] Bereli N, Andac M, Baydemir G, et al. Protein recognition via ion-coordinated mole-cularly imprinted supermacroporous cryogels. J Chromatogr A,2008,1190:18~26.
    [34] Qin L, He X W, Li W Y, et al. Macroporous thermosensitive imprinted hydrogel forrecognition of protein by metal coordinate interaction. Anal Chem,2009,81:7206~7216.
    [35] Hawkins D M, Stevenson D, Reddy S M. Investigation of protein imprinting inhydrogel-based molecularly imprinted polymers. Anal Chim Acta,2005,542:61~65.
    [36] Manesiotis P, Hall A J, Courtois J, et al. An artificial riboflavin receptor prepared by atemplate analogue imprinting strategy. Angew Chem Int Ed,2005,44:3902~3906.
    [37] Quaglia M, Chenon K, Hall A J, et al. Target analogue imprinted polymers with affinity forfolic acid and related compounds. J Am Chem Soc,2001,123:2146~2154.
    [38] Kawaguchi M, Hayatsu Y, Nakata H, et al. Molecularly imprinted solid phase extractionusing stable isotope labeled compounds as template and liquid chromatography-massspectrometry for trace analysis of bisphenol A in water sample. Anal Chim Acta,2005,539:83~89.
    [39] Nenoto K, Kubo T, Nomachi M, et al. Simple and effective3D recognition of domoic acidusing a molecularly imprinted polymer. J Am Chem Soc,2007,129:13626~13632.
    [40] Tominaga Y, Kuto T, Kaya K, et al. Effective recognition on the surface of a polymerprepared by molecular imprinting using ionic complex. Macromolecules,2009,42:2911~2915.
    [41] Feás X, Seijas J A, Vázquez-Tato M P, et al. Synthesis of molecularly imprinted polymers:molecular recognition of cyproheptadine using original print molecules and azatadine asdummy templates. Anal Chim Acta,2009,631:237~244.
    [42] Yang H H, Zhang S Q, Yang W, et al. Molecularly imprinted sol-gel nanotubes membranefor bioehecal separations. J Am Chem Soc,2004,126:4054~4055.
    [43] Yang H H, Zhang S Q, Yang W, et al. Surface molecularly imprinted nanowires forbioreognition. J Am Chem Soc,2005,127:1378~1379.
    [44]施利毅.纳米材料.上海:华东理工大学出版社,2007,1.
    [45] Gao D M, Zhang Z P, Wu M H, et a1. A surface functional monomer directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [46] Yuan L H, Ma J, Ding M J, et al. Preparation of estriol-molecularly imprinted silicananoparticles for determining oestrogens in milk tablets. Food Chemistry,2012,131:1063~1068.
    [47] Yin Y M, Chen Y P, Wang X F, et al. Dummy molecularly imprinted polymers on silicaparticles for selective solid-phase extraction of tetrabromobisphenol A from water samples.J Chromatogr A,2012,1220:7~13.
    [48] Xie C G, Liu B H, Wang Z Y, et al. Molecular imprinting at walls of silica nanotubes forTNT recognition. Anal Chem,2007,129:7859~7866.
    [49] Hu Y F, Zhang Z H, Li J X, et al. Electrochemical imprinted sensor for determination ofoleanic acid based on poly (sodium4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles. BiosensBioelectron,2012,31:190~196.
    [50] Zhang Z H, Yang X, Chen X, et al. Novel magnetic bovine serum albumin imprintedpolymers with a matrix of carbon nanotubes, and their application to protein separation.Anal Bioanal Chem,2011,401:2855~2863.
    [51] Chronakis I S, Milosevic B, Frenot A, et al. Generation of molecular recognition sites inelectrospun polymer nanofibers via molecular imprinting. Macromolecules,2006,39:357~361.
    [52] Zhang Y J, Wei Q, Zhang Q C, et al. Molecularly imprinted electrospinning polyether-sulfone nano-scale fibers for the binding and recognition of bisphenol A. Sep Sci Tech,2011,46:1615~1620.
    [53] Tan C J, Chua H G, Ker K H, et al. Preparation of bovine serum albumin surface-imprintedsubmicrometer particles with magnetic susceptibility through core-shell miniemulsionpolymerization. Anal Chem,2008,80:683~692.
    [54] Wang X, Wang L Y, Chen L X, et al. A molecularly imprinted polymer-coated nano-composite of magnetic nanoparticles for estrone recognition. Talanta,2009,78:327~332.
    [55] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [56] Jing T, Du H R, Dai Q, et al. Magnetic molecularly imprinted nanoparticles for recognitionof lysozyme. Biosens Bioelectron,2010,26:301~306.
    [57] Kan X W, Zhao Q, Shao D L, et al. Preparation and recognition properties of bovinehemoglobin magnetic molecularly imprinted polymers. J Phys Chem B,2010,114:3999~4004.
    [58] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymercoating superparamagnetic nanoparticles for protein recognition. J Mater Chem,2010,20:880~883.
    [59] Li Y, Ding M J, Wang S, et al. Preparation of imprinted polymers at surface of magneticnanoparticles for the selective extraction of tadalafil from medicines. Appl Mater Interfaces,2011,3:3308~3315.
    [60] Lee M H, Thomas J L, Chen Y C, et al. Hydrolysis of magnetic amylase-imprintedpoly(ethylene-co-vinyl alcohol) composite nanoparticles. Appl Mater Interfaces,2012,4:916~921.
    [61] Park H Y, Schad M, Wang L Y. Fabrication of magnetic core@shell Fe Oxide@Aunanoparticles for interfacial bioactivity and bioseparation. Langmuir,2007,23:9050~9056.
    [62] Tang X S, Zhang D, Zhou T S, et al. Fe3O4@Au sphere molecular imprinting withself-assembled monolayer for the recognition of parathionmethyl. Anal Methods,2011,3:2313~2321.
    [63] Pan J M, Yao H, Xu L C, et al. Selective recognition of2,4,6-trichlorophenol bymolecularly imprinted polymers based on magnetic halloysite nanotubes composites. JPhys Chem C,2011,115:5440~5449.
    [64] Zhang Z H, Yang X, Chen X, et al. Novel magnetic bovine serum albumin imprintedpolymers with a matrix of carbon nanotubes, and their application to protein separation.Anal Bioanal Chem,2011,401:2855~2863.
    [65] Li Y, Yin X F, Chen F R, et al. Synthesis of magnetic molecularly imprinted polymernanowires using a nanoporous alumina template. Macromolecules,2006,39:4497~4499.
    [66] Wang H J, Zhou W H, Yin X F, et al. Template synthesized molecularly imprinted polymernanotube membranes for chemical separations. J Am Chem Soc,2006,128:15954~15955.
    [67] Díaz-García M E, Laí o R B. Molecular imprinting in sol-gel materials: recent develop-ments and applications. Microchim Acta,2005,149:19~36.
    [68] Wen J, Wilkes G L. Organic/inorganic hybrid network materials by the sol-gel approach.Chem Mater,1996,8:1667~1681.
    [69] Gupta R, Mozumdar S, Chaudhury N K. Effect of ethanol variation on the internalenvironment of sol-gel bulk and thin films with aging. Biosens Bioelectron,2005,21:549~556.
    [70] Gupta R, Mozumdar S, Chaudhury N K. Fluorescence spectroscopic studies to characterizethe internal environment of tetraethyl-orthosilicate derived sol-gel bulk and thin films withaging. Biosens Bioelectron,2005,20:1358~1365.
    [71] Chaudhury N K, Gupta R, Gulia S. Sol-gel technology for sensor applications. Def Sci J,2007,57:241~253.
    [72] Marx S, Liron Z. Molecular imprinting in thin films of organic-inorganic hybrid sol-gel andacrylic polymers. Chem Mater,2001,13:3624~3630.
    [73] Dai S, Shin Y S, Barnes C E, et al. Enhancement of uranyl adsorption capacity andselectivity on silica sol-gel glasses via molecular imprinting. Chem Mater,1997,9:2521~2525.
    [74] Dai S, Burleigh M C, Shin Y, et al. Imprint coating: a novel synthesis of selective func-tionalized ordered mesoporous sorbents. Angew Chem Int Ed,1999,38:1235~1239.
    [75] Fang G Z, Tan J, Yan X P. An ion-imprinted functionalized silica gel sorbent prepared by asurface imprinting technique combined with a sol-gel process for selective solid-phaseextraction of cadmium(II). Anal Chem,2005,77:1734~1739.
    [76] Ichinose I, Senzu H, Kunitake T. Stepwise adsorption of metal alkoxides onhydrolyzed-surfaces: a surface sol-gel process. Chem Lett,1996,10:831~832.
    [77] Ichinose I, Senzu H, Kunitake T. A surface sol-gel process of TiO2and other metal oxidefilms with molecular precision. Chem Mater,1997,9:1296~1298.
    [78] Kunitake T, Lee S W. Molecular imprinting in ultrathin titania gel films via surface sol-gelprocess. Anal Chim Acta,2004,504:1~6.
    [79] Li F, Li J, Zhang S S. Molecularly imprinted polymer grafted on polysaccharide micro-sphere surface by the sol-gel process for protein recognition. Talanta,2008,74:1247~1255.
    [80] Lee S, Ichinose I, Kunitake T. Molecular imprinting of azobenzene carboxylic acid on aTiO2ultrathin film by the surface sol-gel process. Langmuir,1998,14:2857~2863.
    [81] Han D M, Fang G Z, Yan X P. Preparation and evaluation of a molecularly imprintedsol-gel material for on-line solid-phase extraction coupled with high performance liquidchromatography for the determination of trace pentachlorophenol in water samples. JChromatogr A,2005,1100:131~136.
    [82] Li F, Jiang H Q, Zhang S S. An ion-imprinted silica-supported organic-inorganic hybridsorbent prepared by a surface imprinting technique combined with a polysaccharideincorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.Talanta,2007,71:1487~1493.
    [83] Jiang X M, Tian W, Zhao C D, et al. A novel sol-gel-material prepared by a surfaceimprinting technique for the selective solid-phase extraction of bisphenol A. Talanta,2007,72:119~125.
    [84] Jin G Y, Tang Y W. Evaluation of a novel silica-supported sol-gel sorbent prepared by asurface molecular imprinting technique for the selective separation of estazolam fromhuman plasma. Microchim Acta,2009,165:143~149.
    [85] Wang L M, Zhou M H, Jing Z J, et al. Selective separation of lead from aqueous solutionwith a novel Pb(II) surface ion-imprinted sol-gel sorbent. Microchim Acta,2009,165:367~372.
    [86] Luo X B, Luo S L, Zhan Y C, et al. Novel Cu(II) magnetic ion imprinted materialsprepared by surface imprinted technique combined with a sol-gel process. J Hazard Mater,2011,192:949~955.
    [87] Duan Z J, Fan L P, Fang G Z, et al. Novel surface molecularly imprinted sol-gel polymerapplied to the online solid phase extraction of methyl-3-quinoxaline-2-carboxylic acid andquinoxaline-2-carboxylic acid from pork muscle. Anal Bioanal Chem,2011,401:2291~2299.
    [88] Wang X L, Li K, Bi D G, et al. Development of an immunochromatographic lateral-flowtest strip for rapid detection of sulfonamides in eggs and chicken muscles. J Agric FoodChem,2007,55:2072~2078.
    [89] Korpim ki T, Hagren V, Brockmann E C, et al. Generic lanthanide fluoroimmunoassay forthe simultaneous screening of18sulfonamides using an engineered antibody. Anal Chem,2004,76:3091~3098.
    [90] Furusawa N. Rapid high-performance liquid chromatographic determining technique ofsulfamonomethoxine, sulfadimethoxine, and sulfaquinoxaline in eggs without use oforganic solvents. Anal Chim Acta,2003,481:255~259.
    [91] Stoev G, Michailova A. Quantitative determination of sulfonamide residues in foods ofanimal origin by high-performance liquid chromatography with fluorescence detection. JChromatogr A,2000,871:37~42.
    [92] Preechaworapun A, Chuanuwatanakul S, Chailapakul O. Electroanalysis of sulfonamidesby flow injection system/high-performance liquid chromatography coupled withamperometric detection using boron-doped diamond electrode. Talanta,2006,68:1726~1731.
    [93] Chiavarino B, Crestoni M E, Marzio A D, et al. Determination of sulfonamide antibioticsby gas chromatography coupled with atomic emission detection. J Chromatogr B,1998,706:269~277.
    [94] Reeves V B. Confirmation of multiple sulfonamide residues in bovine milk by gaschromatography-positive chemical ionization mass spectrometry. J Chromatogr B,1999,723:127~137.
    [95] Bogialli S, Curini R, Corcia A D, et al. A liquid chromatography-mass spectrometry assayfor analyzing sulfonamide antibacterials in cattle and fish muscle tissues. Anal Chem,2003,75:1798~1804.
    [96] Hows M E P, Perrett D, Kay J. Optimisation of a simultaneous separation of sulpho-namides, dihydrofolate reductase inhibitors and β-lactam antibiotics by capillaryelectrophoresis. J Chromatogr A,1997,768:97~104.
    [97] Shao B, Dong D, Wu Y N, et al. Simultaneous determination of17sulfonamide residues inporcine meat, kidney and liver by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta,2005,546:174~181.
    [98] Ramstr m O, Skudar K, Brüggemann O, et al. Food analyses using molecularly imprintedpolymers. J Agric Food Chem,2001,49:2105~2114.
    [99] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [100] Ye L, Haupt K. Molecularly imprinted polymers as antibody and receptor mimics forassays, sensors and drug discovery. Anal Bioanal Chem,2004,378:1887~1897.
    [101] Turiel E, Martín-Esteban A. Molecularly imprinted polymers: towards highly selectivestationary phases in liquid chromatography and capillary electrophoresis. Anal BioanalChem,2004,378:1876~1886.
    [102] Tamayo F G, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phaseextraction and solid-phase microextraction: recent developments and future trends. JChromatogr A,2007,1152:32~40.
    [103] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [104] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1~27.
    [105] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495~2504.
    [106] Lanza F, Sellergren B. The application of molecular imprinting technology to solid phaseextraction. Chromatographia,2001,53:599~611.
    [107] Sun X L, He X W, Chen L X, et al. Determination of tetracyclines in food samples bymolecularly imprinted monolithic column coupling with high performance liquidchromatography. Talanta,2009,79:926~934.
    [108] Zheng N, Li Y Z, Chang W B, et al. Sulfonamide imprinted polymers using co-functionalmonomers. Anal Chim Acta,2002,452:277~283.
    [109] Zheng N, Li Y Z, Wen M J. Sulfamethoxazole-imprinted polymer for selectivedetermination of sulfamethoxazole in tablets. J Chromatogr A,2004,1033:179~182.
    [110] Liu X J, Ouyang C B, Zhao R, et al. Monolithic molecularly imprinted polymer forsulfamethoxazole and molecular recognition properties in aqueous mobile phase. AnalChim Acta,2006,571:235~241
    [111] Valtchev M, Palm B S, Schiller M, et al. Development of sulfamethoxazole-imprintedpolymers for the selective extraction from waters. J Hazardous Mater,2009,170:722~728.
    [112] Chen Z Y, Zhao R, Shangguan D H, et al. Preparation and evaluation of uniform-sizedmolecularly imprinted polymer beads used for the separation of sulfamethazine. BiomedChromatogr,2005,19:533~538.
    [113] Davies M P, Biasi V D, Perrett D. Approaches to the rational design of molecularlyimprinted polymers. Anal Chim Acta,2004,504:7~14.
    [114] Guzmán-Vázquez de Prada A, Martínez-Ruiz P, Pingarrón J M, et al. Solid-phasemolecularly imprinted on-line preconcentration and voltammetric determination ofsulfamethazine in milk. Anal Chim Acta,2005,539:125~132.
    [115] He J X, Wang S, Fang G Z, et al. Molecularly imprinted polymer online solid-phaseextraction coupled with high-performance liquid chromatography-UV for the determinationof three sulfonamides in pork and chicken. J Agric Food Chem,2008,56:2919~2925.
    [116] Su S F, Zhang M, Dong X C, et al. HPLC determination of sulfamethazine in milk usingsurface-imprinted silica synthesized with iniferter technique. Talanta,2008,76:1141~1146.
    [117] Guo L Y, Jiang X M, Yang C L, et al. Analysis of sulfamerazine in pond water and severalfishes by high-performance liquid chromatography using molecularly imprintedsolid-phase extraction. Anal Bioanal Chem,2008,391:2291~2298.
    [118] Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates-a new approach inmolecular imprinting. Angew Chem Int Ed,2000,39:2115~2118.
    [119] Bossi A, Piletsky S A, Piletska E V, et al. Surface-grafted molecularly imprinted polymersfor protein recognition. Anal Chem,2001,73:5281~5286.
    [120] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires. Anal Chem,2006,78:317~320.
    [121] Barahona F, Turiel E, Cormack P A G, et al. Chromatographic performance of molecularlyimprinted polymers: core-shell microspheres by precipitation polymerization and graftedMIP films via iniferter-modified silica beads. J Polym Sci Part A: Polym Chem,2010,48:1058~1066.
    [122] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modifiedcarbon nanotube. Biosens Bioelectron,2009,25:587~591.
    [123] Sulitzky C, Rückert B, Sellergren B, et al. Grafting of molecularly imprinted polymer filmson silica supports containing surface-bound free radical initiators. Macromol,2002,35:79~91.
    [124] Titirici M M, Sellergren B. Thin molecularly imprinted polymer films via reversibleaddition-fragmentation chain transfer polymerization. Chem Mater,2006,18:1773~1779.
    [125] Sellergren B, Rückert B, Hall A J. Layer-by-layer grafting of molecularly imprintedpolymer via iniferter modified supports. Adv Mater,2002,14:1204~1208.
    [126] Rückert B, Hall A J, Sellergren B. Molecularly imprinted composite materials viainiferter-modified supports. J Mater Chem,2002,12:2275~2280.
    [127] Carter S R, Rimmer S. Surface molecularly imprinted polymer core-shell particles. AdvFunct Mater,2004,14:553~561.
    [128] Silvestri D, Borrelli C, Giusti P, et al. Polymeric devices containing imprinted nanospheres:a novel approach to improve recognition in water for clinical uses. Anal Chim Acta,2005,542:3~13.
    [129] Lu C H, Yang H H, Wang X R. Surface-imprinted core-shell nanoparticles for sorbentassays. Anal Chem,2007,79:5457~5461.
    [130] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [131] Wang X, He X W, Chen L X, et al. A molecularly imprinted polymer-coatednanocomposite of magnetic nanoparticles for estrone recognition. Talanta,2009,78:327~332.
    [132] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [133] Lu Q, Du S H, Zhang Z P, et al. Tuning of the vinyl groups’ spacing at surface of modifiedsilica in preparation of high density imprinted layer-coated silica nanoparticles: adispersive solid-phase extraction materials for chlorpyrifos. Talanta,2010,81:959~966.
    [134] St ber W, Fink A, Bohn E J. Controlled growth of monodisperse silica spheres in themicron size range. J Colloid Interface Sci,1968,26:62~69.
    [135] Philipse A P, Vrij A J. Preparation and properties of nonaqueous model dispersions ofchemically modified, charged silica spheres. J Colloid Interface Sci,1989,128:121~136.
    [136] Lanza F, Hall A J, Sellergren B, et al. Development of a semiautomated procedure for thesynthesis and evaluation of molecularly imprinted polymers applied to the search forfunctional monomers for phenytoin and nifedipine. Anal Chim Acta,2001,435:91~106.
    [137] Aerts M M L, Beek W M J. Monitoring of veterinary drug residues by a combination ofcontinuous flow techniques and column-switching high-performance liquid chromato-graphy: sulphonamides in egg, meat and milk using post-column derivatization withdimethylaminobenzaldehyde. J Chromatogr A,1998,435:97~112.
    [138] Larsson D G J, Adolfsson-Erici M, Parkkonen J, et al. Ethinyloestradiol-an undesired fishcontraceptive? Aquat Toxicol,1999,45:91~97.
    [139] Ternes T A, Kreckel P, Mueller J. Behaviour and occurrence of estrogens in municipalsewage treatment plants-II. Aerobic batch experiments with activated sludge. Sci TotalEnviron,1999,225:91~99.
    [140] Belfroid A C, Horst A V, Vethaak A D, et al. Analysis and occurrence of estrogenichormones and their glucuronides in surface water and waste water in the Netherlands. SciTotal Environ,1999,225:101~108.
    [141] Salste L, Leskinen P, Kronberg L, et al. Determination of estrogens and estrogenic activityin wastewater effluent by chemical analysis and the bioluminescent yeast assay. Sci TotalEnviron,2007,378:343~351.
    [142] Tremblay M R, Lin S X, Poirier D. Chemical synthesis of16β-propylaminoacyl derivativesof estradiol and their inhibitory potency on typel17β-hydroxysteroid dehydrogenase andbinding affinity on steroid receptors. Steroids,2001,66:821~831.
    [143] Pasqualini J R, Cortes-Prieto J, Chetrite G, et al. Concentrations of estrone, estradiol andtheir sulfates, and evaluation of sulfatase and aromatase activities in patients with breastfibroadenoma. Int J Cancer,1997,70:639~643.
    [144] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [145] Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selectivedetermination of environmental pollutants-a review. Anal Chim Acta,2008,622:48~61.
    [146] Rodriguez-Mozaz S, Alda M J L, Barceló D. Advantages and limitations of on-line solidphase extraction coupled to liquid chromatography-mass spectrometry technologies versusbiosensors for monitoring of emerging contaminants in water. J Chromatogr A,2007,1152:97~115.
    [147] Tamayo F G, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phaseextraction and solid-phase microextraction: recent developments and future trends. JChromatogr A,2007,1152:32~40.
    [148] Sellergren B. Molecularly imprinted polymers. Man-made mimics of antibodies and theirapplication in analytical chemistry. New York, Elsevier,2001.
    [149] Zhang H Q, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on itsapplication in separation and drug development. J Mol Recognit,2006,19:248~259.
    [150] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1~27.
    [151] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495~2504.
    [152] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [153] Li L, He X W, Chen L X, et al. Preparation of novel bovine hemoglobin surface-imprintedpolystyrene nanoparticles with magnetic susceptibility. Sci China Ser B-Chem,2009,52:1402~1411.
    [154] Lu C H, Wang Y, Yang H H, et al. Bifunctional superparamagnetic surface molecularlyimprinted polymer core-shell nanoparticles. J Mater Chem,2009,19:1077~1079.
    [155] Wang X, He X W, Chen L X, et al. A molecularly imprinted polymer-coatednanocomposite of magnetic nanoparticles for estrone recognition. Talanta,2009,78:327~332.
    [156] Lee E, Park D W, Kim S B, et al. Molecularly imprinted polymers immobilized on carbonnanotube. Colloid Surf A Physicochem Eng Aspects,2008,313-314:202~206.
    [157] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modifiedcarbon nanotube. Biosens Bioelectron,2009,25:587~591.
    [158] Kan X W, Wang Z L, Zhu J J, et al. Composites of multiwalled carbon nanotubes andmolecularly imprinted polymers for dopamine recognition. J Phys Chem C,2008,112:4849~4854.
    [159] Yu J C C, Lai E P C. Molecularly imprinted polypyrrole modified carbon nanotubes onstainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. ReactFunct Polym,2006,66:702~711.
    [160] Choong C L, Bendall J S, Milne W I. Carbon nanotube array: a new MIP platform. BiosensBioelectron,2009,25:652~656.
    [161] Kanungo M, Isaacs H S, Wong S S. Quantitative control over electrodeposition of silicafilms onto single-walled carbon nanotube surfaces. J Phys Chem C,2007,111:17730~17742.
    [162] Colorado R, Barron A R. Silica-coated single-walled nanotubes: nanostructure formation.Chem Mater,2004,16:2691~2693.
    [163] Olek M, Kempa K, Giersig M, et al. Nanomechanical properties of silica-coated multiwallcarbon nanotubes-poly(methyl methacrylate) composites. Langmuir,2005,21:3146~3152.
    [164] Pender M J, Sowards L A, Naik R R, et al. Peptide-mediated formation of single-wallcarbon nanotube composites. Nano Lett,2006,6:40~44.
    [165] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction ofrecognition site functionality into polymers prepared by molecular imprinting: synthesisand characterization of polymeric receptors for cholesterol. J Am Chem Soc,1995,117:7105~7111.
    [166] Kirsch N, Whitcombe M J, Ramstr m O, et al. Molecularly imprinted materials scienceand technology. Marcel Dekker,2005.
    [167] Ki C D, Oh C, Oh S G, et al. The use of a thermally reversible bond for molecularimprinting of silica spheres. J Am Chem Soc,2002,124:14838~14839.
    [168] He C Y, Long Y Y, Liu F, et al. A method for coating colloidal particles with molecularlyimprinted silica films. J Mater Chem,2008,18:2849~2854.
    [169] He C Y, Long Y Y, Liu F, et al. Molecularly imprinted silica prepared with immiscible ionicliquid as solvent and porogen for selective recognition of testosterone. Talanta,2008,74:1126~1131.
    [170] Zhang M, He X W, Chen L X, et al. Fabrication of mesoporous silica-coated CNTs andapplication in size-selective protein separation. J Mater Chem,2010,20:5835~5842.
    [171] Zhang M, He X W, Chen L X, et al. A facile method to coat mesoporous silica layer oncarbon nanotubes by anionic surfactant. Mater Lett,2010,64:1383~1386.
    [172] Zhu Y, Pan Y B, Xu H, et al. A simple route to coat multiwalled carbon nanotubes withsilica. Chem Lett,2007,36:1098~1099.
    [173] Han D M, Fang G Z, Yan X P. Preparation and evaluation of a molecularly imprintedsol-gel material for on-line solid-phase extraction coupled with high performance liquidchromatography for the determination of trace pentachlorophenol in water samples. JChromatogr A,2005,1100:131~136.
    [174] Gao R X, He X W, Chen L X, et al. Selective extraction of sulfonamides from food by useof silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem,2010,398:451~461.
    [175] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [176] Zhang Z B, Hu J Y. Selective removal of estrogenic compounds by molecular imprintedpolymer (MIP). Water Res,2008,42:4101~4108.
    [177] Wang S, Xu Z X, Fang G Z, et al. Separation and determination of estrone inenvironmental and drinking water using molecularly imprinted solid phase extractioncoupled with HPLC. J Sep Sci,2008,31:1181~1188.
    [178] Wang S, Xu Z X, Fang G Z, et al. Development of a biomimetic enzyme-linkedimmunosorbent assay method for the determination of estrone in environmental waterusing novel molecularly imprinted films of controlled thickness as artificial antibodies. JAgric Food Chem,2009,57:4528~4534.
    [179] Xu Z X, Wang S, Fang G Z, et al. Study on an on-line molecularly imprinted solid-phaseextraction coupled to high-performance liquid chromatography for separation anddetermination of trace estrone in environment. Anal Bioanal Chem,2009,393:1273~1279.
    [180] Zhang Z B, Hu J Y. Effect of environmental factors on estrogenic compounds adsorption byMIP. Water Air Soil Pollut,2010,210:255~264.
    [181] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquaticenvironment: a review of recent research data. Toxicol Lett,2002,131:5~17.
    [182] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organicwastewater contaminants in U.S. streams,1999-2000: a national reconnaissance. EnvironSci Technol,2002,36:1202~1211.
    [183] Bhargava H N, Patricia A, Leonard B S. Triclosan: applications and safety. Am J InfectControl,2004,24:209~218.
    [184] Ying G G, Kookana R S. Triclosan in wastewaters and biosolids from Australianwastewater treatment plants. Environ Int,2007,33:199~205.
    [185] Orvos D R, Versteeg D J, Inauen J, et al. Aquatic toxicity of triclosan. Environ ToxicolChem,2002,21:1338~1349.
    [186] McMurry L M, Oethinger M, Levy S B. Triclosan targets lipid synthesis. Nature,1998,394:531~532.
    [187] Levy C W, Roujeinikova A, Sedelnikova S, et al. Molecular basis of triclosan activity.Nature,1999,398:383~384.
    [188] Geens T, Neels H, Covaci A. Sensitive and selective method for the determination ofbisphenol-A and triclosan in serum and urine as pentafluorobenzoate-derivatives using GC-ECNI/MS. J Chromatogr B,2009,877:4042~4046.
    [189] González-Mari o I, Quintana J B, Rodríguez I, et al. Simultaneous determination ofparabens, triclosan and triclocarban in water by liquid chromatography/electrosprayionisation tandem mass spectrometry. Rapid Commun Mass Spectrom,2009,23:1756~1766.
    [190] Agüera A, Fernández-Alba A R, Piedra L, et al. Evaluation of triclosan and biphenylol inmarine sediments and urban wastewaters by pressurized liquid extraction and solid phaseextraction followed by gas chromatography mass spectrometry and liquid chromatographymass spectrometry. Anal Chim Acta,2003,480:193~205.
    [191] Regueiro J, Becerril E, Garcia-Jares C, et al. Trace analysis of parabens, triclosan andrelated chlorophenols in water by headspace solid-phase microextraction with in situderivatization and gas chromatography-tandem mass spectrometry. J Chromatogr A,2009,1216:4693~4702.
    [192] Yang J Q, Wang P, Zhang X J, et al. Electrochemical sensor for rapid detection of triclosanusing a multiwall carbon nanotube film. J Agric Food Chem,2009,57:9403~9407.
    [193] Montes R, Rodríguez I, Rubí E, et al. Dispersive liquid-liquid microextraction applied tothe simultaneous derivatization and concentration of triclosan and methyltriclosan in watersamples. J Chromatogr A,2009,1216:205~210.
    [194] Dirtu A C, Roosens L, Geens T, et al. Simultaneous determination of bisphenol A, triclosan,and tetrabromobisphenol A in human serum using solid-phase extraction and gaschromatography-electron capture negative-ionization mass spectrometry. Anal BioanalChem,2008,391:1175~1181.
    [195] Ramstr m O, Skudar K, Haines J, et al. Food analyses using molecularly imprintedpolymers. J Agric Food Chem,2001,49:2105~2114.
    [196] Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants usingmolecular imprinted polymers. Anal Chim Acta,2007,591:29~39.
    [197] Ge Y, Turner A P T. Molecularly imprinted sorbent assays: recent developments andapplications. Chem Eur J,2009,15:8100~8107.
    [198] Han D M, Fang G Z, Yan X P. Preparation and evaluation of a molecularly imprinted sol-gel material for on-line solid-phase extraction coupled with high performance liquidchromatography for the determination of trace pentachlorophenol in water samples. JChromatogr A,2005,1100:131~136.
    [199] Zhang H Q, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on itsapplication in separation and drug developmenty. J Mol Recognit,2006,19:248~259.
    [200] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1~27.
    [201] Meng Z H, Chen W, Mulchandani A. Removal of estrogenic pollutants from contaminatedwater using molecularly imprinted polymers. Environ Sci Technol,2005,49:8958~8962.
    [202] Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective deter-mination of environmental pollutants-a review. Anal Chim Acta,2008,622:48~61.
    [203] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495~2504.
    [204] Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbentassays. Anal Chem,2007,79:5457~5461.
    [205] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [206] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy forhighly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc,2007,129:7859~7866.
    [207] Wang X, He X W, Chen L X, et al. A molecularly imprinted polymer-coated nanocom-posite of magnetic nanoparticles for estrone recognition. Talanta,2009,278:327~332.
    [208] Fireman-Shoresh S, Avnir D, Marx S. General method for chiral imprinting of sol-gel thinfilms exhibiting enantioselectivity. Chem Mater,2003,15:3607~3613.
    [209] Ye L, Cormack P A G, Mosbach K. Molecularly imprinted monodisperse microspheres forcompetitive radioassay. Anal Commun,1999,36:35~38.
    [210] Taussig M J, Stoevesandt O, Borrebaeck C A K, et al. ProteomeBinders: planning aEuropean resource of affinity reagents for analysis of the human proteome. Nat Methods,2007,4:13~17.
    [211] álvarez-Sánchez B, Priego-Capote F, Castro M D L. Metabolomics analysis II. preparationof biological samples prior to detection. TrAC Trends Anal Chem,2010,29:120~127.
    [212] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles forbiomedical applications. Biomaterials,2005,26:3995~4021.
    [213] Horák D, Babi M, Macková H, et al. Preparation and properties of magnetic nano-andmicrosized particles for biological and environmental separations. J Sep Sci,2007,30:1751~1772.
    [214] Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles: design, synthesis andbiomedical applications. Acc Chem Res,2009,42:1097~1107.
    [215] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabiliza-tion, vectorization, physicochemical characterizations and biological applications. ChemRev,2008,108:2064~2110.
    [216] Gu H W, Xu K M, Xu C J, et al. Biofunctional magnetic nanoparticles for proteinseparation and pathogen detection. Chem Commun,2006,941~949.
    [217] Zhou W, Yao N, Yao G P, et al. Facile synthesis of aminophenylboronic acid-functionalizedmagnetic nanoparticles for selective separation of glycopeptides and glycoproteins. ChemCommun,2008,5577~5579.
    [218] Chen H M, Qi D W, Deng C H, et al. Preparation of C60-functionalized magnetic silicamicrospheres for the enrichment of low-concentration peptides and proteins forMALDI-TOF MS analysis. Proteomics,2009,9:380~387.
    [219] Chen H M, Deng C H, Zhang X M. Synthesis of Fe3O4@SiO2@PMMA core-shell-shellmagnetic microspheres for highly efficient enrichment of peptides and proteins forMALDI-TOF MS analysis. Angew Chem Int Ed,2010,49:607~611.
    [220] Xu C, Xu K, Guo H, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as ageneral agent to bind histidine-tagged proteins. J Am Chem Soc,2004,126:3392~3393.
    [221] Xu C, Xu K, Guo H, et al. Dopamine as a robust anchor to immobilize functionalmolecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc,2004,126:9938~9939.
    [222] Shieh D B, Su C H, Chang F Y, et al. Aqueous nickel-nitrilotriacetate modifiedFe3O4-NH3+nanoparticles for protein purification and cell targeting. Nanotechnology,2006,17:4174~4182.
    [223] Lee K B, Park S, Mirkin C A. Multicomponent magnetic nanorods for biomolecularseparations. Angew Chem Int Ed,2004,43:3048~3050.
    [224] Li Y C, Lin Y S, Tsai P J, et al. Nitrilotriacetic acid-coated magnetic nanoparticles asaffinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides.Anal Chem,2007,79:7519~7525.
    [225] Zhang M, He X W, Chen L X, et al. Magnetic silica-coated submicrospheres withimmobilized metal ions for the selective removal of bovine hemoglobin from bovine blood.Chem Asian J,2010,5:1332~1340.
    [226] Zhang M, He X W, Chen L X, et al. Preparation of IDA-Cu functionalized core-satelliteFe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion ofabundant protein in bovine blood. J Mater Chem,2010,20:10696~10704.
    [227] Zhang M, He X W, Chen L X, et al. Preparation and characterization of iminodiaceticacid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin.Nanotechnology,2011,22,065705.
    [228] Chen H, Deng C, Zhang X, et al. A facile synthesis approach to C8-functionalized magneticcarbonaceous polysaccharide microspheres for the highly efficient and rapid enrichment ofpeptides and direct MALDI-TOF-MS analysis. Adv Mater,2009,21:2200~2205.
    [229] Chen H M, Xu X, Yao N, et al. Facile synthesis of C8-functionalized magnetic silicamicrospheres for enrichment of low-concentration peptides for direct MALDI-TOF-MSanalysis. Proteomics,2008,8:2778~2784.
    [230] Zhang L, Qiao S Z, Jin Y H, et al. Fabrication and size-selective bioseparation of magneticsilica nanospheres with highly ordered periodic mesostructure. Adv Funct Mater,2008,18:3203~3212.
    [231] He X X, Chen Y J, Wang K M, et al. Selective separation of proteins with pH-dependentmagnetic nanoadsorbents. Nanotechnology,2007,18,365604.
    [232] Nematollahzdeh A, Sun W, Aureliano C S A, et al. High-capacity hierarchically imprintedpolymer beads for protein recognition and capture. Angew Chem Int Ed,2011,50:495~498.
    [233] Helling S, Shinde S, Brosseron F, et al. Ultratrace enrichment of tyrosine phosphorylatedpeptides on an imprinted polymer. Anal Chem,2011,83:1862~1865.
    [234] Ye L, Mosbach K. Molecular imprinting: synthetic materials as substitutes for biologicalantibodies and receptors. Chem Mater,2008,20:859~868.
    [235] Whitcombe M J, Chianella I, Larcombe L, et al. The rational development of molecularlyimprinted polymer-based sensors for protein detection. Chem Soc Rev,2011,40:1547~1571.
    [236] Bossi A, Bonini F, Turner A P F, et al. Molecularly imprinted polymers for the recognitionof proteins: the state of the art. Biosens Bioelectron,2007,27:1131~1137.
    [237] Zhou X, Li W Y, He X W, et al. Recent advances in the study of protein imprinting. SepPurif Rev,2007,36:257~283.
    [238] Kempe M, Glad M, Mosbach K. An approach towards surface imprinting using the enzymeribonuclease A. J Mol Recognit,1995,8:35~39.
    [239] Shi H Q, Tsai W B, Garrison M D, et al. Template-imprinted nanostructured surfaces forprotein recognition. Nature,1999,398:593~597.
    [240] Shiomi T, Matsui M, Mizukami F, et al. A method for the molecular imprinting ofhemoglobin on silica surfaces using silanes. Biomaterials,2005,26:5564~5571.
    [241] Fu G Q, He H Y, Chai Z H, et al. Enhanced lysozyme imprinting over nanoparticlesfunctionalized with carboxyl groups for noncovalent template sorption. Anal Chem,2011,83:1431~1436.
    [242] Liu J X, Yang K G, Deng Q L, et al. Preparation of a new type of affinity materialscombining metal coordination with molecular imprinting. Chem Commun,2011,47:3969~3971.
    [243] Lu C H, Zhou W H, Han B, et al. Surface-imprinted core-shell nanoparticles for sorbentassays. Anal Chem,2007,79:5457~5461.
    [244] Linares A V, Vandevelde F, Pantigny J, et al. Polymer films composed of surface-boundnanofilaments with a high aspect ratio, molecularly imprinted with small molecules andproteins. Adv Funct Mater,2009,19:1299~1303.
    [245] Li L, He X W, Chen L X, et al. Preparation of core-shell magnetic molecularly imprintedpolymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J,2009,4:286~293.
    [246] Kan X W, Zhao Q, Shao D L, et al. Preparation and recognition properties of bovinehemoglobin magnetic molecularly imprinted polymers. J Phys Chem B,2010,114:3999~4004.
    [247] Gai Q Q, Qu F, Liu Z J, et al. Superparamagnetic lysozyme surface-imprinted polymerprepared by atom transfer radical polymerization and its application for protein separation.J Chromatogr A,2010,1217:5035~5042.
    [248] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymercoating superparamagnetic nanoparticles for protein recognition. J Mater Chem,2010,20:880~883.
    [249] Ansell R J, Mosbach K. Magnetic molecularly imprinted polymer beads for drug radio-ligand binding assay. Analyst,1998,123:1611~1616.
    [250] Tan C J, Chua H G, Ker K H, et al. Preparation of bovine serum albumin surface-imprintedsubmicrometer particles with magnetic susceptibility through core-shell miniemulsionpolymerization. Anal Chem,2008,80:683~692.
    [251] Xuan S H, Xiang Y, Wang J, et al. Tuning the grain size and particle size of super-paramagnetic Fe3O4microparticles. Chem Mater,2009,21:5079~5087.
    [252] Shirahama H Y, Suzuki K, Suzawa T J. Bovine hemoglobin adsorption onto polymer latices.Colloid Interface Sci,1989,129:483~490.
    [253] Ye L, Cormack P A G, Mosbach K. Molecularly imprinted monodisperse microspheres forcompetitive radioassay. Anal Commun,1999,36:35~38.
    [254] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires. Anal Chem,2006,78:317~320.
    [255] Zhang W, Qin L, He X W, et al. Novel surface modified molecularly imprinted polymerusing acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition oflysozyme in aqueous solution. J Chromatogr A,2009,1216:4560~4567.
    [256] Tai D F, Lin C Y, Wu T Z, et al. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem,2005,77:5140~5143.
    [257] Nishino H, Huang C S, Shea K J, et al. Selective protein capture by epitope imprinting.Angew Chem Int Ed,2006,45:2392~2396.
    [258] Bereli N, Andac M, Baydemir G, et al. Protein recognition via ion-coordinated mole-cularly imprinted supermacroporous cryogels. J Chromatogr A,2008,1190:18~26.
    [259] Qin L, He X W, Li W Y, et al. Macroporous thermosensitive imprinted hydrogel forrecognition of protein by metal coordinate interaction. Anal Chem,2009,81:7206~7216.
    [260] Alvarez-Lorenzo C, Guney O, Oya T, et al. Reversible adsorption of calcium ions byimprinted temperature sensitive gels. J Chem Phys,2001,114:2812~2816.
    [261] Alvarez-Lorenzo C, Hiratani H, Tanaka K, et al. Simultaneous multiple-point adsorption ofaluminum ions and charged molecules by a polyampholyte thermosensitive gel: controllingfrustrations in a heteropolymer gel. Langmuir,2001,17:3616~3622.
    [262] Hiratani H, Alvarez-Lorenzo C, Chuang J, et al. Effect of reversible cross-linker, N,N'-bis(acryloyl) cystamine, on calcium ion adsorption by imprinted gels. Langmuir,2001,17:4431~4436.
    [263] Prabaharan M, Mano J F. Stimuli-responsive hydrogels based on polysaccharidesincorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci,2006,6:991~1008.
    [264] Dimitrov I, Trzebicka B, Muller A H E, et al. Thermosensitive water-soluble copolymerswith doubly responsive reversibly interacting entities. Progr Pol Sci,2007,32:1275~1343.
    [265] Peppas N A, Kim B. Stimuli-sensitive protein delivery systems. J Drug Del Sci Tech,2006,16:11~18.
    [266] Qin L, He X W, Li W Y, et al. Molecularly imprinted beads with double thermosensitivegates for selective recognition of proteins. Anal Bioanal Chem,2011,399:3375~3385.
    [267] Li S J, Ge Y, Turner A P F. A catalytic and positively thermosensitive molecularly imprintedpolymer. Adv Funct Mater,2011,21:1194~1200.
    [268] Karab rk M, zk ü t ü k E B, Ers z A. Selective preconcentration of Fe3+usingion-imprintedthermosensitive particles. Hacettepe J Biol Chem,2010,38:27~39.
    [269] Hua Z D, Chen Z Y, Li Y Z. Thermosensitive and salt-sensitive molecularly imprintedhydrogel for bovine serum albumin. Langmuir,2008,24:5773~5780.
    [270] Tokuyama H, Naohara S, Fujioka M. Preparation of molecular imprinted thermosensitivegels grafted onto polypropylene by plasma-initiated graft polymerization. Adv Funct Mater,2008,68:182~188.
    [271] Ko D Y, Lee H J, Jeong B. Surface-imprinted, thermosensitive, core-shell nanosphere formolecular recognition. Macromol Rapid Commun,2006,27:1367~1372.
    [272] Tokuyama H, Fujioka M, Sakohara S. Development and performance of a novel molecularimprinted thermosensitive gel with a cross-linked chelating group for the temperatureswing adsorption of a target metal. J Chem Eng Jpn,2005,38:633~640.
    [273] Kanazawa R, Yoshida T, Gotoh T, et al. Preparation of molecular imprinted thermosensitivegel adsorbents and adsorption/desorption of heavy metal ions by temperature swing. JChem Eng Jpn,2004,37:59~66.
    [274] Liu X Y, Guan Y, Ding X B, et al. Design of temperature sensitive imprinted polymerhydrogels based on multiple-point hydrogen bonding. Macromol Biosci,2004,4:680~684.
    [275] Iemma F, Spizzirri U G, Puoci F, et al. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci,2009,287:779~787.
    [276] Matsui J, Okada M, Tsuruoka M, et al. Solid-phase extraction of a triazine herbicide usinga molecularly imprinted synthetic receptor. Anal Commun,1997,34:85~87.
    [277] Feás X, Ye L, Regal P, et al. Application of dummy molecularly imprinted solid-phaseextraction in the analysis of cyproheptadine in bovine urine. J Sep Sci,2009,32: l740~1747.
    [278] Liu X J, Liu J Z, Huang Y Y, et al. Determination of methotrexate in human serum byhigh-performance liquid chromatography combined with pseudo template molecularlyimprinted polymer. J Chromatogr A,2009,1216:7533~7538.
    [279] Yin J F, Meng Z H, Du M J, et al. Pseudo-template molecularly imprinted polymer forselective screening of trace β-lactam antibiotics in river and tap water. J Chromatogr A,2010,1217:5420~5426.
    [280] Sun H W, Wang F C, Ai L F. Simultaneous determination of seven nitroimidazole residuesin meat by using HPLC-UV detection with solid-phase extraction. J Chromatogr B,2007,857:296~300.
    [281] Manesiotis P, Hall A J, Courtois J. An artificial riboflavin receptor prepared by a templateanalogue imprinting strategy. Angew Chem Int Ed,2005,44:3902~3906.
    [282] Kubo T, Hosoya K, Watabe Y, et al. On-column concentration of bisphenol A with one-stepremoval of humic acids in water. J Chromatogr A,2003,987:389~394.
    [283] álvarez-Sánchez B, Priego-Capote F, Castro M D L. Metabolomics analysis II. preparationof biological samples prior to detection. TrAC Trends Anal Chem,2010,29:120~127.
    [284] Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, andbiomedical applications. Acc Chem Res,2009,42:1097~1107.
    [285] Chen H M, Qi D W, Deng C H, et al. Preparation of C60-functionalized magnetic silicamicrospheres for the enrichment of low-concentration peptides and proteins forMALDI-TOF MS analysis. Proteomics,2009,9:380~387.
    [286] Chen H M, Deng C H, Zhang X M. Synthesis of Fe3O4@SiO2@PMMA core-shell-shellmagnetic microspheres for highly efficient enrichment of peptides and proteins forMALDI-TOF MS analysis. Angew Chem Int Ed,2010,49:607~611.
    [287] Xu C, Xu K, Guo H, et al. Dopamine as a robust anchor to immobilize functionalmolecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc,2004,126:9938~9939.
    [288] Zhang M, He X W, Chen L X, et al. Preparation of IDA-Cu functionalized core-satelliteFe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion ofabundant protein in bovine blood. J Mater Chem,2010,20:10696~10704.
    [289] Zhang M, He X W, Chen L X, et al. Preparation and characterization of iminodiaceticacid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin.Nanotechnology,2011,22,065705.
    [290] Kan X W, Zhao Q, Shao D L, et al. Preparation and recognition properties of bovinehemoglobin magnetic molecularly imprinted polymers. J Phys Chem B,2010,114:3999~4004.
    [291] Gai Q Q, Qu F, Liu Z J, et al. Superparamagnetic lysozyme surface-imprinted polymerprepared by atom transfer radical polymerization and its application for protein separation.J Chromatogr A,2010,1217:5035~5042.
    [292] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymercoating superparamagnetic nanoparticles for protein recognition. J Mater Chem,2010,20:880~883.
    [293] Demirel G, zcetin G, Turan E, et al. pH/Temperature-sensitive imprinted ionicpoly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serumalbumin. Macromol Biosci,2005,5:1032~1037.
    [294] Hirayama K, Akashi S, Furuya M, et al. Rapid confirmation and revision of the primarystructure of bovine serum albumin by ESIMS and FRIT-FAB LC/MS. Biochem BiophysRes Commun,1990,173:639~646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700